Дистанционный геолого-разведочный измерительно-вычислительный комплекс "тантал"

Изобретение относится к области геологоразведки и может быть использовано при поисковом или эксплуатационном бурении скважин. Устройство в виде геолого-разведочного измерительно-вычислительного комплекса, предназначенного для каротажа пород и позиционирования снаряда в буровой скважине и состоящего из передающей антенны и индуктора с вертикальной осью намагниченности, размещенных на снаряде и изолированных от буровых труб с помощью немагнитной вставки, и измерительно-вычислительной системы, включающей в свой состав трехосные блоки магнитометров, размещенные в контрольных точках наблюдений с известными координатами на поверхности Земли, и вычислители, связанные с приемными антеннами и магнитометрами через аналого-цифровые преобразователи стандартного интерфейса, при этом в устройство вводится измерительно-вычислительный канал ориентации снаряда в пространстве, состоящий из трехосных блоков магнитоградиентометров, устанавливаемых в тех же контрольных точках наблюдений на поверхности Земли, и дополнительного вычислителя, связанного через дополнительный аналого-цифровой преобразователь со всеми трехосными блоками магнитометров и трехосными блоками магнитоградиентометров. Технический результат - повышение надежности, долговечности, автономности. 2 ил.

 

Предлагаемое изобретение относится к области геологоразведки и может быть использовано при поисковом или эксплуатационном бурении скважин.

В области геологической разведки нефтегазовых пластов и поиска месторождений полезных ископаемых используется технология бурения скважин, при которой с помощью скважинной измерительной аппаратуры получают геофизическую, технологическую и навигационную информацию, которая доставляется на поверхность Земли непосредственно путем периодически проводимых операций остановки процесса бурения и подъема бурильной колонны с носителями информации или передается на поверхность Земли дистанционно по каналам телеметрической связи.

Известны устройства измерительной аппаратуры, располагаемой непосредственно на снаряде в составе буровой колонны и обеспечивающей автономный сбор геофизической, технологической и навигационной информации в буровой скважине в процессе бурения и извлекаемой периодически на поверхность Земли для обработки полученной информации в режиме offline (при камеральной обработке) с целью решения задач каротажа, позиционирования снаряда, оценки и прогноза траектории его движения. (Молчанов А.А. Измерение геофизических и технологических параметров в процессе бурения скважины. - М.: Недра, 1983). Однако такие устройства требуют больших материальных и временных затрат с привлечением большого контингента обслуживающего персонала.

Известны устройства измерительной аппаратуры, располагаемой непосредственно на снаряде, обеспечивающей автономный сбор необходимой информации и реализующей функции дистанционной передачи/приема накопленной информации на поверхность Земли через каналы (контактные или бесконтактные) телеметрической системы связи. (Молчанов А.А., Абрамов Г.С. Бескабельные системы для исследований нефтегазовых скважин (теория и практика). - М.: ОАО «ВНИИОЭНГ», 2003). Однако такие устройства с каналами связи обладают сравнительно низкими показателями отказоустойчивости, надежности и долговечности в эксплуатации.

Наиболее близким к предлагаемому изобретению является устройство на базе авиационного геолого-разведочного измерительно-вычислительного комплекса ЕМ-4Н (Россия), предназначенное для дистанционной аэромагниторазведки и имеющее два канала дистанционных измерений: электромагнитный канал каротажа пород и магнитный канал позиционирования гондолы (Гироскопия и навигация, - №1 (68), 2010 - с. 3-14). Причем канал дистанционного каротажа пород включает в свой состав излучающую антенну, установленную на летательном аппарате (носителе), и приемную антенну, расположенную в гондоле, буксируемой на тросе носителем. Канал дистанционного позиционирования гондолы относительно носителя состоит из индуктора (магнита или электромагнита), установленного на носителе, и трехкомпонентного блока магнитометров (ТБМ), размешенного в буксируемой гондоле. Для полномасштабного и корректного решения задачи позиционирования и ориентации гондолы с приемной антенной и магнитометрами относительно носителя используется дополнительная информация от бортовых измерителей, установленных на носителе и в гондоле (гировертикалей, GPS-приемников и др.).

Устройства аналогичного типа широко используются в практике дистанционной наземной, морской и воздушной магниторазведки (например, системы GEOTEM, MEGA-ТЕМ, TEMPEST, компания «FugroAirborne» (Канада), применяемые для проведения аэромагниторазведки и аэроэлектроразведки). Общим недостатком дистанционных устройств подобного типа является то, что они обеспечивают решение задачи позиционирования приемника относительно источника диполя в относительной связанной с носителем, а не в географической системе координат, а также то, что они не позволяют решать задачу ориентации в пространстве источника диполя без привлечения дополнительной информации.

К недостаткам устройств указанного типа следует также отнести то, что они не приспособлены к решению задач идентификации пород, позиционирования и ориентации снаряда в буровой скважине при проведении геологоразведочных буровых работ.

Задача настоящего изобретения заключается в устранении указанных недостатков устройства-прототипа путем разработки геолого-разведочного измерительно-вычислительного комплекса, позволяющего решать в полном объеме задачи каротажа пород, ориентации и позиционирования снаряда в буровой скважине.

Решение поставленной задачи достигается тем, что в дистанционное устройство, предназначенное для бесконтактного зондирования - каротажа пород и позиционирования снаряда в буровой скважине и состоящее из передающей антенны (АП) и индуктора (постоянного магнита или электромагнита), размещенных на снаряде и изолированных от буровых труб с помощью немагнитной вставки, и наземной измерительно-вычислительной системы, включающей в свой состав трехосные блоки магнитометров и приемные антенны (ПАН), размещенные в контрольных точках наблюдений (КТН) (не менее трех) на поверхности Земли с известными координатами и обеспечивающие измерения параметров электромагнитного поля (ЭМП) передающей антенны и параметров магнитного поля диполя (МПД) индуктора в контрольных точках наблюдений, и вычислители, связанные с трехосными блоками магнитометров и приемными антеннами через АЦП стандартного интерфейса, вводится измерительно-вычислительный канал ориентации снаряда в пространстве, состоящий из трехосных блоков магнитоградиентометров, устанавливаемых в тех же контрольных точках наблюдений на поверхности Земли, и дополнительного вычислителя, связанного через дополнительный аналого-цифровой преобразователь со всеми трехосными блоками магнитометров и трехосными блоками магнитоградиентометров.

Предлагаемое изобретение поясняется чертежами:

на фиг. 1 представлена схема получения многомерной магнитометрической информации в контрольных точках наблюдения (КТН);

на фиг. 2 представлена схема получения и обработки многомерной магнитометрической информации в геолого-разведочном измерительно-вычислительном комплексе (ГИВК) "Тантал".

На фиг. 1 приняты следующие обозначения:

1 - снаряд в буровой колонне,

2 - приемные антенны (ПАН),

3 - трехосные блоки магнитометров (ТБМ),

4 - трехосные блоки магнитоградиентометров (ТБГ),

5 - одометр (измеритель длины трубы),

На фиг. 2 приняты следующие обозначения:

1 - снаряд в буровой колонне,

2 - приемные антенны (ПАН),

3 - трехосные блоки магнитометров (ТБМ),

4 - трехосные блоки магнитоградиентометров (ТБГ),

5 - одометр (измеритель длины трубы),

6 - аналого-цифровой преобразователь АЦП стандартного интерфейса,

7 - вычислитель каротажа пород (ВКП),

8 - вычислитель позиционирования снаряда (ВПС),

9 - вычислитель ориентации снаряда (ВОС),

10 - антенна передающая (АП),

11 - индуктор снаряда (ИС).

Предлагаемое устройство представляет собой геолого-разведочный измерительно-вычислительный комплекс (ГИВК), состоящий из трех каналов (фиг. 2):

- канала каротажа пород,

- канала позиционирования снаряда,

- канала ориентации снаряда.

Канал каротажа пород организуется по схеме (Фиг. 2): (АП-ЭМП-ПАН(i)-АЦП-1-ВКП). Схема организации канала позиционирования снаряда: (ИС-МПД-ТБМ(i)-АЦП-2-ВПС). Вновь вводимый в ГИВК канал ориентации снаряда работает по схеме: (ИС-МПД-ТБГ(i)-АЦП-3-ВОС).

Следует отметить, что каждый измерительно-вычислительный канал оказывается в свою очередь многоканальным (по числу КТН). Для снижения потерь энергии электромагнитного излучения АП и магнитного поля индуктора ИС целесообразно передающую антенну и ИС устанавливать на снаряде таким образом, чтобы диаграмма направленности ЭМП была направлена по вертикали вверх, а МПД имело ось диполя, направленную по вертикали (или близко к ней).

Для исключения взаимодействия ЭМП и МПД, формируемых с помощью передающей антенны 10 и индуктора снаряда 11, с трубой в буровой скважине и возможного последующего искажения этих полей передающая антенна и индуктор размещаются на снаряде 1 так, что они оказываются изолированными от буровых труб с помощью немагнитной вставки (на Фиг. 1 и 2 не показана).

Устройство работает следующим образом.

На основе начальной информации (спутниковой или геодезической), получаемой при позиционировании контрольных точек наблюдений, с использованием одометрической информации (R) от одометра 5 обеспечивается начальная выставка измерительно-вычислительного комплекса (по алгоритму выставки), в частности, определяются радиусы-векторы ρ i ( i = 1, n ¯ ) , характеризующие положение КТН относительно устья A скважины (Фиг. 1).

Канал каротажа пород работает следующим образом. Антенна передающая 10 формирует электромагнитное поле (ЭМП), излучаемое вверх к поверхности Земли (Фиг. 2). Это поле пронизывает породы, лежащие между точкой C расположения снаряда 1 и КТН M i ( i = 1, n ¯ ) , расположенными на поверхности Земли (Фиг. 1, 2). После взаимодействия с породами ЭМП изменяет свои параметры и несет в себе информацию о физических свойствах этих пород. В частности, скорость распространения электромагнитных волн (ЭМВ) вдоль лучей r i ( i = 1, n ¯ ) может быть определена способом хронометрирования:

где ri - расстояния от АП до приемных антенн П А Н i ( i = 1, n ¯ ) , определяемые в канале позиционирования снаряда;

Δti - времена распространения ЭМВ от АП до П А Н i ( i = 1, n ¯ ) , определяемые способом хронометрирования модулированных ЭМВ. Электромагнитный канал (АП-ЭМП-ПАН(1)-АЦП-1-ВКП) работает по известным алгоритмам идентификации пород (алгоритмам каротажа АК) на основе информации об их электрической (ε) и магнитной (µ) проницаемости (проводимости), получаемой, в частности, на основе информации о скоростях распространения ЭМВ υ i ( i = 1, n ¯ ) . Алгоритмы каротажа АК реализуются в вычислителе 7 (ВКП) (Фиг. 2).

Канал позиционирования снаряда в соответствии со схемой (ИС-МПД-ТБМ(i)-АЦП-2-ВПС) работает следующим образом. Индуктор 11 в виде магнита или электромагнита, установленный на снаряде 1, формирует вокруг себя магнитное поле диполя (МПД), ось которого близка к вертикальному положению (Фиг. 2). МПД, передающее дистанционно энергию от индуктора снаряда 1 к трехосным блокам 3 TBM(i) и 4 ТБГ(i), установленным на поверхности Земли в КТН ( i = 1, n ¯ ) , несет в себе геометрическую информацию о позиционировании и ориентации снаряда в буровой скважине (Фиг. 1).

В контрольных точках наблюдений Mi(xi; yi; zi) ( i = 1, n ¯ ; n≥3), удаленных от устья A буровой скважины на расстояниях ρ i ( i = 1, n ¯ ) , соизмеримых с глубиной R погружения снаряда в буровую скважину, с помощью трехосных блоков 3 и 4 (TBM(i) и ТБГ(i)) производятся магнитные измерения вектора напряженности Hi МПД и тензора градиентов этого вектора [VHi].

На основе обработки многомерной информации, полученной в КТН M i ( i = 1, n ¯ ) с помощью трехосных блоков 3 и 4 о векторах Hi и тензорах Q i ( i = 1, n ¯ ) , решается задача позиционирования снаряда (по алгоритму позиционирования АПС):

Решение системы уравнений (4) дает возможность определить координаты радиуса-вектора R в геомагнитной системе отсчета XmYmZm (Фиг. 1):

Следует отметить, что задача позиционирования снаряда в буровой скважине (т.е. задача определения координат радиуса вектора R) решается однозначно при проведении магнитных измерений в трех КТН ( i = 1, n ¯ ; n=3). При n>3 создаются условия для структурно-функциональной избыточности информации (n>nmin=3), что в конечном счете может быть использовано для повышения достоверности (точности) решения задачи позиционирования снаряда и повышении надежности и долговечности работы ГИВК. Алгоритм позиционирования снаряда АПС реализуется в вычислителе 8 (ВПС) (Фиг. 2).

Канал ориентации снаряда в соответствии со схемой (ИС-МПД-ТБГ(i)-АЦП-3-ВОС) работает следующим образом. На основе многомерной магнитометрической информации, полученной с помощью трехосных блоков 3 и 4 в КТН(i) ( i = 1, n ¯ ) о векторах Hi и тензорах Q i ( i = 1, n ¯ ) с учетом предварительно вычисленных по формулам (4) радиусов-векторов r i ( i = 1, n ¯ ) сначала определяется вектор магнитного момента m, диполя (ИС), необходимый для каждой КТН ( i = 1, n ¯ ) :

Модуль магнитного момента диполя находится по алгоритму идентификации диполя способом усреднения:

На основе обработки полученной в КТН M i ( i = 1, n ¯ ) многомерной информации о векторах H i ( i = 1, n ¯ ) с помощью трехосных блоков 3 TBM(i) и вычисленного по формулам (6) и (7) среднего значения модуля |m| магнитного момента диполя решается задача ориентации снаряда в пространстве (по алгоритму ориентации АОС):

где Di - квадратная матрица (3×3), элементы которой зависят от координат векторов r i = [ x i y i z i ] Т ;

Ф,θ - азимутальный и зенитный углы ориентации снаряда. Алгоритм ориентации снаряда (АОС) реализуется в вычислителе 9 (Фиг. 2). При реализации АОС также может быть использован принцип структурно-функциональной избыточности информации.

Для проверки правильности определения координат позиционирования снаряда ri(xi; yi; zi), скважины R(x; y; z) и параметров ориентации снаряда (Ф; θ) в пространстве в вычислителях 8 и 9 предусмотрены дополнительные (сервисные) алгоритмы контроля процесса вычисления по геометрическим условиям пересечения и сходимости радиусов-векторов (ri и R), а также по условиям ортогональности и коллениарности осей при нормировке матрицы ориентации снаряда.

Достигаемым техническим результатом при реализации предлагаемого изобретения является:

- упрощение схемы и устройств измерений и обработки многомерной информации с последующим повышением показателей надежности, отказоустойчивости и долговечности работы буровой (на снаряде) и стационарной (на поверхности Земли) аппаратуры;

- обеспечение условий полной автономности работы измерительно-вычислительного комплекса, не требующих использования источников дополнительной информации;

- обеспечение условий для получения структурно- и функционально-избыточной информации (за счет увеличения числа контрольных точек наблюдений ( i = 1, n ¯ ; n>3), способствующей повышению комплексных показателей точности, достоверности, надежности, отказоустойчивости, самопроверяемости и долговечности работы измерительно-вычислительного комплекса;

- упрощение схемы формирования электромагнитного и магнитного полей, технологии получения многомерной информации и ее обработки, не требующих реализации трудоемких и дорогостоящих приемов периодического подъема снаряда на поверхность Земли или операции дистанционной передачи информации по соответствующим каналам;

- значительная экономия материальных, временных и финансовых затрат, связанная с исключением приемов периодической остановки процесса бурения, подъема снаряда на поверхность Земли или обусловленная исключением необходимости организации каналов дистанционной передачи информации от снаряда на поверхность Земли.

Следует отметить, что дистанционный геолого-разведочный измерительно-вычислительный комплекс обеспечивает решение задачи бесконтактной идентификации пород, подверженных дистанционному зондированию электромагнитным полем передающей антенны, а также решение задачи дистанционного бесконтактного позиционирования и ориентации снаряда в буровой скважине, причем все устройства измерительно-вычислительной системы расположены только на поверхности Земли, полностью исключена измерительная аппаратура на самом снаряде и полностью исключен канал передачи информации от снаряда на поверхность Земли.

Устройство в виде геолого-разведочного измерительно-вычислительного комплекса, предназначенного для каротажа пород и позиционирования снаряда в буровой скважине и состоящего из передающей антенны и индуктора с вертикальной осью намагниченности, размещенных на снаряде и изолированных от буровых труб с помощью немагнитной вставки, и измерительно-вычислительной системы, включающей в свой состав трехосные блоки магнитометров, размещенные в контрольных точках наблюдений с известными координатами на поверхности Земли, и вычислители, связанные с приемными антеннами и магнитометрами через аналого-цифровые преобразователи стандартного интерфейса, отличающееся тем, что в устройстве вводится измерительно-вычислительный канал ориентации снаряда в пространстве, состоящий из трехосных блоков магнитоградиентометров, устанавливаемых в тех же контрольных точках наблюдений на поверхности Земли, и дополнительного вычислителя, связанного через дополнительный аналого-цифровой преобразователь со всеми трехосными блоками магнитометров и трехосными блоками магнитоградиентометров.



 

Похожие патенты:

Изобретение относится к области магниторазведки и может быть использовано для обнаружения, нанесения на карту и оценки спектрально магнитоактивных месторождений, например залежей углеводородов или руды.

Изобретение относится к области судостроения и касается способа определения места нахождения герметизированного отверстия при обрастании, заносе илом или обмерзании подводной части корпуса судна.

Изобретение относится к электроразведочным исследованиям. Технический результат: снижение трудозатрат на проведение измерений и повышение информативности измерений при экспресс-контроле за динамикой извлечения высоковязкой нефти и битума вдоль профиля горизонтальных скважин в реальном масштабе времени, контроле режима закачки теплоносителя, а также режима отбора.

Изобретение относится к области геофизических исследований и предназначено для поисков и оконтуривания углеводородных (УВ) залежей. Сущность: возбуждают импульсное электромагнитное поле в среде последовательно встречно с двух сторон относительно участка зондирования.

Изобретение относится к области геофизики и может быть использовано при разведке месторождений нефти и природного газа. Заявлена электромагнитная расстановка, сконфигурированная для использования в подземной буровой скважине.

Изобретение относится к морской электромагнитной съемке. Сущность: в способе использовано шесть горизонтальных компонент электрического поля.

Изобретение относится к измерительной технике и представляет собой индукционный датчик для измерения земного магнитного поля. Датчик содержит электромагнитный узел обнаружения магнитного поля, размещённый на маятнике.
Изобретение относится к геофизике и предназначено для прогнозирования землетрясений по изменению напряженного состояния пород в зоне предполагаемого очага по аномалиям вариаций геомагнитного поля.

Изобретение относится к электроразведке методом индукционного профилирования и может быть использовано при изучении строения верхней части геологического разреза при поисково-картировочных геоэлектрических исследованиях.
Изобретение относится к области магниторазведки и может быть использовано при поиске месторождений углеводородов в молодых осадочных бассейнах. Сущность: проводят аэромагнитную, а также наземную магнитную или гидромагнитную съемки нефтегазоносной площади.

Изобретение относится к геофизике. Сущность: способ геоэлектроразведки основан на использовании магнитного зондирования геологической среды. В качестве источника используют интегральное магнитное поле, формируемое в результате суммарного воздействия существующего набора промышленных электроэнергетических источников в диапазоне частот от 50 Гц до 1-2 кГц. На основе оценки влияния дальней и ближней зон электромагнитного поля осуществляют районирование территории по величине электрического сопротивления пород, отвечающих информативной зоне, затем выполняют регистрацию компонент напряженности магнитного поля в каждой точке наблюдений по трем ортогональным направлениям при нескольких значениях азимута расположения радиальных составляющих датчика измерительной установки. Проводят спектральный анализ измеренного магнитного поля, определяют амплитудно-частотные характеристики каждого из его компонентов и пересчитывают амплитудно-частотные характеристики в значения кажущегося сопротивления, по результатам интерпретации которых получают информацию о пространственном изменении электрического сопротивления и анизотропных свойств среды в интервале эффективных глубин распространения магнитного поля. Технический результат: повышение точности, информативности и технологичности метода магнитного зондирования, основанного на использовании промышленных полей. 3 ил, 3 пр.

Изобретение относится к области геофизических методов исследований при поисках и разведке месторождений углеводородов, редких и благородных металлов, алмазов, при проведении инженерных изысканий и решении задач экологического мониторинга с помощью цифровой аппаратуры. Сущность: используют по меньшей мере один диполь, передающий прямоугольные разнополярные импульсы, измерение осуществляют одной или одновременно несколькими приемными установками, используя синхронизацию по спутниковой системе позиционирования. Проводят измерения переходных процессов элекромагнитного поля по времени с частотой не менее 100 кГц и динамическим диапазоном не менее 24 бит, записывают их в соответствующий массив первичных данных. Обрабатывают массив первичных данных с помощью робастного регрессионного анализа, используя следующую последовательность действий: подавление тренда в исходных данных от источника, возникающего под влиянием теллурических токов и поляризации электродов; точечное удаление выбросов (пиков) в записи, возникших под влиянием грозовой активности; осуществление фильтрации методом низкочастотной робастной фильтрации в двумерном скользящем окне по временным задержкам во всем временном диапазоне и расчет кривых становления с логарифмическим шагом по времени на нескольких десятках временных задержек, получая кривые переходных процессов. С целью наглядного отображения полевого материала и возможности идентификации объектов поиска минимизируют влияние геометрического положения источник-приемник на значения переходных процессов на каждой временной задержке путем вычисления значений переходных процессов с помощью процедуры робастного регрессионного анализа с использованием рассчитанных кривых переходных процессов от фонового разреза для той же геометрии приемной установки с тем же расположением источник-приемник и эмпирических зависимостей разности потенциала приемных. Технический результат: более точное прогнозирование наличия аномалеобразующего объекта. 2 н. и 8 з.п. ф-лы, 14 ил.

Изобретение относится к электроразведке методом электросопротивления. Область преимущественного применения: инженерно-геологические изыскания; изучение состояния грунтовых инженерных объектов, в том числе гидротехнических сооружений; картирование геологической среды при выявлении структурно-тектонических неоднородностей; выявление рудоносных объектов, перекрытых рыхлыми отложениями и др. Технический результат: повышение эффективности выявления геоэлектрических неоднородностей в геологической среде. Сущность: в способе используют два неподвижных заземления, первое из которых относят в практическую «бесконечность» и подключают к источнику электрического тока, второе размещают на профиле наблюдений и подключают к измерителю напряжения. На одинаковом расстоянии от второго неподвижного заземления вдоль профиля размещают два подвижных заземления. Одно из подвижных заземлений подключают к измерителю, а другое - к источнику тока и измеряют падение электрического напряжения. Затем заземление, которое подключалось к измерителю, подключают к источнику, а другое подвижное заземление - к измерителю и снова выполняют измерение. После выполнения двух измерений при одном положении подвижных крайних заземлений их перемещают на заданное одинаковое расстояние от центрального неподвижного заземления и процесс измерений повторяют. Выполняют указанные операции при всех заданных положениях подвижных заземлений. Затем в каждой точке наблюдений для заданного разноса по двум измеренным падениям напряжений вычисляют разность между ними, а также среднее кажущееся электрическое сопротивление и относят вычисленные значения к центру установки (центральному неподвижному заземлению). Вычисления выполняют для всех разносов и строят разрезы среднего кажущегося электросопротивления и разности потенциалов. По их распределению судят о наличии и расположении в разрезе геоэлектрических неоднородностей. 3 ил.

Изобретение относится к обнаружению скрытого диэлектрического объекта. Сущность: устройство содержит потенциал-зонд для определения электрического потенциала в электрическом поле, первое и второе емкостные устройства и управляющее устройство для питания первого и второго емкостных устройств чередующимися по фазе переменными напряжениями. Управляющее устройство выполнено с возможностью взаимно противоположного усиления чередующихся по фазе переменных напряжений для минимизации по модулю переменной составляющей регистрируемого посредством потенциал-зонда напряжения, синхронной с тактом подачи чередующихся по фазе переменных напряжений. Обнаружение скрытого диэлектрического объекта происходит, если соотношение чередующихся по фазе переменных напряжений не равны друг другу. Технический результат: создание простого и точного устройства. 2 н. и 8 з.п. ф-лы, 7 ил.

Изобретение относится к геофизике. Сущность: система датчиков электрического и магнитного поля для измерения магнитотеллурического поля Земли состоит из двух пар заглубленных электродов с единой базой L. Одна пара электродов размещена в приповерхностном слое земли, а другая пара электродов находится с первой парой в одной плоскости, но уже на глубине h. При этом потенциал первой пары, соответствующий напряженности электрического поля, вычитают из потенциала заглубленной пары для получения соответствия напряженности магнитного поля. Технический результат: повышение точности измерения магнитотеллурического поля. 1 ил.

Изобретение относится к буровой технике и предназначено для геонавигации бурильного инструмента и управления его траекторией при проводке скважин в нужном направлении. Изобретение обеспечивает повышение точности наведения забоя ствола бурящейся горизонтальной скважины в нужном направлении, в частности проводки горизонтальной скважины к целику нефти, точное местонахождение которого в МСП не определено. Способ включает контроль за положением бурильного инструмента в межскважинном пространстве - МСП при проходке скважин с помощью координатной системы измерения в процессе бурения - MWD, при этом одновременно применяют метод зондирования становлением электрического поля в ближней зоне - ЭЗС-Б для вычисления кажущегося удельного электрического сопротивления горной породы для определения координат и границы целика нефти, занимающего неопределенное положение в МСП, при этом обеспечивают контроль в режиме реального времени за положением бурильного инструмента в МСП при проходке скважины, бурящейся в сторону указанного целика нефти, с учетом координат и границ расположения указанного целика нефти в МСП, определяемого методом ЭЗС-Б, и в процессе производимого контроля вносят в координатную систему MWD для ориентации бурильного инструмента в МСП поправки, обеспечивающие изменение направления в ориентации бурильного инструмента в сторону расположения указанного целика нефти. 3 ил.
Изобретение относится к области геофизики и может быть полезным в процессе комплексной интерпретации данных сейсморазведки и электроразведки при поисках месторождений углеводородов на шельфе. Предлагаемый способ использует каждый раз полученные результаты как нулевое приближение. Причем сейсморазведке придается основная роль в структурных построениях, а электроразведке - в использовании прямых показателей присутствия залежи углеводородов. Сейсморазведка должна иметь предпочтение при структурных и погоризонтных построениях, а прямые показатели присутствия углеводородов находятся в результатах электроразведки. Это требование заложено в предлагаемом способе. Наиболее эффективно изобретение может быть использовано при поисках месторождений углеводородов на шельфе при проведении совместных поисков сейсморазведкой и электроразведкой на одних и тех же площадях и/или профилях. Технический результат – повышение точности получаемых данных за счет применения зависимости между двумя методами, выраженной в дополнении результатов одного метода другим, и получение не противоречащих друг другу результатов.

Изобретение относится к разведке с использованием магнитных полей и может быть использовано для обнаружения подводных ферромагнитных объектов. Сущность: буксируют два источника магнитного поля вдоль полосы обследования. Причем границы полосы обследования задают путем рассеивания ферромагнитного материла, сформированного в виде масс в 1 м3, размещенных на расстоянии 80-170 м друг от друга вдоль оси границы с образованием четырехугольника. Осуществляют посредством блока управления попеременной работы буксируемых источников магнитного поля регистрацию суммарного магнитного поля буксируемых источников и ферромагнитных масс первичным трехкомпонентным преобразователем магнитного поля. Усиливают и преобразуют зарегистрированные сигналы суммарного магнитного поля буксируемых источников и ферромагнитных масс вторичным преобразователем. Передают усиленные и преобразованные сигналы суммарного магнитного поля буксируемых источников и ферромагнитных масс в вычислительный блок. В вычислительном блоке определяется сигнал, обусловленный наличием ферромагнитных масс или подводного ферромагнитного объекта. Передают сигнал с вычислительного блока на исполнительный блок с последующей его ретрансляцией в блок управления. Блок управления обеспечивает движение буксируемых источников магнитного поля в заданных границах полосы обследования путем определения координат сигнала в навигационном модуле. Предварительно выполняют батиметрическую съемку, посредством многолучевого эхолота, акустическое зондирование рельефа дна гидролокатором бокового обзора, по эхо и теневым контактам выявляют обнаруженные подводные объекты, выполняют картирование рельефа дна с выявлением линий водораздела и водосливных линий, дополнительно выполняют зондирование обнаруженного объекта, посредством лазерно-лучевого источника с передачей изображения на видеосистему с выделением границ на изображении посредством оператора Собела и детектора Канне. Система для обнаружения подводных ферромагнитных объектов состоит из измерительной системы магнитного поля, которая включает два буксируемых источника магнитного поля, подключенных посредством кабель-тросов соответственно к блоку питания через блок управления, два буксируемых первичных трехкомпонентных преобразователя магнитного поля, подключенных посредством кабель-тросов соответственно ко вторичному преобразователю через блок управления, вычислительный блок, вход которого подключен к выходу вторичного преобразователя, а выход подключен к входу исполнительного блока, многолучевого эхолота и гидролокатора бокового обзора, которые подключены через блок управления и вторичный преобразователь к вычислительному блоку, отличающаяся тем, что введены лазерно-лучевой модуль, видеосистема, блок обработки изображений, который через блок управления соединен с лазерно-лучевым модулем, многолучевым эхолотом, гидролокатором бокового обзора и вычислителем. Технический результат: повышение достоверности обнаружения подводных объектов. 2 н. и 1 з.п. ф-лы, 6 ил.

Изобретение относится к области электроразведки магнитотеллурическим методом с использованием индукционных датчиков магнитного поля Земли. Способ передачи сигналов в электроразведочных магнитотеллурических системах, включающий передачу по кабелю с датчика магнитного поля - ДМП на блок сбора данных - БСД собственно сигналов, а с блока БСД - в датчик ДМП - электропитания, отличается тем, что дополнительно включает передачу управляющих команд с блока БСД на датчик ДМП, причем передачу собственно сигналов, управляющих команд и электропитания осуществляют по трем раздельным экранированным парам витых проводников, заключенным в общую оболочку кабеля. Техническим результатом заявленного изобретения является разработка способа передачи сигналов в электроразведочных магнитотеллурических системах за счет увеличения соотношения сигнал-шум, в том числе при передаче данных от нескольких первичных преобразователей магнитного поля к системам регистрации и сбора. 3 з.п. ф-лы, 1 табл., 1 ил.
Изобретение относится к области геофизики и может быть использовано для поисков россыпных месторождений на акваториях. Сущность: изучают карту аномального магнитного поля Земли исследуемого участка, полученную по результатам ранее выполненной высокоточной магнитной съемки в перспективной на обнаружение россыпей полезных ископаемых акватории. В районе “живущего” разлома устанавливают сейсмоакустическую мониторинговую станцию для регистрации микроземлетрясений и суточного изменения акустической эмиссии. Определяют периоды активизации и затишья разломной зоны, а также период активности волноприбойной зоны. Во время затишья (после периода активизации) проводят повторную высокоточную магнитную съемку на профиле, пресекающем аномалии магнитного поля на старой карте, или выполняют повторную съемку на всей исследуемой перспективной площади. Вычисляют разности магнитного поля (между старой и повторной съемками), полученные до и после активизации, выделяют на них локальные аномалии. По величине разностных аномалий судят о наличии содержащих магнитные минералы россыпей. Отбирают пробы в центре каждой аномалии и анализируют их на наличие полезного компонента. По контурам значимых аномалий, в которых по результатам анализа проб подтверждено наличие аномальных содержаний полезных компонентов, определяют границы залежи. Технический результат: уменьшение объемов опробования, сокращение времени полевых работ.
Наверх