Способ подготовки попутного нефтяного газа

Изобретение относится к способам подготовки попутного нефтяного газа к транспорту и может быть использовано в нефтяной промышленности. Предложен способ, согласно которому предварительно отсепарированный попутный нефтяной газ подвергают мягкому паровому риформингу в присутствии воды и газа регенерации с получением риформата, который дополнительно сжимают и осушают, например, путем последовательного охлаждения, сепарации и адсорбционной осушки. Полученный газ регенерации направляют на мягкий паровой риформинг, а подготовленный газ выводят с установки. При необходимости предварительно отсепарированный попутный нефтяной газ перед мягким паровым риформингом подвергают обессериванию с получением обессеренного газа и продукта обессеривания, который выводят с установки. Технический результат - увеличение выхода подготовленного газа, исключение образования отходов, получение подготовленного газа в качестве монопродукта, а также упрощение способа. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к способам подготовки попутного нефтяного газа к транспорту и может быть использовано в нефтяной промышленности.

Известен способ подготовки сырого газа [A.M. Чуракаев. Низкотемпературная ректификация нефтяного газа. - М.: Недра, 1989 г., с. 5], включающий его входную сепарацию, смешение с очищенным газом регенерации, компримирование, адсорбционную осушку и очистку от сероводорода газа и конденсата с получением очищенных газа и конденсата, а также газа регенерации, который подвергают аминовой очистке с получением очищенного газа регенерации и кислого газа, который сжигают, а также низкотемпературную конденсацию очищенного газа с получением подготовленного газа и стабилизацию конденсата.

Недостатками известного способа являются сложность, необходимость использования большого количества оборудования, а также загрязнение окружающей среды диоксидом серы, образующемся при сжигании кислого газа.

Наиболее близким по технической сущности является способ, используемый при работе установки подготовки сернистых природных газов низкого давления [RU 143475, МПК B01D 53/00, опубл. 27.07.2014 г.], включающий трехступенчатое (многоступенчатое) компримирование предварительно отсепарированного газа, аминовую очистку компрессата первой ступени с получением обессеренного газа и кислого газа, который перерабатывают с получением серы, адсорбционную осушку и очистку обессеренного газа и конденсата с получением очищенных (осушенных) газа и конденсата, а также газа регенерации, выводимого с установки, низкотемпературную конденсацию очищенного газа и деэтанизацию конденсата с получением подготовленного газа, этанового концентрата и широкой фракции легких углеводородов.

Недостатками данного способа являются:

- низкий выход подготовленного газа из-за получения жидких продуктов, а также газа регенерации в качестве отхода, который, кроме того, требует последующей утилизации,

- получение большой номенклатуры продукции, что удорожает ее транспортировку,

- сложность способа из-за необходимости использования большого количества оборудования.

Задачей предлагаемого изобретения является увеличение выхода подготовленного газа, получаемого в качестве монопродукта, исключение образования отходов, а также упрощение способа.

Техническим результатом при этом является:

- увеличение выхода подготовленного газа, получаемого в качестве монопродукта, и упрощение способа подготовки газа за счет мягкого парового риформинга предварительно отсепарированного попутного нефтяного газа,

- исключение образования побочных продуктов за счет рециркуляции газа регенерации.

Указанный технический результат достигается тем, что в известном способе, включающем многоступенчатое компримирование предварительно отсепарированного попутного нефтяного газа и его осушку с получением осушенного газа и газа регенерации, особенностью является то, что предварительно отсепарированный газ дополнительно подвергают мягкому паровому риформингу в присутствии воды и газа регенерации с получением риформата, направляемого на осушку, при этом осушку осуществляют после сжатия риформата по меньшей мере на одной ступени компримирования.

При необходимости, перед подачей на мягкий паровой риформинг, осуществляют обессеривание отсепарированного попутного нефтяного газа. Обессеривание отсепарированного газа может быть осуществлено, например, методом аминовой очистки с получением кислого газа, методом прямого окисления с получением серы, а также другими известными методами.

Мягкий паровой риформинг [RU 2443764, МПК C10L 3/10, опубл. 27.02.2012 г.] отсепарированного газа позволяет путем каталитического превращения из каждого моля углеводородов C3+ обессеренного газа получить не менее двух молей метана, за счет чего увеличивается объемный выход подготовленного газа, получаемого в качестве монопродукта, а также упростить способ, поскольку осуществление низкотемпературной конденсации очищенного газа и деэтанизации конденсата при этом не требуется (т.к. тяжелые углеводороды в риформате практически отсутствуют).

Способ осуществляют следующим образом. Предварительно отсепарированный попутный нефтяной газ (I) подвергают мягкому паровому риформингу в присутствии воды (II) и газа регенерации (III) на блоке 1 (условно показано предварительное двухступенчатое сжатие отсепарированного попутного нефтяного газа (I) на первой 2 и второй 3 ступени компримирования) с получением риформата (IV), который дополнительно сжимают, например, на третьей ступени компримирования 4, и осушают на блоке 5, например, путем последовательного охлаждения, сепарации и адсорбционной осушки. Полученный газ регенерации (III) направляют на мягкий паровой риформинг, а подготовленный газ (V) выводят с установки.

При необходимости отсепарированный попутный нефтяной газ (I) перед мягким паровым риформингом подвергают обессериванию на блоке 6 (условно показано обессеривание газа после первой ступени сжатия 2) с получением обессеренного газа (VI) и продукта обессеривания (VII) - кислого газа, серы или др., который выводят с установки.

Сущность изобретения иллюстрируется следующим примером, отсепарированный попутный нефтяной газ, содержащий 5,8 об.% углеводородов C3+, в количестве 17900 нм3/час при 0,28 МПа и 30°C смешивают с 1,2 т/час деминерализованной воды, 150 нм3/час газа регенерации, нагревают до 350°C и подвергают мягкому паровому риформингу в присутствии цинкхромсодержащего катализатора. Риформат охлаждают до 40°C, компримируют до 8,0 МПа, охлаждают, сепарируют и подвергают адсорбционной осушке с получением газа регенерации и 22060 нм3/час подготовленного газа, содержащего менее 0,01 мас.% углеводородов C3+, с температурой точки росы по воде минус 20°C. Отходов и полупродуктов не имеется.

Таким образом, предлагаемый способ проще, позволяет получить подготовленный газ в качестве монопродукта с увеличенным выходом, исключить образование отходов и может быть использован в нефтегазовой промышленности.

1. Способ подготовки попутного нефтяного газа, включающий многоступенчатое компримирование предварительно отсепарированного газа и его осушку с получением осушенного газа и газа регенерации, отличающийся тем, что предварительно отсепарированный газ дополнительно подвергают мягкому паровому риформингу в присутствии воды и газа регенерации с получением риформата, направляемого на осушку, при этом осушку осуществляют после сжатия риформата по меньшей мере на одной ступени компримирования.

2. Способ по п. 1, отличающийся тем, что перед подачей на мягкий паровой риформинг осуществляют обессеривание предварительно отсепарированного газа.



 

Похожие патенты:

Изобретение касается устройства и способа удаления загрязняющих примесей из потока газа. Указанный способ включает: (а) введение потока газа в реакционную камеру газопромывной колонны; (b) окисление первых загрязняющих примесей в жидкой фазе реакционноспособными элементами в сборнике газопромывной колонны, образующими окисляющий раствор; (c) окисление вторых загрязняющих примесей в газовой фазе потока газа над сборником избытком реакционноспособных элементов, высвобождающихся из окисляющего раствора в сборнике; (d) окисление и вымывание третьих загрязняющих примесей в устройстве газожидкостного контакта, расположенном над потоком газа.

Изобретение относится к обработке сточных вод с использованием установки, использующей тепловую энергию, получаемую при прямом сжигании углеводородного топлива и/или путем использования тепловой энергии отработавших газов, образующихся при сжигании углеводородов в двигателях.

Изобретение относится к устройствам подготовки попутного нефтяного газа и может быть использовано в нефтегазовой промышленности. Станция по варианту 1 включает компрессор, блок очистки от сероводорода, блок метанирования, блок осушки.

Изобретение может быть использовано при переработке глиноземсодержащего сырья. Способ упаривания алюминатных растворов включает упаривание слабых растворов в две стадии с использованием для нагрева пара и подачу упаренного раствора на выделение карбонатной соды.

Изобретения могут быть использованы в химической и энергетической области, а также в области переработки органических отходов. Устройство для выделения аммиака из ферментационных жидкостей или остатков брожения на установках по производству биогаза включает флэш-испаритель F, соединенный с ферментером (A) или со складом остатков брожения, для подачи субстрата по трубам (1, 2, 3, 4, 5, 6).

Изобретение относится к устройствам подготовки попутного нефтяного газа и может быть использовано в нефтегазовой промышленности. Станция по варианту 1 состоит из по меньшей мере одноступенчатого компрессора, блоков метанирования, осушки и, возможно, очистки газа.

Изобретение относится к способам подготовки попутного нефтяного газа к транспорту и может быть использовано в нефтяной промышленности. Предложен способ, согласно которому попутный нефтяной газ смешивают с газом, содержащим пары тяжелых углеводородов и меркаптанов, сепарируют с получением конденсата, направляемого на стадию подготовки нефти, и компримируют.

Изобретение относится к газоперерабатывающему и газохимическому комплексу, включающему газоперерабатывающий сектор, в котором в качестве сырья звена подготовки сырья 1.1 подается природный углеводородный газ с получением очищенного и осушенного газа и кислого газа, направляемых, соответственно, в звено низкотемпературного фракционирования сырья 1.2 и в звено получения элементарной серы при присутствии сероводорода в исходном сырье 1.5, звена получения товарной метановой фракции (товарного газа) 1.3 подается метановая фракция со звена 1.2 с получением азота, гелиевого концентрата, направляемого на звено получения товарного гелия 1.6, и метановой фракции, звена получения суммы сжиженных углеводородных газов (СУГ) и пентан-гексановой фракции 1.4 подается ШФЛУ со звена 1.2 с получением пропановой, бутановой, изобутановой и пентан-гексановой фракции, пропан-бутана технического и автомобильного, сектор по сжижению природных газов, состоящий из звена сжижения товарной метановой фракции (товарного газа) 1.12, соединяющегося потоком метановой фракции из звена 1.3, и звена сжижения этановой фракции 1.13, соединяющегося потоком этановой фракции из звена 1.2 с получением товарного газа, газохимический сектор, в котором в качестве сырья звена получения этилена 1.7 подается со звена 1.2 этановая фракция с получением этилена и водорода, звена получения пропилена 1.8 подается со звена 1.4 пропановая фракция, звена получения синтез-газа, метанола и высших спиртов, аммиака 1.10 подается со звеньев 1.12, 1.1 и 1.7-1.8, соответственно, товарный газ, кислый газ и водород с получением метанола и аммиака, звена получения полимеров, сополимеров 1.9 подается из звеньев 1.8 и 1.7, соответственно, пропилен и частично этилен с получением полиэтилена, сополимера и полипропилена, звена получения этиленгликолей 1.11 подается со звена 1.7 оставшаяся часть этилена с получением моно-, ди- и триэтиленгликолей, сектор подготовки конденсата, в котором в качестве сырья звена стабилизации конденсата 1.14 подается нестабильный газоконденсат, звена получения моторных топлив 1.15 подается стабильный газоконденсат, пентан-гексановая фракция и водород, соответственно, со звеньев 1.14, 1.4 и 1.7-1.8 с получением высокооктанового автобензина, керосиновой и дизельной фракций, при этом отводимые предельные углеводородные газы со звена 1.15 и газ стабилизации со звена 1.14 направляются в звено 1.1, с учетом того, что перемещение технологических потоков между смежными секторами обеспечивается дополнительными перекачивающими станциями.

Способ относится к подготовке углеводородного сырья с газовой фазой к транспорту и может найти применение в нефтегазовой промышленности при эксплуатации разрабатываемых нефтегазовых месторождений. Предложен способ, включающий подачу газа с кустов скважин на сепарацию, трехступенчатую сепарацию с охлаждением газового потока, введение в него растворимого летучего ингибитора гидратообразования метанола, выведение из сепараторов жидкости, разделение ее на углеводородную и водометанольную фазы, подачу жидких углеводородов с первой ступени сепарации на противоточное контактирование с отсепарированным газом на последнюю ступень сепарации, особенность заключается в том, что в поток углеводородного газа при подаче по шлейфу от скважин на сепарацию и до подачи на отдувку первой ступени сепарации вводят углеводородный фракционный состав УФК с потенциалом нерастворимого ингибитора гидратообразования из углеводородных фракций, выкипающих в интервале 23-290°C. Изобретение позволяет повысить эффективность производства на нефтегазовых и газоконденсатных месторождениях при снижении расхода токсичного растворимого ингибитора гидратообразования метанола и прессинга на окружающую среду.

Изобретение относится к технологии переработки углеводородсодержащих газовых смесей, а именно к низкотемпературной сепарации компонентов газа, и может быть использовано для переработки попутного или природного газа.

Изобретение может быть использовано в газовой промышленности. Кластер по переработке природного газа с извлечением гелия включает месторождение природного газа, содержащее гелий, с продуктивными скважинами, газоперерабатывающий завод с извлечением гелия из природного газа и магистральный газопровод между месторождением и заводом с рядом дожимных компрессорных станций и отводящих трубопроводов для подачи природного газа от магистрального трубопровода к турбинам дожимных компрессорных станций и промышленным и коммунальным потребителям природного газа в качестве топлива, при этом газоперерабатывающий завод соединен с хранилищами гелиевого концентрата дополнительным трубопроводом для возврата в хранилища избыточного количества гелиевого концентрата. 5 з.п. ф-лы, 2 ил.

Изобретение относится к удалению воды, углекислого газа и закиси азота из воздушного потока перед криогенным разделением воздуха. В способе снижения воды, CO2 и N2O в сырьевом воздухе используются первый адсорбент, такой как оксид алюминия (25-40% по объему), и второй адсорбент, такой как цеолит X (60-75% по объему); время работы адсорбента определяется путем определения концентрации, измеренной с помощью анализатора для концентрации CO2 в положении в пределах длины второго адсорбента, когда максимальный уровень N2O получают одновременно на нижнем по потоку конце второго адсорбента в направлении подачи, где время работы - это время от начала прохождения сырьевого воздуха в первый и второй адсорбенты до измерения с помощью анализатора определенной концентрации СО2; по меньшей мере, второй адсорбент регенерируют с помощью нагретого регенерационного газа при температуре от 140 до 220°C и молярное отношение регенерирующего газа к сырьевому воздуху, подаваемому во время одной итерации цикла, составляет 0,08-0,5. 6 н. и 21 з.п. ф-лы, 11 табл., 5 ил.

Изобретение относится к способам выпаривания пенящихся растворов в установках концентрирования. Способ выпаривания пенящихся растворов в установках концентрирования, включающий подачу исходного раствора и греющего пара в выпарной аппарат с сепаратором, разделение в сепараторе концентрированного раствора и вторичного пара, вывод концентрированного раствора, конденсацию греющего и вторичного пара и ввод пара в сепаратор, при этом при появлении в сепараторе пены часть вторичного пара отбирают, нагревают, сжимают и возвращают в зону пенообразования сепаратора для разрушения пены. Технический результат - поддержание степени очистки конденсата вторичного пара на заданном расчетном уровне без снижения интенсивности кипения концентрируемых пенящихся растворов путем гашения (разрушения) пены при вспенивании перерабатываемых растворов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к способу термического разделения раствора, состоящего из термопластичного полимера и растворителя. Раствор нагревают под давлением выше критической точки растворителя и затем декомпрессируют в сепаратор высокого давления. При этом образуется фаза с высоким содержанием полимера и фаза с низким содержанием полимера. Фазу с высоким содержанием полимера подают в смеситель. Перепад давления на входе в смеситель приводит к термическому мгновенному испарению в смесителе, в результате чего доля полимера тяжелой фазы возрастает по меньшей мере до 70%. Обеспечивают подачу полученного раствора с высоким содержанием полимера, в частности распределяемого по меньшей мере вдоль части длины вала смесителя, который находится в том же пространстве емкости и который нагревает полимерную массу за счет механической энергии смешивания, в результате чего доля полимера возрастает до значения выше 70%. Технический результат - обеспечение более высокой молекулярной массы, уменьшение образования мелких частиц в дегазаторе, более высокой производительности, более низкого остаточного содержания нежелательных летучих веществ в продукции дегазатора и более низкого энергопотребления по сравнению с существующими способами. 5 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к способам опреснения морской воды. Способ опреснения морской воды при помощи тонкопленочного полупроводникового термоэлектрического теплового насоса цилиндрической формы включает использование предварительного теплообмена для подогрева морской воды, предназначенной для выпаривания, за счет отвода теплоты от опресненной воды и концентрированного соленого раствора. Тонкопленочный полупроводниковый термоэлектрический тепловой насос цилиндрической формы горячим спаем доводит до кипения морскую воду, отбирая холодным спаем теплоту у конденсируемого пара, работая в режиме интенсификатора теплопередачи. Изобретение позволяет повысить энергетическую эффективность опреснителя. 1 ил.

Система очистки дымового газа включает систему циркуляции дымового газа, реактор, систему добавления абсорбента, имеющую по меньшей мере каталитический абсорбент, где каталитический абсорбент газифицируется для взаимодействия с дымовым газом в реакторе в способе взаимодействия в гомогенной фазе газ-газ. Следовательно, система очистки обладает высокой скоростью реакции между загрязняющими веществами дымового газа и каталитическим абсорбентом, который предпочтительно представляет собой аммиак, для эффективного удаления загрязняющих веществ для того, чтобы эффективно очистить дымовой газ. 2 н. и 13 з.п. ф-лы, 3 ил.

Группа изобретений относится к устройствам и способам подготовки природного газа к транспортировке путем низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности. Устройство для низкотемпературной сепарации газа содержит предварительный, промежуточный и низкотемпературный сепараторы и устройство редуцирования газа. В качестве промежуточного сепаратора установлен двухсекционный дефлегматор-стабилизатор, включающий верхнюю дефлегмационную и нижнюю стабилизационную секции, оборудованные блоками тепломассообменных элементов с внутренним пространством для прохода теплоносителя или хладагента и внешним массообменным пространством. При этом блок тепломассообменных элементов дефлегмационной секции состоит из двух частей, одна из которых оснащена линией подачи конденсата низкотемпературной сепарации и соединена с зоной питания линией подачи нагретого конденсата, к которой примыкает линия подачи охлажденного газа предварительной сепарации, а другая оснащена линией подачи газа низкотемпературной сепарации и линией вывода товарного газа. Кроме того, блок тепломассообменных элементов стабилизационной секции оснащен линиями ввода и вывода газа предварительной сепарации, низ стабилизационной секции оснащен линией вывода стабилизированного конденсата, а верх дефлегмационной секции оснащен линией вывода газа промежуточной сепарации. Способ низкотемпературной сепарации газа включает охлаждение газа предварительной сепарации, его промежуточную сепарацию с получением конденсата и газа, который охлаждают газом низкотемпературной сепарации, дросселируют и подвергают низкотемпературной сепарации на газ, выводимый с установки после нагрева, и конденсат. Для низкотемпературной сепарации используют предлагаемое устройство, при этом газ предварительной сепарации сначала охлаждают во внутреннем пространстве блока тепломассообменных элементов стабилизационной секции, затем смешивают с нагретым конденсатом низкотемпературной сепарации и сепарируют в средней части дефлегматора-стабилизатора на конденсат, который направляют в стабилизационную секцию, где стабилизируют за счет нагрева газом предварительной сепарации, и газ, который направляют в дефлегмационную секцию, где в условиях дефлегмации осуществляют его дальнейшее охлаждение газом и конденсатом низкотемпературной сепарации. Кроме того, с низа стабилизационной секции выводят стабилизированный конденсат, а с верха дефлегмационной секции выводят охлажденный газ промежуточной сепарации. Техническим результатом является повышение выхода товарного газа и снижение температуры точки росы товарного газа. 2 н. и 2 з.п. ф-лы, 1 пр., 1 ил.

Изобретение относится к устройствам для охлаждения и сепарации сжатых многокомпонентных газов, в частности попутного нефтяного газа, и может быть использовано в нефтегазовой промышленности. Предложен фракционирующий абсорбер, включающий абсорбционную секцию, оборудованную блоком тепломассообменных элементов, оснащенным патрубками ввода/вывода хладоагента, зону питания с патрубком ввода попутного нефтяного газа, верхнюю сепарационную зону с патрубками ввода стабильной нефти и вывода очищенного газа и нижнюю сепарационную зону с патрубком вывода нестабильной нефти. При работе абсорбера компрессат подают в зону питания, в верхнюю сепарационную зону подают стабильную нефть, которая при противоточном контактировании с горячим компрессатом в условиях градиента температур, создаваемого за счет охлаждения хладоагентом, абсорбирует из газа углеводороды С4+ и частично стабилизируется. Очищенный газ выводят из верхней сепарационной зоны, а нестабильную нефть выводят из нижней сепарационной зоны. Техническим результатом является упрощение фракционирующего абсорбера и снижение энергозатрат. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способам подготовки попутного нефтяного газа и может быть использовано в нефтегазовой промышленности. При подготовке попутный нефтяной газ, очищенный от капельной влаги и механических примесей, смешивают с газом регенерации, сжимают, охлаждают и отбензинивают путем абсорбции стабильной нефтью, полученную нестабильную нефть выводят, а газ в присутствии воды и водного конденсата подвергают мягкому каталитическому паровому риформингу. Полученный катализат осушают с получением товарного газа, водного конденсата и газа регенерации. При необходимости катализат дополнительно очищают, а полученный концентрат примесей, равно как и по меньшей мере часть газа регенерации, используют на собственные нужды. Техническим результатом является повышение выхода и качества товарного газа, уменьшение ассортимента продуктов и увеличение выхода нефти. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области атомной энергетики и предназначено для использования в паротурбинных установках АЭС с системой сжигания водорода с кислородом с содержанием недоокисленного водорода в основном потоке рабочего тела под давлением после системы сжигания перед поступлением в турбину. Магнитный сепаратор включает соленоид, рабочий канал для транспортировки очищаемого потока. Основной трубопровод круглого сечения имеет прямолинейное направление, во внутренней части которого в пристеночной области по всему периметру установлена селективная мембрана на основе сплава палладия с серебром на участке воздействия магнитного поля на очищаемый поток перегретого водяного пара под давлением от недоокисленного газообразного водорода после системы сжигания в цикле паротурбинной установки. С внешней стороны основного трубопровода предусмотрен сообщающийся с ним стравливающий трубопровод диффундирующего сквозь мембрану отсепарированного водорода с установленным на нем соответствующим выпускным клапаном, а также датчиком концентрации диффундирующего сквозь мембрану отсепарированного водорода. Технический результат - повышение эффективности сепарации. 1 ил.
Наверх