Диод плазменного свч-генератора

Изобретение относится к электронике, в частности к электронно-лучевым приборам, предназначенным для генерации СВЧ-излучения, и может быть использовано при создании сильноточных релятивистских импульсных плазменных источников микроволн наносекундного диапазона. Технический результат - уменьшение искажений формы излучаемого электромагнитного поля и соответственно генерируемых импульсов наносекундного диапазона. Устройство содержит вакуумную камеру, которая служит заземленным анодом и в которой установлены взрывоэмиссионный катод, формирующий трубчатый поток электронов, электрод, установленный на одной оси с взрывоэмиссионным катодом и ограничивающий от него плазму, заземленную диафрагму, установленную между взрывоэмиссионным катодом и электродом, а также металлическую спираль цилиндрической формы, соединяющую электрод и взрывоэмиссионный катод и размещенную на одной оси с ними. Диаметр витков металлической спирали соответствует диаметру формируемого взрывоэмиссионным катодом трубчатого потока электронов, а индуктивность L металлической спирали выбрана из условия L>>UT/I, где U - напряжение на катоде, Т - длительность импульса напряжения на катоде, I - ток трубчатого потока электронов. 1 ил.

 

Изобретение относится к электронике, в частности к электронно-лучевым приборам, предназначенным для генерации СВЧ-излучения, и может быть использовано при создании сильноточных релятивистских импульсных плазменных источников микроволн наносекундного диапазона.

Известно устройство [RU 2330347, C1, H01J 27/16 27.07.2008], содержащее соосные заземленный вакуумный корпус, в котором размещены последовательно вдоль оси устройства система дифференциальной откачки, состоящая из магниторазрядного и геттерного насосов, электродинамическая система с замедляющей структурой, соединенной с генератором водорода и выполненной в виде цепочки связанных резонаторов с осевым пролетным каналом и устройствами ввода и вывода СВЧ-энергии, присоединенную к вакуумному корпусу со стороны системы дифференциальной откачки электронную пушку с узлом термокатода, снабженного высоковольтным токовводом и электрически соединенным с вакуумным корпусом анодом, электрически изолированный от вакуумного корпуса и присоединенный к нему со стороны цепочки связанных резонаторов коллектор с датчиком давления, а также секционированный соленоид, секции которого охватывают прибор от термокатода до коллектора, причем в вакуумном корпусе в полости, которая ограничена по оси прибора коллинеарными выходным и входным торцами системы дифференциальной откачки и цепочки связанных резонаторов соответственно, размещен соосно оси прибора и закреплен один осесимметричный электрод с токовводом, а в полости, которая ограничена по оси прибора коллинеарными выходным и входным торцами цепочки связанных резонаторов и коллектора соответственно, размещен соосно оси прибора другой осесимметричный электрод с токовводом, причем каждый электрод выполнен с равным поперечному сечению пролетного канала осевым отверстием и электрически изолирован от вакуумного корпуса соответствующих коллинеарных торцов и друг от друга.

Недостатком устройства является его относительно высокая сложность. Известно также устройство [RU 2285975, C1, H01J 25/00, 27/16, 20.10.2006], содержащее пучково-плазменный СВЧ-прибор, высоковольтный источник питания, регулируемые источники прямого и электронного накала пушки, источники питания соленоида, генератора водорода и магниторазрядного насоса и датчики контроля параметров, соединенные с блоком управления, СВЧ-прибор содержит вакуумный цилиндрический корпус, в котором расположены электронная пушка с термокатодом и анодным узлом, встроенные магниторазрядный и геттерный насосы, объемный СВЧ-резонатор с замедляющей структурой и с устройствами ввода и вывода СВЧ-излучения, генераторы водорода, датчики давления, коллектор и соленоид, охватывающий тракт проводки пучка, при этом анодный узел выполнен в виде цилиндрической секции, торцы которой снабжены диафрагмами и в которую последовательно и аксиально к тракту пучка встроены магниторазрядный и геттерный насосы, замедляющая структура выполнена с азимутальными щелями связи, а вывод СВЧ-излучения снабжен ответвителем, соединенным с контуром обратной связи, содержащим датчик мощности и преобразователь, соединенный с регулятором источника питания электронного накала пушки и магниторазрядного насоса, коллектор выполнен изолированным от корпуса прибора и снабжен регулируемым источником и датчиком напряжения, соединенным через блок управления с датчиком напряжения в цепи высоковольтного источника питания, соленоид выполнен секционированным, а питание на секции, находящиеся вблизи коллектора, подано через регулируемые источники, соединенные с контуром обратной связи вывода СВЧ-излучения.

Это устройство также является относительно сложным.

Наиболее близким к предложенному является устройство (диод плазменного СВЧ-генератора) [Селиванов И.А., Стрелков П.С., Федотов А.В., Шкварунец А.Г. // Физика плазмы. 1989. Т. 15. №11. с. 1283], содержащее взрывоэмиссионный катод, формирующий трубчатый поток электронов, вакуумную камеру, которая одновременно служит заземленным анодом, заземленную диафрагму и электрод, ограничивающий плазму от катода, при этом электрод закреплен на диафрагме с помощью проводящих держателей.

Недостатком наиболее близкого технического решения является относительно сильные искажения формы излучаемого электромагнитного поля и соответственно генерируемых импульсов наносекундного диапазона, поскольку электроны пучка с кольцевым сечением бомбардируют держатели, в результате чего сечение пучка электронов становится сегментированным, на поверхности держателей образуется плазма, а сами держатели деформируются, что еще более усиливает искажения.

Задача, которая решается в предложенном изобретении, направлена на уменьшении искажений излучаемого электромагнитного поля и соответственно генерируемых импульсов наносекундного диапазона.

Требуемым техническим результатом изобретения является уменьшение искажений формы излучаемого электромагнитного поля и соответственно генерируемых импульсов наносекундного диапазона.

Поставленная задача решается, а требуемый технический результат достигается тем, что в устройство, содержащее вакуумную камеру, которая служит заземленным анодом и в которой установлены взрывоэмиссионный катод, формирующий трубчатый поток электронов, электрод, установленный на одной оси с взрывоэмиссионным катодом и ограничивающий от него плазму, а также заземленную диафрагму, установленную между взрывоэмиссионным катодом и электродом, согласно изобретению введена металлическая спираль цилиндрической формы, соединяющая электрод и взрывоэмиссионный катод и размещенная на одной оси с ними, причем, диаметр витков металлической спирали соответствует диаметру формируемого взрывоэмиссионным катодом трубчатого потока электронов, а индуктивность L металлической спирали выбрана из условия L>>UT/I, где U - напряжение на катоде, Т - длительность импульса напряжения на катоде, I - ток трубчатого потока электронов.

На чертеже представлена функциональная схема заявляемого диода плазменного СВЧ-генератора.

Диод плазменного СВЧ-генератора содержит вакуумную камеру 1, которая служит заземленным анодом и в которой установлен взрывоэмиссионный катод 2, формирующий трубчатый поток электронов.

Кроме того, излучающий диод плазменного СВЧ-генератора содержит установленные в вакуумной камере 1 электрод 3, размещенный на одной оси со взрывоэмиссионным катодом 2 и ограничивающим от него плазму, а также заземленную диафрагму 4, размещенную между взрывоэмиссионным катодом 2 и электродом 3,.

Диод плазменного СВЧ-генератора содержит также металлическую спираль 5 цилиндрической формы, соединяющую электрод 3 и взрывоэмиссионный катод 2 и размещенную на одной оси с ними, причем диаметр витков металлической спирали 5 соответствует диаметру формируемого взрывоэмиссионным катодом 2 трубчатого потока электронов, а индуктивность L металлической спирали выбирала из условия L>>UT/I, где U - напряжение на катоде, Т - длительность импульса напряжения на катоде, I - ток трубчатого потока электронов.

Сопоставительный анализ предложенного устройства с устройством-прототипом показывает, что заявляемый диод отличается способом крепления ограничивающего плазму электрода, что позволяет сделать вывод о соответствии предложения критерию "новизна".

Кроме того, в известных источниках информации не обнаружено сведений о возможности предложенного крепления ограничивающего плазму электрода с помощью спирали с целью снижения искажений генерируемой энергии. Следовательно, предложение отвечает критерию «изобретательский уровень».

Дополнительно к отмеченному все элементы устройства выполнены из распространенных материалов по известным технологиям, что позволяет сделать вывод о соответствии предложения критерию «промышленная применимость».

Работает диод плазменного СВЧ-генератора следующим образом.

Взрывоэмиссионный катод 2 формирует трубчатый поток электронов, который распространяется в вакуумной камере 1, которая одновременно служит заземленным анодом, и заземленную диафрагму 4 в направлении электрода 3, ограничивающего плазму от взрывоэмиссионного катода 2. Электрод 3 закреплен с взрывоэмиссионным катодом 2 с помощью спирали 5, которая не препятствует прохождению электронного потока и имеет индуктивность, предотвращающую шунтирование тока электронов с взрывоэмиссионного катода 2 через плазму на анод. Это достигается тем, что индуктивность спирали L выбирают из условия L>>UT/I, где U - напряжение на катоде, Т - длительность импульса напряжения на катоде, I - ток электронного пучка. Столь значительная индуктивность гарантирует, что реактивное сопротивление спирали 5 будет велико настолько, что ток электронного пучка не будет шунтирован, т.е. не будет распространяться в основном по плазме с малой проводимостью.

Таким образом, благодаря введению дополнительного арсенала технических средств (в частности тем, что введена металлическая спираль цилиндрической формы, соединяющая электрод и взрывоэмиссионный катод и размещенная на одной оси с ними, причем диаметр витков металлической спирали соответствует диаметру формируемого взрывоэмиссионным катодом трубчатого потока электронов, а индуктивность L металлической спирали выбрана из условия L>>UT/I, где U - напряжение на катоде, Т - длительность импульса напряжения на катоде, I - ток трубчатого потока электронов) достигается требуемый технический результат, заключающийся в уменьшении искажений формы излучаемого электромагнитного поля и соответственно генерируемых импульсов наносекундного диапазона.

Изобретние относится к области электроники. Диод плазменного СВЧ-генератора содержит вакуумную камеру, которая служит заземленным анодом и в которой установлены взрывоэмиссионный катод, формирующий трубчатый поток электронов, электрод, установленный на одной оси с взрывоэмиссионным катодом и ограничивающий от него плазму, а также заземленную диафрагму, установленную между взрывоэмиссионным катодом и электродом, отличающийся тем, что введена металлическая спираль цилиндрической формы, соединяющая электрод и взрывоэмиссионный катод и размещенная на одной оси с ними, причем диаметр витков металлической спирали соответствует диаметру формируемого взрывоэмиссионным катодом трубчатого потока электронов, а индуктивность L металлической спирали выбрана из условия L>>UT/I, где U - напряжение на катоде, Т - длительность импульса напряжения на катоде, I - ток трубчатого потока электронов. 1 ил.



 

Похожие патенты:

Изобретение относится к области техники СВЧ. Лампы бегущей волны, основанные на использовании принципа непрерывного длительного взаимодействия электронного потока с полем бегущей электромагнитной волны в нерезонансной колебательной системе, могут быть использованы в различной радиоэлектронной аппаратуре.

Изобретение относится к области высоковольтных источников электропитания. Источник питания замедляющей системы ЛБВ содержит последовательно соединенные основной 1 и дополнительный 2 выпрямители.

Изобретение относится к области электронной техники и может быть использовано при изготовлении резонаторных и замедляющих систем электровакуумных СВЧ приборов, в частности генераторов и усилителей миллиметрового и субмиллиметрового диапазона.

Изобретение относится к области электронной техники, а именно к миниатюрным «прозрачным» лампам бегущей волны (ЛБВ) миллиметрового или сантиметрового диапазонов длин волн средней и большой мощности с высоким коэффициентом усиления с замедляющей системой типа цепочки связанных резонаторов.

Изобретение относится к электронной технике, в частности к усилительным приборам СВЧ типа лампы бегущей волны (ЛБВ), используемой в качестве генераторов, усилителей, переключателей тока и других устройств.

Изобретение относится к области техники СВЧ и лампа бегущей волны может быть использована в различной радиоэлектронной аппаратуре, в частности, предназначенной для многоцелевой радиолокации, для дальней тропосферной и космической связи, а также в современных средствах радиоэлектронного подавления информационных каналов систем управления оружием.

Изобретение относится к области техники СВЧ. .

Изобретение относится к электровакуумным СВЧ приборам с поперечно-протяженным взаимодействием и может быть использовано также в радиолокационной технике и аппаратуре связи.

Изобретение относится к производству электровакуумных приборов, в частности изготовлению замедляющих систем спирального типа для широкополосных ламп бегущей волны (ЛБВ) для коротковолнового диапазона длин волн.

Изобретение относится к электронной технике, в частности к многолучевым миниатюрным «прозрачным» многорежимным лампам бегущей волны (ЛБВ). .

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность.

Изобретение может быть использовано в производстве формованных полимерных изделий и покрытий. Водный раствор тетрахлорида титана нагревают при 25-75°C с получением взвеси частиц оксида титана рутила.

Изобретение относится к области изготовления наноструктурных материалов и может быть использовано в оптоэлектронике для производства светоизлучающих индикаторов.

Группа изобретений относится к медицине, конкретно к новым нанокристаллам золота и распределению форм нанокристаллов, которые имеют поверхности, которые не содержат органические загрязнения или пленки.

Изобретение относится в области нанотехнологии и фармацевтической химии. При получении нанокапсул солей металлов в качестве оболочки используется каррагинан.

Изобретение относится к области создания нанокомпозитных материалов для электрокатализа, электросорбции и устройств накопления электрической энергии и может быть использовано для пролучения высокоэффективных электрокатализаторов, электросорбентов и энергозапасающих устройств.

Изобретение относится к энергетическому оборудованию и может быть использовано в водородной энергетике для получения, хранения и транспортировки водорода. Устройство для получения атомарного водорода содержит реактор 1, работающий на разложении воды твердым реагентом, анод 3, катод 4 и магистрали 8 с арматурой для ввода исходного сырья в реактор 1 и вывода из него водорода и продуктов реакции.

Изобретение предназначено для использования в химической, химико-металлургической, в авиационной и космической отраслях промышленности. Формируют каркас углерод-углеродного композиционного материала (УУКМ) из низкомодульных углеродных волокон, заполняют его поры дисперсным углеродным наполнителем путем выращивания в них каталитическим методом в газовой фазе наноразмерного углерода в форме частиц, волокон или трубок до его содержания 3,7-10,9% от веса волокнистого каркаса.

Изобретение относится к технологии получения тонких пленок графена, которые могут быть использованы в качестве прозрачного проводящего покрытия. Способ включает гетероэпитаксиальное выращивание тонкой пленки графена на тонкой пленке катализатора, нанесение покрытия на основе полимера на поверхность тонкой пленки графена, которая является противоположной относительно поверхности тонкой пленки катализатора, отверждение покрытия на основе полимера и отслаивание тонкой пленки графена и покрытия на основе полимера от тонкой пленки катализатора, при этом тонкую пленку катализатора располагают на несущей подложке, сформированной со стороны тонкой пленки катализатора, которая является противоположной относительно поверхности тонкой пленки графена, и между несущей подложкой и каталитической тонкой пленкой располагают тонкую пленку разделительного слоя из оксида цинка.
Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ получения массивов наноразмерных нитевидных кристаллов кремния включает подготовку ростовой кремниевой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора и помещением подготовленной пластины в ростовую печь с последующим выращиванием нитевидных нанокристаллов, при этом на коллоидный раствор воздействуют ультразвуком, причем мощность ультразвукового генератора задают в пределах от 30 до 55 Вт, а температуру раствора поддерживают в интервале от 273 K до 370 K.

Группа изобретений относится к сорбентам на основе наноалмазов, которые могут быть использованы для иммобилизации или удаления вирусов, специфических антител, иммуносорбции, в диагностических целях, для дезактивации и удаления вирусов из внешней среды. Сорбенты из наноалмазсодержащих материалов получают в результате детонационного синтеза и модификации. Поверхность детонационных наноалмазов подвергают целенаправленному изменению путем модифицирования химически активными жидкими и газообразными веществами при повышенных температурах. В результате модифицирования состав поверхностных радикалов, содержащих атомы неуглеродной природы (O, H, N, S), пополняется дополнительными атомами, что приводит к появлению дополнительных аналогичных или новых функциональных групп, способных образовывать связи с функциональными группами биологических объектов. Изобретение обеспечивает возможность удаления широкого спектра белковых материалов с помощью полученных сорбентов из различных биологических жидкостей. 12 н. и 9 з.п. ф-лы, 10 ил., 9 пр.

Изобретение относится к электронике, в частности к электронно-лучевым приборам, предназначенным для генерации СВЧ-излучения, и может быть использовано при создании сильноточных релятивистских импульсных плазменных источников микроволн наносекундного диапазона. Технический результат - уменьшение искажений формы излучаемого электромагнитного поля и соответственно генерируемых импульсов наносекундного диапазона. Устройство содержит вакуумную камеру, которая служит заземленным анодом и в которой установлены взрывоэмиссионный катод, формирующий трубчатый поток электронов, электрод, установленный на одной оси с взрывоэмиссионным катодом и ограничивающий от него плазму, заземленную диафрагму, установленную между взрывоэмиссионным катодом и электродом, а также металлическую спираль цилиндрической формы, соединяющую электрод и взрывоэмиссионный катод и размещенную на одной оси с ними. Диаметр витков металлической спирали соответствует диаметру формируемого взрывоэмиссионным катодом трубчатого потока электронов, а индуктивность L металлической спирали выбрана из условия L>>UTI, где U - напряжение на катоде, Т - длительность импульса напряжения на катоде, I - ток трубчатого потока электронов. 1 ил.

Наверх