Станция подготовки сернистого попутного нефтяного газа (варианты)

Изобретение относится к устройствам подготовки попутного нефтяного газа и может быть использовано в нефтегазовой промышленности. Станция по варианту 1 включает компрессор, блок очистки от сероводорода, блок метанирования, блок осушки. При работе станции попутный нефтяной газ смешивают с газом регенерации, сжимают, очищают от сероводорода с получением кислого газа или серы и подают на блок метанирования, где в присутствии воды и водного конденсата подвергают мягкому каталитическому паровому риформингу. Полученный катализат осушают с получением сухого отбензиненного газа, конденсата водяного пара и газа регенерации. Станция по варианту 2 включает компрессор с устройством для охлаждения и дефлегмации компрессата, блок очистки от сероводорода и меркаптанов, блок очистки от тяжелых углеводородов и меркаптанов, блок метанирования и блок осушки. При работе станции попутный нефтяной газ смешивают с газом регенерации и газом, содержащим пары тяжелых углеводородов и меркаптанов, сжимают, подвергают охлаждению и дефлегмации, выводя при этом стабилизированный углеводородный конденсат, очищают от тяжелых углеводородов и меркаптанов и подают на блок метанирования, где в присутствии воды и водного конденсата подвергают мягкому каталитическому паровому риформингу. Полученный катализат осушают с получением сухого отбензиненного газа, конденсата водяного пара и газа регенерации. При необходимости катализат дополнительно очищают, а полученный концентрат примесей используют на собственные нужды. Технический результат - упрощение установки, снижение металлоемкости и энергопотребления. 2 н. и 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к устройствам подготовки попутного нефтяного газа и может быть использовано в нефтегазовой промышленности.

Известна установка переработки газа [A.M. Чуракаев. Низкотемпературная ректификация нефтяного газа. - М.: Недра, 1989 г., с. 5], которая включает входной сепаратор, трехступенчатый компрессор, оснащенный воздушными холодильниками, сепараторами и аккумулятором жидкости, блок адсорбционной осушки и очистки от сероводорода газа и конденсата, соединенный с блоком аминовой очистки газа регенерации от сероводорода и углекислого газа, который оснащен печью сжигания кислого газа и соединен линией подачи очищенного газа регенерации с первой ступенью трехступенчатого компрессора, блок низкотемпературной конденсации, оснащенный пропановым холодильником, турбодетандером, деметанизатором и деэтанизатором, и дожимной компрессор.

Основными недостатками известной установки являются сложность, невозможность подготовки меркаптансодержащего газа из-за накопления меркаптанов в циркулирующем газе, а также загрязнение окружающей среды диоксидом серы, образующимся при сжигании кислого газа.

Наиболее близкой по технической сущности к предложенному изобретению является полезная модель установки подготовки сернистых природных газов низкого давления [RU 143474, опубл. 27.07.2014, МПК B01D 53/00], включающая входной сепаратор, трехступенчатый (многоступенчатый) компрессор, блок аминовой очистки (блок очистки от сероводорода и углекислого газа), который установлен между первой и второй ступенью компрессора и соединен с блоком производства серы, блок адсорбционной осушки и очистки газа и конденсата, который установлен после компрессора и соединен с блоком демеркаптанизации газа регенерации, соединенным с блоком производства серы и со второй ступенью компрессора, а также с блоком низкотемпературной конденсации и деэтанизации конденсата, соединенным с дожимным компрессором.

Недостатками данной установки являются сложность, высокая металлоемкость и большое энергопотребление из-за включения в состав установки блока низкотемпературной конденсации и деэтанизации конденсата, а также дожимного компрессора, потребляющего большое количество энергии.

Задачей предлагаемого изобретения является упрощение установки, снижение металлоемкости и энергопотребления.

В качестве технического результата достигается упрощение установки (станции), снижение металлоемкости и энергопотребления за счет исключения из ее состава блока низкотемпературной конденсации и деэтанизации конденсата, а также дожимного компрессора путем оснащения установки блоком метанирования попутного нефтяного газа.

Изобретение включает два варианта станции подготовки попутного нефтяного газа: вариант 1 - для подготовки сероводородсодержащего попутного нефтяного газа, вариант 2 - для подготовки сероводород- и меркаптансодержащего попутного нефтяного газа.

По первому варианту заявленный технический результат достигается тем, что в известной установке, включающей входной сепаратор, многоступенчатый компрессор, блок очистки от сероводорода и блок осушки газа, установленный после компрессора, особенностью является то, что компрессор является, по меньшей мере, одноступенчатым, блок осушки газа связан со входом одной из ступеней компрессора линией подачи газа регенерации, а между блоками очистки от сероводорода и осушки установлен блок метанирования, который оснащен линией подачи воды и связан с блоком осушки линией подачи водного конденсата.

При необходимости по меньшей мере одну ступень компрессора оборудуют устройством для охлаждения и сепарации или дефлегмации компрессата, которое оснащено по меньшей мере одной линией вывода конденсата.

В первом варианте станции оснащение блока осушки газа линией подачи газа регенерации, связывающей его со входом одной из ступеней компрессора, позволяет возвращать пары воды в технологический цикл. Установка перед блоком осушки газа блока метанирования, оснащенного линией подачи воды и связанного с блоком осушки линией подачи водного конденсата, позволяет конвертировать тяжелые углеводороды в компоненты товарного газа. Метанирование может быть осуществлено, например, по технологии мягкого каталитического парового риформинга, при котором тяжелые углеводороды по реакции: CnH2n+2+(0.5n-0.5)H2O=(0.75n+0.25)CH4+(0.25n-0.25)CO2 превращаются в метан и углекислый газ.

Оборудование по меньшей мере одной ступени компрессора устройством для охлаждения и сепарации компрессата позволяет выводить конденсат для дополнительной переработки.

По второму варианту заявленный технический результат достигается тем, что в известной установке, включающей входной сепаратор, многоступенчатый компрессор, блок очистки от сероводорода и меркаптанов, а также блок осушки газа, установленный после компрессора, особенностью является то, что компрессор является, по меньшей мере, одноступенчатым, блок осушки газа связан со входом одной из ступеней компрессора линией подачи газа регенерации, перед блоком осушки газа установлен блок метанирования, который оснащен линией подачи воды и связан с блоком осушки линией подачи водного конденсата, а перед блоком метанирования установлен блок очистки от сероводорода и меркаптанов и блок очистки от тяжелых углеводородов и меркаптанов, связанный со входом на первую ступень компримирования, которая оборудована устройством для охлаждения и дефлегмации компрессата, оснащенным линией вывода стабилизированного конденсата.

Во втором варианте станции установка перед блоком метанирования блока очистки от сероводорода и меркаптанов, блок очистки от тяжелых углеводородов и меркаптанов, связанный со входом на первую ступень компримирования, которая оборудована устройством для охлаждения и дефлегмации компрессата, оснащенным линией вывода стабилизированного конденсата, позволяет удалить из газа тяжелые меркаптаны и углеводороды C5+, содержащиеся в попутном нефтяном газе, и возвратить их, например, на стадию подготовки нефти, за счет чего увеличить ее выход.

При необходимости увеличения концентрации углеводородов в подготовленном газе перед блоком осушки газа устанавливают блок адсорбционной, абсорбционной или мембранной доочистки газа от примесей (углекислый газ, водород и пр.).

Станция по варианту 1 (фиг. 1) включает компрессор 1 (условно показана одна ступень компрессора), блок очистки от сероводорода 2, блок метанирования 3, блок осушки 4 и, возможно, узел охлаждения и дефлегмации 5 и блок доочистки газа 6.

При работе станции попутный нефтяной газ (I), очищенный от капельной влаги и механических примесей, смешивают с газом регенерации (II), сжимают компрессором 1, очищают от сероводорода на блоке 2 с получением кислого газа или серы (III) и подают на блок метанирования 3, где в присутствии воды (IV) и водного конденсата (V) подвергают мягкому каталитическому паровому риформингу. Полученный катализат (VI) осушают на блоке 4 с получением сухого отбензиненного газа (VII), конденсата водяного пара (V) и газа регенерации (II).

При необходимости, по меньшей мере одну ступень компримирования оснащают устройством для охлаждения и дефлегмации компрессата 5 с линией вывода стабилизированного углеводородов конденсата (VIII), а катализат (VI) дополнительно очищают на блоке 6, например, от углекислого газа, при этом концентрат примесей (IX), например отходящий газ, используют на собственные нужды, например, в качестве компонента топлива для привода компрессора.

Станция по варианту 2 (фиг. 2) включает компрессор 1 (условно показана одна ступень компрессора) с устройством для охлаждения и дефлегмации компрессата 5, блок очистки от сероводорода 2, который также позволят удалить из газа часть меркаптанов, блок очистки от тяжелых углеводородов и меркаптанов 7, блок метанирования 3, блок осушки 4 и, возможно, блок доочистки газа 6.

При работе станции попутный нефтяной газ (I), очищенный от капельной влаги и механических примесей, смешивают с газом регенерации (II) и газом, содержащим пары тяжелых углеводородов и меркаптанов (X), сжимают компрессором 1, подвергают охлаждению и дефлегмации в устройстве 5, из которого выводят стабилизированный конденсат (VIII), очищают от сероводорода и меркаптанов на блоке 2 с получением кислого газа или серы (III), очищают от тяжелых углеводородов и меркаптанов в узле 7 с получением газа, содержащего пары тяжелых углеводородов и меркаптанов (X), и подают на блок метанирования 3, где в присутствии воды (IV) и водного конденсата (V) подвергают мягкому каталитическому паровому риформингу. Полученный катализат (VI) осушают на блоке 4 с получением сухого отбензиненного газа (VII), конденсата водяного пара (V) и газа регенерации (II).

При необходимости катализат (VI) дополнительно очищают на блоке 6, например, от углекислого газа, а концентрат примесей (IX), например отходящий газ, используют на собственные нужды, например, в качестве компонента топлива для привода компрессора.

Таким образом, предлагаемые варианты изобретения позволяют упростить установку, снизить металлоемкость и энергопотребление и могут быть использованы в нефтегазовой промышленности.

1. Станция подготовки попутного нефтяного газа, включающая входной сепаратор, многоступенчатый компрессор, блок очистки от сероводорода и блок осушки газа, установленный после компрессора, отличающаяся тем, что компрессор является, по меньшей мере, одноступенчатым, блок осушки газа связан со входом одной из ступеней компрессора линией подачи газа регенерации, а между блоками очистки от сероводорода и осушки установлен блок метанирования, который оснащен линией подачи воды и связан с блоком осушки линией подачи водного конденсата.

2. Станция подготовки попутного нефтяного газа по п. 1, отличающаяся тем, что между блоками осушки и метанирования установлен блок доочистки газа.

3. Станция подготовки попутного нефтяного газа по п. 1, отличающаяся тем, что по меньшей мере одна ступень компрессора оборудована устройством для охлаждения и сепарации или дефлегмации компрессата, которое оснащено по меньшей мере одной линией вывода конденсата.

4. Станция подготовки попутного нефтяного газа, включающая входной сепаратор, многоступенчатый компрессор, блок очистки от сероводорода и меркаптанов, а также блок осушки газа, установленный после компрессора, отличающаяся тем, что компрессор является, по меньшей мере, одноступенчатым, блок осушки газа связан со входом одной из ступеней компрессора линией подачи газа регенерации, перед блоком осушки газа установлен блок метанирования, который оснащен линией подачи воды и связан с блоком осушки линией подачи водного конденсата, а перед блоком метанирования установлен блок очистки от сероводорода и меркаптанов и блок очистки от тяжелых углеводородов и меркаптанов, связанный со входом на первую ступень компримирования, которая оборудована устройством для охлаждения и дефлегмации компрессата, оснащенным линией вывода стабилизированного конденсата.

5. Станция подготовки попутного нефтяного газа по п. 4, отличающаяся тем, что между блоками осушки и метанирования установлен блок доочистки газа.



 

Похожие патенты:

Изобретение может быть использовано при переработке глиноземсодержащего сырья. Способ упаривания алюминатных растворов включает упаривание слабых растворов в две стадии с использованием для нагрева пара и подачу упаренного раствора на выделение карбонатной соды.

Изобретения могут быть использованы в химической и энергетической области, а также в области переработки органических отходов. Устройство для выделения аммиака из ферментационных жидкостей или остатков брожения на установках по производству биогаза включает флэш-испаритель F, соединенный с ферментером (A) или со складом остатков брожения, для подачи субстрата по трубам (1, 2, 3, 4, 5, 6).

Изобретение относится к устройствам подготовки попутного нефтяного газа и может быть использовано в нефтегазовой промышленности. Станция по варианту 1 состоит из по меньшей мере одноступенчатого компрессора, блоков метанирования, осушки и, возможно, очистки газа.

Изобретение относится к способам подготовки попутного нефтяного газа к транспорту и может быть использовано в нефтяной промышленности. Предложен способ, согласно которому попутный нефтяной газ смешивают с газом, содержащим пары тяжелых углеводородов и меркаптанов, сепарируют с получением конденсата, направляемого на стадию подготовки нефти, и компримируют.

Изобретение относится к газоперерабатывающему и газохимическому комплексу, включающему газоперерабатывающий сектор, в котором в качестве сырья звена подготовки сырья 1.1 подается природный углеводородный газ с получением очищенного и осушенного газа и кислого газа, направляемых, соответственно, в звено низкотемпературного фракционирования сырья 1.2 и в звено получения элементарной серы при присутствии сероводорода в исходном сырье 1.5, звена получения товарной метановой фракции (товарного газа) 1.3 подается метановая фракция со звена 1.2 с получением азота, гелиевого концентрата, направляемого на звено получения товарного гелия 1.6, и метановой фракции, звена получения суммы сжиженных углеводородных газов (СУГ) и пентан-гексановой фракции 1.4 подается ШФЛУ со звена 1.2 с получением пропановой, бутановой, изобутановой и пентан-гексановой фракции, пропан-бутана технического и автомобильного, сектор по сжижению природных газов, состоящий из звена сжижения товарной метановой фракции (товарного газа) 1.12, соединяющегося потоком метановой фракции из звена 1.3, и звена сжижения этановой фракции 1.13, соединяющегося потоком этановой фракции из звена 1.2 с получением товарного газа, газохимический сектор, в котором в качестве сырья звена получения этилена 1.7 подается со звена 1.2 этановая фракция с получением этилена и водорода, звена получения пропилена 1.8 подается со звена 1.4 пропановая фракция, звена получения синтез-газа, метанола и высших спиртов, аммиака 1.10 подается со звеньев 1.12, 1.1 и 1.7-1.8, соответственно, товарный газ, кислый газ и водород с получением метанола и аммиака, звена получения полимеров, сополимеров 1.9 подается из звеньев 1.8 и 1.7, соответственно, пропилен и частично этилен с получением полиэтилена, сополимера и полипропилена, звена получения этиленгликолей 1.11 подается со звена 1.7 оставшаяся часть этилена с получением моно-, ди- и триэтиленгликолей, сектор подготовки конденсата, в котором в качестве сырья звена стабилизации конденсата 1.14 подается нестабильный газоконденсат, звена получения моторных топлив 1.15 подается стабильный газоконденсат, пентан-гексановая фракция и водород, соответственно, со звеньев 1.14, 1.4 и 1.7-1.8 с получением высокооктанового автобензина, керосиновой и дизельной фракций, при этом отводимые предельные углеводородные газы со звена 1.15 и газ стабилизации со звена 1.14 направляются в звено 1.1, с учетом того, что перемещение технологических потоков между смежными секторами обеспечивается дополнительными перекачивающими станциями.

Способ относится к подготовке углеводородного сырья с газовой фазой к транспорту и может найти применение в нефтегазовой промышленности при эксплуатации разрабатываемых нефтегазовых месторождений. Предложен способ, включающий подачу газа с кустов скважин на сепарацию, трехступенчатую сепарацию с охлаждением газового потока, введение в него растворимого летучего ингибитора гидратообразования метанола, выведение из сепараторов жидкости, разделение ее на углеводородную и водометанольную фазы, подачу жидких углеводородов с первой ступени сепарации на противоточное контактирование с отсепарированным газом на последнюю ступень сепарации, особенность заключается в том, что в поток углеводородного газа при подаче по шлейфу от скважин на сепарацию и до подачи на отдувку первой ступени сепарации вводят углеводородный фракционный состав УФК с потенциалом нерастворимого ингибитора гидратообразования из углеводородных фракций, выкипающих в интервале 23-290°C. Изобретение позволяет повысить эффективность производства на нефтегазовых и газоконденсатных месторождениях при снижении расхода токсичного растворимого ингибитора гидратообразования метанола и прессинга на окружающую среду.

Изобретение относится к технологии переработки углеводородсодержащих газовых смесей, а именно к низкотемпературной сепарации компонентов газа, и может быть использовано для переработки попутного или природного газа.

Изобретение относится к технологии разделения многокомпонентных систем. Предложено устройство для разделения многокомпонентных смесей, содержащее корпус, приспособление для подачи разделяемой смеси, приспособление для вывода жидкого продукта, обогащенного высококипящим компонентом, и приспособление для вывода газообразного продукта, обогащенного низкокипящим компонентом, в корпусе размещен цилиндрический ротор, в котором установлены пористые перегородки, вал ротора имеет осевой канал, сообщенный с приспособлением для вывода газообразного продукта, обогащенного низкокипящим компонентом.

Изобретение относится к процессам выделения метанола из воды и может быть использовано при подготовке природного газа к переработке с целью предотвращения гидратообразования, а именно для извлечения метанола из водометанольных растворов с высоким содержанием механических примесей и солей.

Изобретение относится к сельскому хозяйству, в частности к охране окружающей среды от вредных выбросов животноводческих помещений и получению экологически чистых консервантов, преимущественно углекислого газа.

Изобретение относится к обработке сточных вод с использованием установки, использующей тепловую энергию, получаемую при прямом сжигании углеводородного топлива и/или путем использования тепловой энергии отработавших газов, образующихся при сжигании углеводородов в двигателях. Выпарная установка для концентрирования загрязнений в неочищенной воде содержит выпариватель 110 неочищенной воды, включающий дымоход, подсоединенный к источнику горячего газа; систему распределения неочищенной воды внутри дымохода с увеличением ее площади поверхности; систему управления, включающую по меньшей мере один пункт контроля для мониторинга температуры внутри дымохода и по меньшей мере один насос для регулирования потока неочищенной воды, направляемого в систему распределения неочищенной воды; и систему сбора, подсоединенную к дымоходу для сбора воды с концентрированными загрязнениями из дымохода. Изобретение позволяет сократить количество загрязнений в отработавших газах, которые могут быть выпущены в атмосферу, и сократить общий объем загрязненных сточных вод. 3 н. и 34 з.п. ф-лы, 8 ил.

Изобретение касается устройства и способа удаления загрязняющих примесей из потока газа. Указанный способ включает: (а) введение потока газа в реакционную камеру газопромывной колонны; (b) окисление первых загрязняющих примесей в жидкой фазе реакционноспособными элементами в сборнике газопромывной колонны, образующими окисляющий раствор; (c) окисление вторых загрязняющих примесей в газовой фазе потока газа над сборником избытком реакционноспособных элементов, высвобождающихся из окисляющего раствора в сборнике; (d) окисление и вымывание третьих загрязняющих примесей в устройстве газожидкостного контакта, расположенном над потоком газа. 2 н. и 21 з.п. ф-лы, 4 ил.

Изобретение относится к способам подготовки попутного нефтяного газа к транспорту и может быть использовано в нефтяной промышленности. Предложен способ, согласно которому предварительно отсепарированный попутный нефтяной газ подвергают мягкому паровому риформингу в присутствии воды и газа регенерации с получением риформата, который дополнительно сжимают и осушают, например, путем последовательного охлаждения, сепарации и адсорбционной осушки. Полученный газ регенерации направляют на мягкий паровой риформинг, а подготовленный газ выводят с установки. При необходимости предварительно отсепарированный попутный нефтяной газ перед мягким паровым риформингом подвергают обессериванию с получением обессеренного газа и продукта обессеривания, который выводят с установки. Технический результат - увеличение выхода подготовленного газа, исключение образования отходов, получение подготовленного газа в качестве монопродукта, а также упрощение способа. 1 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в газовой промышленности. Кластер по переработке природного газа с извлечением гелия включает месторождение природного газа, содержащее гелий, с продуктивными скважинами, газоперерабатывающий завод с извлечением гелия из природного газа и магистральный газопровод между месторождением и заводом с рядом дожимных компрессорных станций и отводящих трубопроводов для подачи природного газа от магистрального трубопровода к турбинам дожимных компрессорных станций и промышленным и коммунальным потребителям природного газа в качестве топлива, при этом газоперерабатывающий завод соединен с хранилищами гелиевого концентрата дополнительным трубопроводом для возврата в хранилища избыточного количества гелиевого концентрата. 5 з.п. ф-лы, 2 ил.

Изобретение относится к удалению воды, углекислого газа и закиси азота из воздушного потока перед криогенным разделением воздуха. В способе снижения воды, CO2 и N2O в сырьевом воздухе используются первый адсорбент, такой как оксид алюминия (25-40% по объему), и второй адсорбент, такой как цеолит X (60-75% по объему); время работы адсорбента определяется путем определения концентрации, измеренной с помощью анализатора для концентрации CO2 в положении в пределах длины второго адсорбента, когда максимальный уровень N2O получают одновременно на нижнем по потоку конце второго адсорбента в направлении подачи, где время работы - это время от начала прохождения сырьевого воздуха в первый и второй адсорбенты до измерения с помощью анализатора определенной концентрации СО2; по меньшей мере, второй адсорбент регенерируют с помощью нагретого регенерационного газа при температуре от 140 до 220°C и молярное отношение регенерирующего газа к сырьевому воздуху, подаваемому во время одной итерации цикла, составляет 0,08-0,5. 6 н. и 21 з.п. ф-лы, 11 табл., 5 ил.

Изобретение относится к способам выпаривания пенящихся растворов в установках концентрирования. Способ выпаривания пенящихся растворов в установках концентрирования, включающий подачу исходного раствора и греющего пара в выпарной аппарат с сепаратором, разделение в сепараторе концентрированного раствора и вторичного пара, вывод концентрированного раствора, конденсацию греющего и вторичного пара и ввод пара в сепаратор, при этом при появлении в сепараторе пены часть вторичного пара отбирают, нагревают, сжимают и возвращают в зону пенообразования сепаратора для разрушения пены. Технический результат - поддержание степени очистки конденсата вторичного пара на заданном расчетном уровне без снижения интенсивности кипения концентрируемых пенящихся растворов путем гашения (разрушения) пены при вспенивании перерабатываемых растворов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к способу термического разделения раствора, состоящего из термопластичного полимера и растворителя. Раствор нагревают под давлением выше критической точки растворителя и затем декомпрессируют в сепаратор высокого давления. При этом образуется фаза с высоким содержанием полимера и фаза с низким содержанием полимера. Фазу с высоким содержанием полимера подают в смеситель. Перепад давления на входе в смеситель приводит к термическому мгновенному испарению в смесителе, в результате чего доля полимера тяжелой фазы возрастает по меньшей мере до 70%. Обеспечивают подачу полученного раствора с высоким содержанием полимера, в частности распределяемого по меньшей мере вдоль части длины вала смесителя, который находится в том же пространстве емкости и который нагревает полимерную массу за счет механической энергии смешивания, в результате чего доля полимера возрастает до значения выше 70%. Технический результат - обеспечение более высокой молекулярной массы, уменьшение образования мелких частиц в дегазаторе, более высокой производительности, более низкого остаточного содержания нежелательных летучих веществ в продукции дегазатора и более низкого энергопотребления по сравнению с существующими способами. 5 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к способам опреснения морской воды. Способ опреснения морской воды при помощи тонкопленочного полупроводникового термоэлектрического теплового насоса цилиндрической формы включает использование предварительного теплообмена для подогрева морской воды, предназначенной для выпаривания, за счет отвода теплоты от опресненной воды и концентрированного соленого раствора. Тонкопленочный полупроводниковый термоэлектрический тепловой насос цилиндрической формы горячим спаем доводит до кипения морскую воду, отбирая холодным спаем теплоту у конденсируемого пара, работая в режиме интенсификатора теплопередачи. Изобретение позволяет повысить энергетическую эффективность опреснителя. 1 ил.

Система очистки дымового газа включает систему циркуляции дымового газа, реактор, систему добавления абсорбента, имеющую по меньшей мере каталитический абсорбент, где каталитический абсорбент газифицируется для взаимодействия с дымовым газом в реакторе в способе взаимодействия в гомогенной фазе газ-газ. Следовательно, система очистки обладает высокой скоростью реакции между загрязняющими веществами дымового газа и каталитическим абсорбентом, который предпочтительно представляет собой аммиак, для эффективного удаления загрязняющих веществ для того, чтобы эффективно очистить дымовой газ. 2 н. и 13 з.п. ф-лы, 3 ил.

Группа изобретений относится к устройствам и способам подготовки природного газа к транспортировке путем низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности. Устройство для низкотемпературной сепарации газа содержит предварительный, промежуточный и низкотемпературный сепараторы и устройство редуцирования газа. В качестве промежуточного сепаратора установлен двухсекционный дефлегматор-стабилизатор, включающий верхнюю дефлегмационную и нижнюю стабилизационную секции, оборудованные блоками тепломассообменных элементов с внутренним пространством для прохода теплоносителя или хладагента и внешним массообменным пространством. При этом блок тепломассообменных элементов дефлегмационной секции состоит из двух частей, одна из которых оснащена линией подачи конденсата низкотемпературной сепарации и соединена с зоной питания линией подачи нагретого конденсата, к которой примыкает линия подачи охлажденного газа предварительной сепарации, а другая оснащена линией подачи газа низкотемпературной сепарации и линией вывода товарного газа. Кроме того, блок тепломассообменных элементов стабилизационной секции оснащен линиями ввода и вывода газа предварительной сепарации, низ стабилизационной секции оснащен линией вывода стабилизированного конденсата, а верх дефлегмационной секции оснащен линией вывода газа промежуточной сепарации. Способ низкотемпературной сепарации газа включает охлаждение газа предварительной сепарации, его промежуточную сепарацию с получением конденсата и газа, который охлаждают газом низкотемпературной сепарации, дросселируют и подвергают низкотемпературной сепарации на газ, выводимый с установки после нагрева, и конденсат. Для низкотемпературной сепарации используют предлагаемое устройство, при этом газ предварительной сепарации сначала охлаждают во внутреннем пространстве блока тепломассообменных элементов стабилизационной секции, затем смешивают с нагретым конденсатом низкотемпературной сепарации и сепарируют в средней части дефлегматора-стабилизатора на конденсат, который направляют в стабилизационную секцию, где стабилизируют за счет нагрева газом предварительной сепарации, и газ, который направляют в дефлегмационную секцию, где в условиях дефлегмации осуществляют его дальнейшее охлаждение газом и конденсатом низкотемпературной сепарации. Кроме того, с низа стабилизационной секции выводят стабилизированный конденсат, а с верха дефлегмационной секции выводят охлажденный газ промежуточной сепарации. Техническим результатом является повышение выхода товарного газа и снижение температуры точки росы товарного газа. 2 н. и 2 з.п. ф-лы, 1 пр., 1 ил.
Наверх