Способ улучшения качества продуктов этиленгликоля

Изобретение относится к способу улучшения качества продуктов этиленгликоля, где сырьевой материал этиленгликоля и водород пропускают через вращающийся реактор с уплотненным слоем с загруженным в него твердым оксидным катализатором при температуре от около 20 до около 280°C, давлении от около 0,1 до около 4,0 МПа, объемной скорости потока от около 0,2 до около 100,0 час-1 и молярном отношении водорода к этиленгликолю от около 0,01 до 40:1 и этиленгликоль получают после реакции, где указанный твердый оксидный катализатор выбирают из, по меньшей мере, одного катализатора на основе меди, на основе никеля и на основе палладия. При этом скорость вращения реактора с уплотненным слоем составляет от около 300 до около 5000 об/мин. Технический результат - улучшение качества продуктов этиленгликоля, а именно высокая селективность следовых примесей, которые влияют на пропускание УФ-излучения для продуктов этиленгликоля, то есть достижение высокого коэффициента УФ-излучения. 8 з.п. ф-лы, 10 пр.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ НАСТОЯЩЕЕ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к способу улучшения качества продуктов этиленгликоля, в частности к способу улучшения качества продуктов этиленгликоля, получаемых путем гидрирования оксалатов, предпочтительно, гидрирования диметилоксалата или диэтилоксалата.

ИЗВЕСТНЫЙ УРОВЕНЬ ТЕХНИКИ

Этиленгликоль (EG) представляет собой важный органический химический сырьевой материал, который используют, главным образом, для получения сложных полиэфирных волокон, антифризов, ненасыщенных полиэфирных смол, смазок, пластификаторов, неионных поверхностно-активных агентов и взрывчатых веществ и т.д. Кроме того, этиленгликоль можно также использовать в таких областях, как материалы покрытий, проявители для фотографии, тормозная жидкость и чернила, в качестве растворителей и среды для пербората аммония и для получения специальных растворителей, таких как гликольэфир. Этиленгликоль находит широкий круг применений, включая очень важное использование в качестве основного сырьевого материала для получения сложного полиэфира (PET), сложных полиэфирных волокон. Под этиленгликолем в рассматриваемом описании обычно подразумевают продукт этиленгликоля со степенью чистоты, достаточной для изготовления волокон.

В настоящее время крупномасштабное производство этиленгликоля как внутри страны, так и за рубежом использует, главным образом, нефтяной способ получения, т.е. процессы прямого гидрирования или гидрирования под давлением. В соответствии с указанным процессом этиленоксид и воду смешивают, получая смешанный водный раствор в соотношении 1:20 ~ 22 (молярное отношение); указанный смешанный водный раствор реагирует в реакторе с неподвижным слоем в течение 18 ~ 30 минут при температуре 130 ~ 180°C и давлении 1,0 ~ 2,5 МПа; этиленоксид полностью превращается в смешанный спирт; и полученный водный раствор этиленгликоля содержит около 10% (по массе); затем этиленгликоль получают в результате концентрирования путем дегидратации и выделения с помощью вакуумной ректификации, используя выпарные батареи. Однако устройство для получения продукции требует установки множества испарителей и потребляет большое количество энергии для дегидратирования, установки множества испарителей, что приводит к длительному процессу получения, требует много оборудования и приводит к большому расходу энергии.

В настоящее время, с глобальной точки зрения, ресурсы нефти значительно сокращаются. Более того, мир наблюдает за большими колебаниями цен на нефть. Картину ресурсов в Китае можно суммировать как меньше нефти, меньше газа и больше угля. Развитие химической промышленности в Китае, которое не только приведет к более полному использованию ресурсов природного газа и угля и уменьшению зависимости от импорта нефти, но также может уменьшить давление на окружающую среду, представляет собой очень важную область исследований. Весьма привлекательно, используя промышленные химические способы переработки угля, получать оксалаты, используя моноокись углерода в качестве сырьевого материала, и затем получать этиленгликоль путем гидрирования оксалата. В настоящее время как местные, так и иностранные исследователи получения этиленгликоля с использованием моноокиси углерода в качестве сырьевого материала достигли превосходных результатов. Его промышленное производство растет. Однако, что касается получения этиленгликоля путем гидрирования оксалата, все еще сохраняется необходимость в дальнейших исследованиях, особенно в исследованиях гидрирования оксалата, при котором образуется больше побочных продуктов, и наличие следовых количеств соединений, содержащих ненасыщенные двойные связи, может повлиять на качество продуктов этиленгликоля. Одним из важных показателей определения качества продуктов этиленгликоля “волоконной” степени чистоты является пропускание УФ-излучения с длиной волны 220 нм, так как оно влияет на блеск и цветность конечных полиэфирных продуктов. Что касается этиленгликоля, получаемого “нефтяным” способом, обычно считают, что важными факторами, влияющими на пропускание УФ-излучения с длиной волны 220 нм продуктами этиленгликоля “волоконной” степени чистоты, являются присутствующие в продуктах альдегидсодержащие побочные продукты. Что касается продуктов этиленгликоля, полученных путем гидрирования оксалата, обычно считают, что важные факторы, влияющие на пропускание УФ-излучения с длиной волны 220 нм продуктами этиленгликоля, отличаются от факторов, полученных нефтяным способом; обычно образуется меньше альдегидсодержащих побочных продуктов; другие неальдегидные карбонильные соединения могут оказаться важными факторами, влияющими на пропускание УФ-излучения с длиной волны 220 нм продуктами этиленгликоля.

В известном уровне техники обычно используют ионообменные смолы в качестве катализаторов для улучшения качества и степени очистки этиленгликоля, например, в патенте США 6242655 раскрыт способ использования сильно кислотной катионообменной смолы в качестве катализатора, в котором после обработки содержание альдегидных групп в продуктах этиленгликоля снижается с 20 частей на миллион до 5 частей на миллион или меньше. Однако недостаток существующего способа состоит в том, что содержание альдегидных групп в продуктах этиленгликоля можно снизить самое большее только до около 2 частей на миллион, но пропускание УФ-излучения с длиной волны 220 нм продуктами этиленгликоля при этом все еще не достигает идеальных значений. Между тем существующий способ применяется только для продуктов этиленгликоля, получаемых нефтяным способом. Отсутствуют сообщения о влиянии указанного способа на продукты, полученные на основе угля. Поэтому проблема улучшения пропускания УФ-излучения полученными на основе угля продуктами этиленгликоля и дальнейшая гарантия качества указанных продуктов является весьма важным предметом исследования. В настоящее время имеется мало литературы или сообщений относительно указанной проблемы.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Техническая проблема, которую необходимо решить настоящим изобретением, состоит в создании нового способа улучшения качества продуктов этиленгликоля, тем самым, в решении проблемы низкого пропускания УФ-излучения продуктами этиленгликоля, существующими при известном уровне техники. Продукты этиленгликоля, полученные указанным способом, наряду с другими преимуществами характеризуются высоким коэффициентом пропускания УФ-излучения. С этой целью настоящее изобретение использует следующее техническое решение: способ улучшения качества продуктов этиленгликоля, в котором указанный сырьевой материал этиленгликоля и водород пропускают через вращающийся реактор с уплотненным слоем, загруженный твердым оксидным катализатором, при температуре от около 20 до около 280°C, при давлении от около 0,1 до около 4,0 МПа, объемной скорости потока от около 0,2 до около 100,0 час-1 и при молярном отношении водорода к этиленгликолю от около 0,01 до 40:1 и этиленгликоль получают после реакции, для которой указанный твердый оксидный катализатор выбирают из по меньшей мере одного катализатора на основе меди, на основе никеля и на основе палладия и скорость вращения указанного вращающегося реактора с уплотненным слоем составляет от около 300 до около 5000 об/мин.

В одном из вариантов указанная температура составляет от около 30 до около 260°C при давлении от около 0,3 до около 3,0 МПа, объемная скорость составляет от около 1 до около 50,0 час-1 и молярное отношение водорода к этиленгликолю составляет от около 0,1 до 30:1.

В другом варианте интервал скоростей вращения вращающегося реактора с уплотненным слоем составляет от около 500 до около 3000 об/мин.

В другом варианте сырьевой материал этиленгликоля поступает из продуктов этиленгликоля, полученных при гидрировании оксалата, и массовая концентрация сырьевого материала этиленгликоля составляет, предпочтительно, более 99%.

В другом варианте указанный твердый оксидный катализатор характеризуется активностью от около 60 до около 400 Н/см, предпочтительно, в интервале от около 100 до около 300 Н/см. Указанной интенсивности можно достичь с использованием органического связующего, где указанное органическое связующее может представлять собой, например: поливиниловый спирт, гидроксипропилметилцеллюлозу, метилцеллюлозу или гидроксипропилметилцеллюлозу.

В отличие от известного уровня техники указанный твердый оксидный катализатор, полученный с использованием указанного органического связующего, можно использовать при более низких температурах в вышеуказанном способе. Указанный твердый оксидный катализатор может иметь следующие параметры:

площадь поверхности от около 10 до около 500 м2/г, объем пор от около 0,1 до около 1 мл/г и средний диаметр пор от около 2 до около 13 нм.

Указанный твердый оксидный катализатор может быть, например, катализатором, включающим оксид палладия, и/или оксид меди, и/или оксид никеля.

В другом варианте указанный твердый оксидный катализатор может содержать обычные носители и необязательно могут быть добавлены обычные адъюванты. Такими носителями могут быть, например, двуокись кремния, окись алюминия и/или молекулярные сита. Указанный твердый оксидный катализатор можно получить способами, используемыми в области современной технологии.

В другом варианте в качестве указанного вращающегося реактора с уплотненным слоем можно, например, использовать реактор типа HIGEE-001 (производства SRIPT).

Как всем известно, в процессе указанной реакции получения этиленгликоля способом гидрирования оксалата кроме целевых продуктов этиленгликоля образуются некоторые количества побочных продуктов, например нормальные количества этанола, бутиленгликоля и пропиленгликоля, и другие следовые количества соединений, содержащих ненасыщенные двойные связи. Обычные способы выделения или другие специальные ректификационные методы позволяют удалить большую часть соединений, содержащихся в нормальных количествах, таких как этанол и пропиленгликоль и т.д., позволяя довести степень чистоты продуктов до более чем 99,8%. Однако, как это часто бывает, хотя степень чистоты этиленгликоля уже достаточно высока, пропускание УФ-излучения с длинами волн 220 нм, 275 нм и 350 нм для продуктов этиленгликоля все еще не достигает идеальных значений (которые требуются в соответствии с национальными стандартами Китая (Chinese National Standards) для продуктов этиленгликоля высшего сорта, пропускание УФ-излучения с длинами волн 220 нм, 275 нм и 350 нм продуктами этиленгликоля должно быть, соответственно, больше чем 75, 95 и 98). Причина состоит в том, что следовые количества примесей и даже такие следовые количества примесей, как при степени чистоты части на миллион, оказывают заметное влияние на пропускание УФ-излучения указанными продуктами. Однако указанные следовые примеси в количестве частиц на миллион обычно бывает трудно удалить ректификацией.

Авторы настоящего изобретения в процессе своих исследований обнаружили, что катализаторы на основе меди, никеля и/или палладия обладают более высокой селективностью удаления следовых примесей в этиленгликоле в присутствии водорода. Кроме того, принимая во внимание низкое содержание примесей, которые влияют на пропускание УФ-излучения указанными продуктами, реакционный процесс контролируется, главным образом, за счет пролиферации. Характеристики дисперсии водорода оказывают заметное влияние на эффект удаления примесей. Поэтому в настоящем изобретении используют реактор гидрирования с вращающимся уплотненным слоем.

Преимущество, состоящее в том, что коэффициент переноса массы можно улучшить за счет геометрических пропорций, используя вращающийся уплотненный слой, значительно усиливают процесс переноса массы, и в итоге происходит эффективное удаление примесей, которые влияют на пропускание УФ-излучения продуктами, и заметно улучшает качества продуктов.

Коэффициент пропускания УФ-излучения для продуктов этиленгликоля, полученных с использованием технических растворов настоящего изобретения, выше чем 75 на 220 нм, выше чем 95 на 275 нм и выше чем 98 на 350 нм, и очевидно, что был достигнут лучший технический эффект.

Настоящее изобретение далее будет проиллюстрировано следующими примерами, но настоящее изобретение указанными примерами не ограничено.

ПРЕДПОЧТИТЕЛЬНЫЕ ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

Пример 1

Твердый оксид никеля (15% оксида никеля в расчете на массовый процент катализатора, где носителем служит окись алюминия) используют в качестве катализатора; причем активность катализатора составляет 100 H/см, площадь поверхности равна 200 м2/г, объем пор составляет 0,31 мл/г и средний диаметр пор равен 5 нм; указанный продукт этиленгликоля, полученный в результате гидрирования диметилоксалата, используют в качестве сырьевого материала; водород и сырьевой материал этиленгликоля (сырьевой материал этиленгликоля имеет степень чистоты 99,8%; пропускание УФ-излучения указанного сырьевого материала составляет 2 на 220 нм, 91 на 275 нм и 95 на 350 нм) пропускают через вращающийся реактор с уплотненным слоем (SRIPT-HIGEE-001, здесь и далее тот же самый) при температуре 60°C, давлении l,0 МПа, объемной скорости потока 20 час-1 и отношении водорода к этиленгликолю (здесь и далее имеется в виду молярное отношение) 3:1, где происходит контактирование с катализатором. Выходящий поток этиленгликоля получают после реакции, при которой скорость вращения реактора с уплотненным слоем составляет 500 об/мин, и пропускание УФ-излучения для продуктов этиленгликоля, полученных после гидрирования, составляет 78 на 220 нм, 95 на 275 нм и 100 на 350 нм.

Пример 2

Твердый оксид никеля (30% оксид никеля в расчете на массовый процент катализатора, где носителем является окись алюминия) используют в качестве катализатора; указанный катализатор обладает активность l,50 Н/см, площадью поверхности 300 м2/г, объемом пор 0,4 мл/г и средним диаметром пор 8 нм; указанный продукт этиленгликоля, полученный в результате гидрирования диметилоксалата используют в качестве сырьевого материала; водород и сырьевой материал этиленгликоля (сырьевой материал этиленгликоля имеет степень чистоты 99,8%; пропускание УФ-излучения указанного сырьевого материала составляет 2 на 220 нм, 91 на 275 нм и 95 на 350 нм) пропускают через вращающийся реактор с уплотненным слоем при температуре 90°C, давлении 3,0 МПа, объемной скорости потока 50 час-1, и отношении водорода к этиленгликолю 10:1, где происходит контактирование потока с катализатором. Вытекающий поток этиленгликоля получают после реакции, где скорость вращения вращающегося реактора с уплотненным слоем составляет 800 об/мин и пропускание УФ-излучения продуктами этиленгликоля, полученными после гидрирования, составляет 77 на 220 нм, 96 на 275 нм и 100 на 350 нм.

Пример 3

Твердый оксид никеля (30% оксида никеля в расчете на массовый процент катализатора, где носителем служит двуокись кремния) используют в качестве катализатора; указанный катализатор обладает активностью 110 Н/см, площадью поверхности 400 м2/г, объемом пор 0,6 мл/г и средним диаметром пор 3 нм; указанный продукт этиленгликоля, полученный в результате гидрирования диметилоксалата, используют в качестве сырьевого материала; водород и сырьевой материал этиленгликоля (сырьевой материал этиленгликоля имеет степень чистоты 99,9%; пропускание УФ-излучения указанным сырьевым материалом составляет 0 на 220 нм, 90 на 275 нм и 95 на 350 нм) пропускают через вращающийся реактор с уплотненным слоем при температуре 40°C, давлении l,0 МПа, объемной скорости потока 10 час-1, и отношении водорода к этиленгликолю 2:1, где происходит контактирование с указанным катализатором. Вытекающий поток этиленгликоля получают после реакции, где скорость вращения вращающегося реактора с уплотненным слоем составляет 1000 об/мин и пропускание УФ-излучения продуктами этиленгликоля, полученными после гидрирования, составляет 79 на 220 нм, 97 на 275 нм и 99 на 350 нм.

Пример 4

Твердый оксид никеля (30% оксида никеля в расчете на массовый процент катализатора, где указанным носителем являются молекулярные сита ZSM-5), используют в качестве катализатора; активность указанного катализатора составляет 210 Н/см, площадь поверхности составляет 450 м2/г, объем пор 0,6 мл/г и средний диаметр пор 6 нм; указанный продукт этиленгликоля, полученный в результате гидрирования диэтилоксалата, используют в качестве сырьевого материала; водород и сырьевой материал этиленгликоля (сырьевой материал этиленгликоля имеет степень чистоты 99,8%; пропускание УФ-излучения указанным сырьевым материалом составляет 10 на 220 нм, 93 на 275 нм и 95 на 350 нм) пропускают через вращающийся реактор с уплотненным слоем при температуре 100°C, давлении 0,5 МПа, при объемной скорости потока 2 час-1 и отношении водорода к этиленгликолю 5:1, где происходит контактирование с катализатором. Вытекающий поток этиленгликоля получают после реакции, где скорость вращения вращающегося реактора с уплотненным слоем составляет 2000 об/мин и пропускание УФ-излучения продуктами этиленгликоля, полученного после гидрирования, составляет 78 на 220 нм, 96 на 275 нм и 100 на 350 нм.

Пример 5

Твердый оксид меди (20% оксида меди в расчете на массовый процент катализатора, где носитель представляет собой окись алюминия) используют в качестве катализатора; указанный катализатор обладает активностью 80 Н/см, площадью поверхности 180 м2/г, объемом пор 0,4 мл/г и средним диаметром пор 4 нм; указанный продукт этиленгликоля, полученный в результате гидрирования диэтилоксалата, используют в качестве сырьевого материала; водород и сырьевой материал этиленгликоля (сырьевой материал этиленгликоля имеет степень чистоты 99,8%; пропускание УФ-излучения указанным сырьевым материалом составляет 10 на 220 нм, 93 на 275 нм и 95 на 350 нм) пропускают через вращающийся реактор с уплотненным слоем при температуре 180°C, давлении 0,5 МПа, при объемной скорости потока 15 час-1 и отношении водорода к этиленгликолю 20:1, где происходит контактирование с катализатором. Вытекающий поток этиленгликоля получают после реакции, где скорость вращения вращающегося реактора с уплотненным слоем составляет 1000 об/мин и пропускание УФ-излучения продуктами этиленгликоля, полученных после гидрирования, составляет 79 на 220 нм, 97 на 275 нм и 100 на 350 нм.

Пример 6

Твердый оксид меди (10% оксида меди в расчете на массовый процент катализатора, где носитель представляет собой двуокись кремния) используют в качестве катализатора; активность указанного катализатора оставляет 130 Н/см, площадь поверхности 250 м2/г, объем пор 0,6 мл/г и средний диаметр пор 7 нм; указанный продукт этиленгликоля, полученный в результате гидрирования диметилоксалата, используют в качестве сырьевого материала; водород и сырьевой материал этиленгликоля (сырьевой материал этиленгликоля имеет степень чистоты 99,8%; пропускание УФ-излучения указанным сырьевым материалом составляет 0 на 220 нм, 90 на 275 нм и 95 на 350 нм) пропускают через указанный вращающийся реактор с уплотненным слоем при температуре 240°C, давлении 2,0 МПа, объемной скорости потока 60 час-1 и отношение водорода к этиленгликолю 30:1, где происходит контактирование с катализатором. Вытекающий поток этиленгликоля получают после реакции, где скорость вращения вращающегося реактора с уплотненным слоем составляет 1500 об/мин и пропускание УФ-излучения продуктами этиленгликоля, полученными после гидрирования, составляет 80 на 220 нм, 97 на 275 нм и 100 на 350 нм.

Пример 7

Твердый оксид палладия (0,15% оксида палладия в расчете на массовый процент катализатора, где носитель представляет собой окись алюминия) используют в качестве катализатора; активность указанного катализатора составляет 160 Н/см, площадь поверхности 80 м2/г, объем пор 0,2 мл/г и средний диаметр пор 6 нм; указанный продукт этиленгликоля, полученный в результате гидрирования диметилоксалата, используют в качестве сырьевого материала; водород и сырьевой материал этиленгликоля (сырьевой материал этиленгликоля имеет степень чистоты 99,8%; пропускание УФ-излучения указанного сырьевого материала составляет 0 на 220 нм, 90 на 275 нм и 95 на 350 нм) пропускают через указанный вращающийся реактор с уплотненным слоем при температуре 80°C, давлении 1,0 МПа, пространственной скорости 10 час-1 и отношении водорода к этиленгликолю 10:1, где происходит контактирование с катализатором. Вытекающий поток этиленгликоля получают после реакции, где скорость вращения вращающегося реактора с уплотненным слоем составляет 3000 об/мин и пропускание УФ-излучения продуктами этиленгликоля, полученными после гидрирования, составляет 76 на 220 нм, 96 на 275 нм и 99 на 350 нм.

Пример 8

Твердый композит оксида палладия и оксида никеля (0,12% оксида палладия и 8% оксида никеля в расчете на массовый процент катализатора, где носителем служит окись алюминия) используют в качестве катализатора; активность катализатора составляет 120 Н/см, площадь поверхности 160 м2/г, объем пор 0,38 мл/г и средний диаметр пор 5 нм; указанный продукт этиленгликоля, полученный в результате гидрирования диметилоксалата, используют в качестве сырьевого материала; водород и сырьевой материал этиленгликоля (степень чистоты сырьевого материала этиленгликоля составляет 99,8%; пропускание УФ-излучения указанным сырьевым материалом составляет 10 на 220 нм, 88 на 275 нм и 95 на 350 нм) пропускают через вращающийся реактор с уплотненным слоем при температуре 80°C, давлении 0,5 МПа, объемной скорости потока 15 час-1 и отношении водорода к этиленгликолю 15:1, где происходит контактирование с катализатором. Вытекающий поток этиленгликоля получают после реакции, где скорость вращения вращающегося реактора с уплотненным слоем составляет 1000 об/мин и пропускание УФ-излучения продуктами этиленгликоля, полученными после гидрирования, составляет 81 на 220 нм, 96 на 275 нм и 100 на 350 нм.

Сравнительный пример 1

Используют те же самые катализатор, исходные материалы и условия реакции, что и в примере 6, за исключением того, что используют трубчатый реактор с неподвижным слоем. Пропускание УФ-излучения продуктами этиленгликоля, полученными после гидрирования, составляет 50 на 220 нм, 92 на 275 нм и 99 на 350 нм.

Сравнительный пример 2

Используют те же самые катализатор, исходные материалы и условия реакции, что и в примере 7, за исключением того, что используют трубчатый реактор с неподвижным слоем. Пропускание УФ-излучения продуктами этиленгликоля, полученными после гидрирования, составляет 60 на 220 нм, 93 на 275 нм и 99 на 350 нм.

На основании результатов вышеприведенных примеров очевидно, что раскрытый в описании технический эффект настоящего изобретения превосходит результаты существующего уровня техники.

1. Способ улучшения качества продуктов этиленгликоля, где сырьевой материал этиленгликоля и водород пропускают через вращающийся реактор с уплотненным слоем с загруженным в него твердым оксидным катализатором при температуре от около 20 до около 280°C, давлении от около 0,1 до около 4,0 МПа, объемной скорости потока от около 0,2 до около 100,0 час-1 и молярном отношении водорода к этиленгликолю от около 0,01 до 40:1 и этиленгликоль получают после реакции, где указанный твердый оксидный катализатор выбирают из, по меньшей мере, одного катализатора на основе меди, на основе никеля и на основе палладия и скорость вращения указанного вращающегося реактора с уплотненным слоем составляет от около 300 до около 5000 об/мин.

2. Способ по п. 1, где указанная температура составляет от около 30 до около 260°C при давлении от около 0,3 до около 3,0 МПа, объемная скорость составляет от около 1 до около 50,0 час-1 и молярное отношение водорода к этиленгликолю составляет от около 0,1 до 30:1.

3. Способ по п. 1, где интервал скорости вращения указанного вращающегося реактора с уплотненным слоем составляет от около 500 до около 3000 об/мин.

4. Способ по п. 1, где сырьевой материал этиленгликоля поступает из указанного продукта этиленгликоля, полученного в результате гидрирования оксалата.

5. Способ по п. 4, где массовая концентрация сырьевого материала этиленгликоля выше чем 99%.

6. Способ по п. 1, где активность указанного твердого оксидного катализатора составляет от около 60 до около 400 Н/см.

7. Способ по п. 1, где указанный твердый оксидный катализатор может иметь следующие параметры:
площадь поверхности от около 10 до около 500 м2/г, объем пор от около 0,1 до около 1 мл/г и средний диаметр пор от около 2 до около 13 нм.

8. Способ по п. 7, где указанный твердый оксидный катализатор представляет собой катализатор, включающий оксид палладия, и/или оксид меди, и/или оксид никеля.

9. Способ по п. 7, где указанный твердый оксидный катализатор может содержать обычные носители и к нему могут быть необязательно добавлены обычные адъюванты.



 

Похожие патенты:
Настоящее изобретение относится к способу получения этиленгликоля в реакторе с псевдоожиженным слоем катализатора путем приведения исходного сырья оксалата в контакт с катализатором в следующих условиях: температура реакции составляет от около 170°С до около 270°С, объемная скорость оксалата составляет от около 0,2 ч-1 до около 7 ч-1, молярное соотношение водород/сложный эфир составляет примерно 20-200:1, давление реакции составляет от около 1,5 МПа до около 10 МПа, а разница температур реакции ΔТ составляет от около 1°С до около 15°С, с получением потока, содержащего этиленгликоль.

Настоящее изобретение относится к способу и устройству для отделения многозарядных катионов от моноэтиленгликоля. Моноэтиленгликоль используют для предотвращения образования гидратов в трубопроводах, транспортирующих газ, конденсата и воды.

Описан совмещенный способ получения алкиленоксида и алкиленгликолей. Для этого устройство для получения алкиленоксида и устройство для получения алкиленгликолей объединяют друг с другом и происходящая из устройства для получения алкиленоксида вода и другие компоненты реакционной смеси поступают в устройство для получения алкиленгликолей.

Изобретение относится к способу оптически чистого пропан-1,2-диола, который используется в косметической продукции, в качестве пищевой добавки, а также в качестве носителя и раствора-носителя для красителей, антиоксидантов и эмульгаторов.

Настоящее изобретение относится к способу конверсии глицерина в пропиленгликоль, применяемого в качестве "экологически чистого" нетоксичного антифриза и химического антиобледенителя.

Изобретение относится к усовершенствованному способу непрерывного получения диалкилкарбоната формулы (I): , в которой R1 означает неразветвленный или разветвленный алкил с 1-4 атомами углерода, и алкиленгликоля формулы (II): , в которой R2 означает алкил с 2-4 атомами углерода, путем осуществляемой в присутствии катализатора переэтерификации циклического алкиленкарбоната спиртом формулы (III): , в которой R1 такой, как указано выше, причем переэтерификацию осуществляют в колонне в режиме противотока, причем циклический алкиленкарбонат (1) подают в верхнюю часть колонны, а содержащий диалкилкарбонат спирт (3) - в ее среднюю или нижнюю часть, причем ниже места подачи содержащего диалкилкарбонат спирта дополнительно предусматривают другое место подачи содержащего спирт потока (4), и причем отношение расстояния между местом подачи алкиленкарбоната (1) и местом подачи содержащего диалкилкарбонат спирта (3) к расстоянию между местом подачи алкиленкарбоната (1) и вторым местом подачи спирта (4) составляет от 0,2 до 0,52.

Изобретение относится к способу эпоксидирования малоактивных длинноцепочных олефинов, при котором получаются эпоксиды и диолы. Додекандиол обеспечивает эластичность полиэфирных смол (покрытий, высококачественных полиуретановых покрытий), его используют в качестве полупродукта в синтезе биологически активных соединений.

Настоящее изобретение относится к способу получения алкандиола и диалкилкарбоната, включающему: (a) реакцию алкиленкарбоната и алканола в присутствии катализатора переэтерификации для получения реакционной смеси, содержащей диалкилкарбонат, непревращенный алканол, алкандиол и непревращенный алкиленкарбонат; (b) проведение дистилляции реакционной смеси в первой дистилляционной колонне для получения верхнего потока, содержащего диалкилкарбонат и алканол, и кубового потока, содержащего диалкилкарбонат, алканол, алкандиол и алкиленкарбонат; (с) проведение дистилляции кубового потока первой дистилляционной колонны во второй дистилляционной колонне для получения верхнего потока, содержащего диалкилкарбонат и алканол, и кубового потока, содержащего алкандиол и алкиленкарбонат; (d) извлечение алкандиола из кубового потока второй дистилляционной колонны и (e) проведение дистилляции верхних потоков первой и второй дистилляционных колонн в третьей дистилляционной колонне для получения верхнего потока, содержащего алканол, и кубового потока, содержащего диалкилкарбонат.

Настоящее изобретение относится к способу дистилляции водной полиметилольной смеси, содержащей полиметилол формулы (I), третичный амин, воду, а также аддукт третичного амина и муравьиной кислоты (амин-формиат).

Настоящее изобретение относится к способу очистки сырого полиметилола, содержащего полиметилол формулы (I), а также гидроксикислоту формулы (IV). Согласно предлагаемому способу сырой полиметилол получают в многостадийном процессе, при этом на стадии а) алканали по реакции альдольной конденсации взаимодействуют с формальдегидом в присутствии третичных аминов в качестве катализаторов с образованием метилолалканалей формулы (II).
Изобретение относится к способам удаления из органических жидкостей растворенного в них кислорода с использованием твердофазного катализатора и восстановителя. .
Изобретение относится к усовершенствованному способу уменьшения концентрации альдегида в сырьевом потоке процесса карбонилирования, включающему: подачу сырого потока, содержащего карбонилируемый агент, выбранный из группы, состоящей из метанола, метилацетата, метилформиата и диметилового эфира или из их смеси, имеющего первичную концентрацию альдегидов; и его взаимодействие в газовой фазе с нанесенным катализатором, который содержит, по меньшей мере, один металл от 8 до 11 группы, в условиях, обеспечивающих уменьшение первичной концентрации альдегидов до вторичной концентрации альдегидов.

Изобретение относится к способу получения 1,3-пропандиола, включающему стадии: а) образование водного раствора 3-гидроксипропаналя, b) гидрирование 3-гидроксипропаналя с образованием неочищенной смеси 1,3-пропандиола, содержащей 1,3-пропандиол, воду и циклический ацеталь с молекулярным весом 132 (MW 132 циклический ацеталь) и/или циклический ацеталь с молекулярным весом 176 (MW 176 циклический ацеталь), с) перегонка (сушка) указанной неочищенной смеси 1,3-пропандиола для удаления воды и образования второй неочищенной смеси 1,3-пропандиола (первый поток остатков от перегонки), содержащей 1,3-пропандиол и MW 132 циклический ацеталь и/или MW 176 циклический ацеталь, d) контактирование потока, содержащего MW 132 циклический ацеталь и/или MW 176 циклический ацеталь, с катионообменной смолой на основе кислоты или с кислотным цеолитом, или с растворимой кислотой и е) удаление MW 132 циклического ацеталя.

Изобретение относится к усовершенствованному способу получения устойчивых к щелочи и термостойких полиолов, представляющих собой сахарно-спиртовые сиропы, который включает следующие стадии: гидрирование гидролизата соответствующего полисахарида с образованием гидрированного сахарно-спиртового сиропа, щелочную и термообработку гидрированного сиропа с целью получения стабилизированного сахарно-спиртового сиропа, очистку стабилизированного сахарно-спиртового сиропа путем пропускания стабилизированного сахарно-спиртового сиропа через, по меньшей мере, одну ионообменную смолу, в котором стабилизированный сахарно-спиртовый сироп очищают с помощью двойного пропускания через катионно-анионную ионообменную конфигурацию (КАКА), включающую, по меньшей мере, первую слабокислотную катионную ионообменную смолу и вторую сильно-, средне- или слабоосновную анионообменную смолу.

Изобретение относится к усовершенствованному способу получения и очистки синтетического этанола, полученного прямой гидратацией этилена. .

Изобретение относится к технологии обработки глицерина, получаемых при расщеплении жиров или синтетическим способом, и может быть использовано в косметической, химической и медицинской промышленности для приготовления препаратов, физиологически совместимых с кожей человека.
Наверх