Способ получения высокодисперсного диоксида кремния

Изобретение относится к технологии получения диоксида кремния с развитой удельной поверхностью и может найти применение в отраслях промышленности, использующих высокодисперсные минеральные наполнители. Способ получения высокодисперсного диоксида кремния включает предварительную обработку фторидсодержащего раствора метасиликата натрия хлористым кальцием, взятым в количестве 120-150% от стехиометрически необходимого для осаждения фторид-иона, при температуре 50-80°C в течение 0,5-1 часа, отделение осадка фторида кальция, взаимодействие очищенного раствора метасиликата натрия с соединением с кислотными свойствами при повышенной температуре и перемешивании с последующей фильтрацией, промывкой и сушкой полученного осадка. Хлористый кальций используют в виде порошкообразного продукта или в виде насыщенного водного раствора. В качестве соединения с кислотными свойствами используют соляную, серную кислоту или диоксид углерода. Изобретение позволяет получить высокодисперсный диоксид кремния с малым содержанием примеси фтора. 2 з.п. ф-лы, 2 пр.

 

Изобретение относится к технологии получения диоксида кремния с развитой удельной поверхностью из фторидсодержащего раствора метасиликата натрия, образующегося в виде маточного раствора при получении фторида натрия из кремнефтористоводородной кислоты и может найти применение в отраслях промышленности, использующих высокодисперсные минеральные наполнители.

Известно, что основной характеристикой, определяющей потребительские свойства диоксида кремния, используемого в шинной, резинотехнической промышленности, в производстве пластмасс в качестве наполнителя, является величина его удельной поверхности, а также отсутствие нежелательных примесей.

Известен способ получения высокодисперсного диоксида кремния [А.с. СССР 572431, кл. C01B 33/18, опубл. 15.09.1977] путем обработки кремнегеля - отхода производства фтористого алюминия смесью фтористого аммония с серной кислотой, нейтрализации полученного кремнефторида аммония аммиаком, отделением, промывкой и сушкой осадка диоксида кремния. Полученный диоксид кремния имеет удельную поверхность на уровне 140 м2/г.

Недостатком известного способа является относительно высокое содержание нежелательной примеси - фтора в пределах 0,2%, а также 0,3% алюминия.

Известен способ получения белой сажи [А.с. СССР 1130526, кл. C01B 33/18, опубл. 23.12.1984], включающий обработку кремнегеля смесью фторида аммония и кремнефтористоводородной кислоты с последующей нейтрализацией полученного кремнефторида натрия аммиаком, отделением, промывкой и сушкой осадка диоксида кремния.

Однако недостатком известного способа является высокое остаточное содержание фтористых соединений в целевом продукте.

Известен способ получения белой сажи [Патент РФ 2054379, кл. C01B 33/18, опубл. 20.02.1996], включающий взаимодействие при перемешивании кремнефторсодержащего раствора с аммиачной водой в две стадии, фильтрацию, промывку и сушку образовавшегося осадка, при этом на первую стадию подают 20-35 мас.% всего количества аммиачной воды и вторую стадию осуществляют при 65-80°C. Полученный продукт имеет высокую удельную поверхность, однако содержит значительное количество фтористых соединений.

Известны способы получения диоксида кремния (белой сажи) с высокой степенью дисперсности путем обработки раствора жидкого стекла, метасиликата натрия минеральными кислотами [А.с. 248640, опубл. 18.07.1969; а.с. 670536, кл. C01B 33/18, опубл. 30.06.1979; патент РФ 2036836, кл. C01B 33/12, опубл. 09.06.1995; патент РФ 2261840, кл. C01B 33/12, C01B 33/18, опубл. 10.10.2005] или их карбонизацией [патент РФ 2079429, кл. C01B 33/193, опубл. 20.05.1997; патент РФ 2156734, кл. C01B 33/18, опубл. 27.09.2000; патент РФ 2385839, кл. C01B 33/193, опубл. 10.04.2010]. Известные способы обеспечивают получение белой сажи с высокой удельной поверхностью, однако они неприемлемы для переработки растворов метасиликата натрия, содержащих растворенные фтористые соединения.

Известен способ получения аморфного диоксида кремния из раствора метасиликата натрия, имеющего примесь фторида натрия (насыщенный маточный раствор процесса получения фторида натрия) [Патент США 4213951, кл. C01B 33/12, опубл. 1980], путем его обработки кремнефтористоводородной кислотой при температуре кипения суспензии и pH в интервале 7-9. При этом исходным сырьем для получения диоксида кремния является маточный раствор, получаемый в процессе разложения кремнефтористоводородной кислоты едким натром с выделением фторида натрия в твердую фазу и метасиликата натрия в виде жидкой фазы (маточного раствора). Раствор метасиликата натрия содержит 2,2-3,0% растворенного фторида натрия.

Недостатком данного способа является низкая удельная поверхность целевого продукта, а также загрязнение его примесью фторида натрия.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения высокодисперсного диоксида кремния [Патент РФ 2179951, кл. C01B 33/18, опубл. 27.02.2002], включающий взаимодействие фторидсодержащего раствора метасиликата натрия с соединением с кислотными свойствами при повышенной температуре и перемешивании с последующей фильтрацией, промывкой и сушкой полученного осадка, при этом в качестве соединения с кислотными свойствами используют фторидсодержащие соединения, такие как плавиковая кислота HF, кремнефтористоводородная кислота H2SiF6, тетрафторид кремния SiF4 и кремнефторид натрия Na2SiF6. Показатель pH реакционной смеси изменяют до 4,0-6,5, а затем корректируют до 8,9-9,1 в течение 5-10 мин, а взаимодействие ведут, не превышая суммарную концентрации фторид-иона 1 моль/л в образовавшейся суспензии.

Недостатком известного способа является загрязнение целевого продукта фтористыми соединениями.

Технической задачей, решаемой изобретением, является получение высокодисперсного диоксида кремния с малым содержанием примеси фтора.

Решение поставленной задачи достигается тем, что в способе получения высокодисперсного диоксида кремния, включающем взаимодействие фторидсодержащего раствора метасиликата натрия с соединениями с кислотными свойствами при повышенной температуре и перемешивании с последующей фильтрацией, промывкой и сушкой полученного осадка, при этом предварительно фторидсодержащий раствор метасиликата натрия обрабатывают хлористым кальцием, взятым в количестве 120-150% от стехиометрически необходимого для осаждения фторид-иона, при температуре 50-80°C в течение 0,5-1 часа. Далее отделяют осадок фторида кальция, а очищенный раствор метасиликата натрия направляют на взаимодействие с соединением с кислотными свойствами. Возможно использование хлористого кальция в виде насыщенного водного раствора.

Отличительными признаками данного способа являются:

- предварительная очистка от примеси фторид-иона исходного фторидсодержащего раствора метасиликата натрия путем его обработки хлористым кальцием;

- обработка фторидсодержащего раствора метасиликата натрия хлористым кальцием, взятым в количестве 120-150% от стехиометрически необходимого для осаждения фторид-иона, при температуре 50-80°C в течение 0,5-1 часа;

- получение диоксида кремния проводят из очищенного от примеси фтора раствора метасиликата натрия.

Сущность изобретения основана на следующих физико-химических процессах, протекающих в процессе получения целевого продукта. В момент образования диоксид кремния, обладая высокой удельной поверхностью, активно поглощает из реакционной смеси (маточного раствора) примеси, в частности соединения фтора. Адсорбированные диоксидом кремния примеси в дальнейшем плохо отмываются и приводят к загрязнению целевого продукта. Поэтому наиболее эффективным методом снижения содержания примесей в целевом продукте является предварительное удаление фтористых соединений из исходного раствора метасиликата натрия.

Фторидсодержащий раствор метасиликата натрия получается при разложении кремнефтористоводородной кислоты раствором гидроксида натрия по реакции:

H2SiF6+8NaOH=6NaF↓+Na2SiO2+5H2O.

При этом фторид натрия NaF выделяется в осадок. Маточный раствор представляет собой раствор метасиликата натрия, содержащий 2,2-3,0% растворенного фторида натрия в зависимости от расхода гидроксида натрия.

При получении диоксида кремния непосредственно из фторидсодержащего раствора метасиликата натрия диоксид кремния поглощает и будет содержать примеси фторида натрия, что снижает качество целевого продукта.

Для очистки от примеси фторида натрия предварительно фторидсодержащий раствор метасиликата натрия обрабатывают хлористым кальцием, при этом протекает химическая реакция с образованием малорастворимого фторида кальция:

2NaF+CaCl2=CaF2↓+2NaCl.

Для обеспечения полноты удаления примеси фтора кальцийсодержащий реагент берут в некотором избытке, а именно в количестве 120-150% от стехиометрически необходимого для осаждения фторид-иона. Процесс обработки осуществляют при температуре 50-80°C в течение 0,5-1 часа. Далее отделяют осадок фторида кальция, а очищенный раствор метасиликата натрия направляют на взаимодействие с соединением с кислотным свойством. Взаимодействие очищенного раствора метасиликата натрия с соединением с кислотными свойствами проводят при повышенной температуре, а именно в пределах 70-90°C. Возможно использование хлористого кальция в виде насыщенного водного раствора. В качестве соединений с кислотными свойствами используют соляную, разбавленную серную кислоты или диоксид углерода CO2.

Сущность способа подтверждается следующим примером.

Пример 1. 250 г раствора метасиликата натрия, содержащего 10% Na2SiO3 и 1,35% фторид-иона (или 3,0% фторида натрия NaF), нагревают до 70°C. В исходном фторидсодержащим растворе метасиликата натрия присутствует 7,5 г фторида натрия или 0,18 моль фторид-иона. Стехиометрическое количество хлористого кальция, необходимое для образования и осаждения фторид-иона, равно 10,0 г. При перемешивании к раствору метасиликата натрия вводят 12,0 г хлористого кальция, расход кальцийсодержащего реагента составляет 120% от стехиометрического количества. Обработку фторидсодержащего раствора метасиликата натрия хлористым кальцием осуществляют при температуре 70°C в течение 1 часа. Процесс сопровождается образованием осадка фтористого кальция. Полученную суспензию фильтруют, осадок фторида кальция отделяют. Фильтрат, представляющий собой очищенный от фтора раствор метасиликата натрия (остаточное содержание фторид-иона 0,3%) обрабатывают соляной кислотой при температуре 80°C и перемешивании. При этом величина pH изменяется от начальной 11,0 до конечной 6,5. Образовавшийся осадок диоксида кремния отделяют фильтрацией, промывают и сушат с получением 10,2 г целевого продукта следующими качественными показателями: удельная поверхность 140,4 м2/г, насыпная плотность 161,6 г/дм3, массовая доля диоксида кремния 89,8%, массовая доля фторидов 0,08%.

Пример 2. 250 г раствора метасиликата натрия, содержащего 10% Na2SiO3 и 1,35% фторид-иона (или 3,0% фторида натрия NaF), нагревают до 65°C. В исходном фторидсодержащим растворе метасиликата натрия присутствует 7,5 г фторида натрия или 0,18 моль фторид-иона. Стехиометрическое количество хлористого кальция, необходимое для образования и осаждения фторид-иона, равно 10,0 г. При перемешивании к раствору метасиликата натрия вводят 13,0 г хлористого кальция, расход кальцийсодержащего реагента составляет 130% от стехиометрического количества. Обработку фторидсодержащего раствора метасиликата натрия хлористым кальцием осуществляют при температуре 65°C в течение 1 часа. Процесс сопровождается образованием осадка фтористого кальция. Полученную суспензию фильтруют, осадок фторида кальция отделяют. Фильтрат, представляющий собой очищенный от фтора раствор метасиликата натрия (остаточное содержание фторид-иона 0,3%), обрабатывают серной кислотой при температуре 85°C и перемешивании. При этом величина pH изменяется от начальной 11,0 до конечной 6,5. Образовавшийся осадок диоксида кремния отделяют фильтрацией, промывают и сушат с получением 10,1 г целевого продукта со следующими качественными показателями: удельная поверхность 135 м2/г, насыпная плотность 170 г/дм3, массовая доля диоксида кремния 90,0%, массовая доля фторидов 0,07%.

Снижение расхода хлорида кальция менее 120% от стехиометрически необходимого количества приводит к неполному осаждению фторид-ионов. Повышение расхода хлорида кальция более 150% от стехиометрически необходимого количества приводит к уменьшению выхода целевого продукта. Поддержание температуры процесса обработки ниже 50°C приводит к снижению степени очистки раствора метасиликата натрия от фтора и выхода целевого продукта из-за образования осадка силиката кальция. Повышение температуры процесса обработки выше 80°C нецелесообразно из-за роста энергозатрат.

Предлагаемый способ позволяет получать из фторидсодержащего раствора метасиликата натрия диоксид кремния (белую сажу) высокого качества с малым содержанием примеси фтористых соединений.

1. Способ получения высокодисперсного диоксида кремния, включающий взаимодействие фторидсодержащего раствора метасиликата натрия с соединением с кислотными свойствами при повышенной температуре и перемешивании с последующей фильтрацией, промывкой и сушкой полученного осадка, отличающийся тем, что предварительно фторидсодержащий раствор метасиликата натрия обрабатывают хлористым кальцием, взятым в количестве 120-150% от стехиометрически необходимого для осаждения фторид-иона, при температуре 50-80°C в течение 0,5-1 часа, далее отделяют осадок фторида кальция, а очищенный раствор метасиликата натрия направляют на взаимодействие с соединением с кислотными свойствами.

2. Способ по п.1, отличающийся тем, что хлористый кальций используют в виде порошкообразного продукта или в виде насыщенного водного раствора.

3. Способ по 1, отличающийся тем, что в качестве соединения с кислотными свойствами используют соляную, серную кислоту или диоксид углерода.



 

Похожие патенты:
Изобретение относится к химической промышленности. Способ включает обеспечение кремнийсодержащего предшественника, содержащегося в растворе, который имеет значение рН, меньшее или равное рН 7; добавление в раствор металла; регулирование значения рН раствора до значения выше 7; добавление эффективного количества соли к раствору таким образом, чтобы проводимость раствора составляла 4 мСм или более; фильтрацию и сушку кремнийсодержащего предшественника; взаимодействие высушенного продукта с функциональной группой.

Изобретение относится к области наноструктурированных биосовместимых материалов. Способ получения биосовместимых нанопористых сферических частиц оксида кремния включает синтез в реакционной смеси тетраэтоксисилана (ТЭОС) с NH3, водой (H2O), спиртом (С2Н5ОН) и цетилтриметиламмоний бромидом (C16H33N(СН3)3Br - ЦТАБ) в мольном соотношении ТЭОС:NH3:H2O:С2Н5ОН:ЦТАБ, равном 1:19:370:230:0,2, при интенсивном перемешивании со скоростью 125-250 мин-1 при температуре 5-80°C в течение 2-3 ч с образованием в процессе гидролиза ТЭОС в спирто-водно-аммиачной среде мономеров ортокремниевой кислоты Si(OH)4, конденсацию мономеров с формированием первичных частиц размером 3-5 нм, их коагуляцию, после чего полученные частицы отжигают на воздухе при температуре 550°C в течение 15 часов для удаления органических веществ.

Изобретения могут быть использованы в электронной промышленности. Способ изготовления частиц диоксида кремния, у которых водопоглощающая способность составляет менее чем 1,0% при измерении через 500 часов после выдерживания при температуре 50°C и влажности 90% и при температуре 85°C и влажности 85% D90/D10 составляет 3 или менее, абсолютная плотность составляет 2,1 г/см3 или более, и средний диаметр частиц составляет 10 мкм или менее.

Изобретение может быть использовано в химической промышленности. Осажденная кремниевая кислота с числом дибутилфталата в безводном состоянии, т.е.
Изобретение относится к строительным материалам, а именно к производству модифицированных добавок для бетонов, строительных растворов, сухих строительных смесей, теплоизоляционных материалов.

Изобретение относится к области катализа. Описаны сферические частицы, содержащие по меньшей мере один оксид металла и/или полуметалла, причем частицы имеют средний диаметр от 10 до 120 мкм, поверхность БЭТ от 400 до 800 м2/г и объем пор от 0,3 до 3,0 см3/г, а диаметр частицы в любом месте отклоняется от среднего диаметра этой частицы менее чем на 10%, поверхность частицы в основном гладкая, а также способа изготовления этих сферических частиц, катализатора в форме частиц, содержащего сферические частицы.

Изобретение относится к области металлургии, а именно к способам получения нанопорошков диоксида кремния. .
Изобретение относится к проблеме защиты окружающей среды и может быть использовано в производстве особо чистого кварцевого концентрата, которое является одним из основных источников загрязнения среды фтором, хлором и солями, их содержащими.

Изобретение относится к области технологии неорганических веществ, в частности к способам переработки отходящих газов, образующихся в процессе получения пирогенного диоксида кремния высокотемпературным гидролизом хлоридов кремния.

Изобретение относится к химии и технологии неорганических кремнекислородных соединений и может быть использовано для получения мелкодисперсных кремнеземов из попутных хлорсиланов химико-металлургических хлоридных производств поликремния и других металлов и химико-технологических производств органохлорсиланов.
Изобретение относится к кремнезёмсодержащим материалам. Предложен состав, содержащий вещество, имеющее эмпирическую формулу (SiO2)х(ОН)yMzOa, где М представляет собой катион металла или металлоида. 0,01-100% удельной площади поверхности вещества покрыто органосиланом. Молярное отношение у/х составляет от 0,01 до 0,5, молярное отношение x/z составляет от 0,1 до 300, а молярное отношение a/z зависит от свойства содержащегося в веществе оксида металла. Полученный продукт эффективен в качестве наполнителя, носителя катализатора или адсорбента. 3 н. и 7 з.п. ф-лы, 3 пр.
Изобретение относится к материалам для сорбции. Предложен содержащий кремнезем сорбционный состав, имеющий формулу:(SiO2)x(OH)yMzSa, где М представляет собой катион металла или металлоида, S представляет собой серосодержащее соединение, выбранное из, по меньшей мере, одного из следующих соединений: сульфиды и полисульфиды, где 0,01-100% удельной площади поверхности покрыто функционализированным органосиланом. Молярное отношение у/х составляет от 0,01 до 0,5, молярное отношение х/z составляет от 3 до 300, а молярное отношение a/z составляет от 1 до 5. Полученный продукт имеет высокие показатели удельной поверхности и объёма пор. 3 н. и 6 з.п. ф-лы, 4 пр.

Изобретение относится к утилизации оболочки рисовых зерен, а именно к способу удаления ионов металлов из оболочки рисовых зерен, используя промышленный топочный газ. На дне заполненного водой реакционного бака расположено устройство для дисперсии газа, применяемое для подачи промышленного топочного газа. Оболочку рисовых зерен загружают в мешки и укладывают в заполненный водой реакционный бак. Загруженную в мешки оболочку утрамбовывают в воду. Затем в бак подают промышленный топочный газ через устройство для дисперсии газа. Давление воды в заполненном водой реакционном баке используют для повышения растворимости двуокиси углерода, содержащейся в промышленном топочном газе. Полученный раствор угольной кислоты вступает в реакцию с ионами металлов в оболочке рисовых зерен для образования осадка. По завершении реакции оболочку рисовых зерен промывают соленой водой и отжимают для удаления ионов металлов, прикрепившихся к оболочке рисовых зерен. Способ является экономически эффективным, снижает загрязнение окружающей среды и потребление энергии и имеет высокий кпд. 2 н. и 5 з.п. ф-лы, 1 табл., 3 ил., 2 пр.

Изобретение относится к способу получения синтетического SiO2 из золы, образующейся в результате сжигания органического топлива (уголь каменный или бурый, торф, лигниты, горючие сланцы, древесина, отходы животноводства, птицеводства, сельского хозяйства), содержащей SiO2, Al2O3, Fe2O3, K2O, CaO, MgO, редкие и редкоземельные элементы. Способ включает смешивание исходного сырья - золы с фторидом аммония в количестве 1,2-1,4 от стехиометрического значения, нагрев смеси, выдержку в нагретом состоянии до завершения образования гексафторсиликата аммония, возгонку и осаждение летучего гексафторсиликата аммония в конденсаторе, последующее его растворение в воде, взаимодействие полученного раствора с аммиачной водой для образования осадка синтетического SiO2, выделяемого фильтрованием, при этом смесь золы с фторидом аммония непосредственно перед нагревом подвергают механоактивации в течение 5-15 минут при поддержании отношения подводимой мощности механической энергии к удельной поверхности смеси в интервале 0,0133-17 Вт × кг × м-2. Технический результат изобретения - снижение продолжительности стадии нагрева смеси золы и фторида аммония и выделения летучего гексафторсиликата аммония за счет ускорения химической реакции между твердыми телами путем механоактивации смеси исходного сырья и химического реагента при уменьшении затрат электроэнергии. 3 пр.

Изобретение относится к области плазменной технологии получения диоксида кремния. Исходным сырьем для получения нанопорошка диоксида кремния служит силикатное сырье с содержанием диоксида кремния не менее 70% и дисперсностью не более 2 мм. Сырье вводят в плазменный реактор сбоку. Температуру плазмы обеспечивают равной 2500-3000°С. Получение нанопорошка производится путем осаждения мелкодисперсных частиц на стенках плазменного реактора, которые подвергают принудительному водоохлаждению. Способ позволяет повысить выход качественного нанопорошка при низких энергозатратах. 1 табл.

Изобретение относится к химической промышленности и может быть использовано для непрерывного получения диоксида кремния. Способ включает непрерывную подачу подкисляющего агента и силиката щелочного металла в петлевую реакционную зону, содержащую поток жидкой среды, где часть подкисляющего агента и силиката щелочного металла реагирует с образованием диоксида кремния. Жидкая среда непрерывно рециркулирует через петлевую реакционную зону, причем ее часть вместе с диоксидом кремния непрерывно выгружают из петлевой реакционной зоны. Изобретение позволяет непрерывно получать диоксид кремния. 10 з.п. ф-лы, 13 ил., 14 табл., 6 пр.
Наверх