Станция радиомониторинга сигналов геостационарных спутниковых систем



Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем
Станция радиомониторинга сигналов геостационарных спутниковых систем

 


Владельцы патента RU 2573593:

Федеральное государственное унитарное предприятие "18 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации (RU)

Изобретение относится к радиотехнике и может быть использовано в системах контроля источников радиоизлучений, в частности при радиомониторинге сигналов геостационарных спутниковых систем связи (ССС). Технический результат состоит в повышении эффективности мониторинга сигналов с априорно неопределенными параметрами и приеме обоснованного решения при их обнаружении. Для этого в станцию радиомониторинга сигналов геостационарных ССС, содержащую два тракта приема сигналов, каждый из которых включает последовательную цепь из антенны с блоком наведения, поляризатор, малошумящий усилитель, преобразователь частоты, радиоприемное устройство и блок оптимальной фильтрации, а также содержит модуль демодуляции и последетекторной обработки сигналов, вход которого соединен с первым выходом блока оптимальной фильтрации первого тракта приема сигналов, введены опорный генератор и модуль определения координат излучающей контролируемые сигналы мобильной наземной станции, включающий устройство корреляционного сжатия спектра сигнала, цифровой сигнальный процессор, ПЭВМ с блоком программного обеспечения, блок стробирования и синтезатор частот настройки. 1 ил.

 

Изобретение относится к радиотехнике и может быть использовано в системах контроля источников радиоизлучений (ИРИ), в частности при радиомониторинге сигналов геостационарных спутниковых систем связи (ССС).

Радиомониторинг сигналов ССС предусматривает технический и семантический контроль сигналов [1, с. 374], необходимый для принятия решения о мерах реагирования при их обнаружении и оценке легитимности, в том числе путем измерения технических параметров, семантического анализа, а в необходимых случаях - использования активных помех и силового воздействия [2, с. 354, 416, 511].

Как правило, радиомониторингу подвергаются сигналы транспондеров геостационарных ССС с известными орбитальными координатами [3], непосредственное воздействие на которые носит проблематичный характер, а первичными ИРИ являются сигналы наземных станций ССС, при необходимости доступных для реагирования на их работу без создания помех другим ИРИ.

Известна станция радиомониторинга сигналов геостационарных ССС [4]. Станция содержит антенну с блоком наведения, малошумящий усилитель, преобразователь частоты, радиоприемное устройство, блок оптимальной фильтрации и модуль демодуляции и последетекторной обработки сигналов, обеспечивающий контроль сигналов с многостанционным доступом на основе частотного разделения (МДЧР), а также преобразователь сигнала с многостанционным доступом на основе кодового разделения (МДКР) в фазоманипулированный сигнал на основе МДЧР и фазовый демодулятор сигналов с многостанционным доступом на основе временного разделения (МДВР). В состав модуля демодуляции входит персональная электронно-вычислительная машина (ПЭВМ) со специальным блоком программного обеспечения.

Известная станция позволяет осуществлять радиомониторинг отдельных сигналов с различными видами модуляции несущей частоты.

Недостатком известной станции является то, что полученной информации недостаточно для принятия решения о воздействии на отдельный сигнал без оказания влияния на остальные сигналы спектра транспондера.

Кроме того, недостатками известной станции являются невозможность обработки сигналов с МДВР, когда сигналы управления и синхронизации передаются в другом стволе, невозможность информационного доступа к сигналам ОКН (один канал на несущую) при использовании вокодерных передач, а также отсутствие проверки качества канальной информации аппаратными средствами.

Наиболее близкой по технической сущности к заявляемому объекту является станция радиомониторинга сигналов геостационарных ССС, описанная в патенте RU №2224373 [5] (прототип).

Известная станция радиомониторинга содержит два тракта приема сигналов, каждый из которых включает последовательную цепь из антенны с блоком наведения, поляризатор, малошумящий усилитель, преобразователь частоты, радиоприемное устройство и блок оптимальной фильтрации, а также содержит модуль демодуляции и последетекторной обработки сигналов, вход которого соединен с первым выходом блока оптимальной фильтрации первого тракта приема сигналов. Станция позволяет обеспечить при выделении сигнала синхронизации из другого ствола информационный доступ к сигналам ОКН при использовании вокодерных передач и осуществлять проверку качества канальной информации аппаратными средствами.

Однако полученной технической информации с помощью известной станции недостаточно для принятия решения о воздействии на отдельный выделенный сигнал без оказания влияния на остальные сигналы спектра транспондера.

Это объясняется тем, что для воздействия на отдельный выделенный сигнал без оказания мешающего влияния на спектр контролируемого транспондера требуется подавление первичного СВЧ-сигнала наземной станции ССС. Для этого необходимо производить местоопределение требуемой мобильной наземной станции, в том числе «пиратской» [6], т.е. незаконно использующей ресурс ССС. Известный способ определения местоположения [7] наземной станции дает возможность определить ее координаты, но требует выделения пакетов сигнала и наличия полной информации о его структуре. Но обнаруженный в ходе мониторинга источник может использовать различные виды технического закрытия, не позволяющие провести комплексный анализ служебной технической информации, циркулирующей в спутниковой сети.

Нестабильность местоположения геостационарного ИСЗ на орбите может быть низкой, не позволяющей учитывать изменения временных задержек сигнала, а использование сигналов от нескольких однотипных транспондеров для анализа структуры потока не всегда возможно из-за низкого отношения сигнал/шум.

Целью изобретения является повышение эффективности радиомониторинга сигналов ССС с неизвестной структурой путем местоопределения мобильных наземных станций, использующих спектр контролируемого транспондера.

Поставленная цель достигается за счет того, что в известную станцию радиомониторинга сигналов геостационарных ССС, содержащую два тракта приема сигналов, каждый из которых включает последовательную цепь из антенны с блоком наведения, поляризатор, малошумящий усилитель, преобразователь частоты, радиоприемное устройство и блок оптимальной фильтрации, а также содержит модуль демодуляции и последетекторной обработки сигналов, вход которого соединен с первым выходом блока оптимальной фильтрации первого тракта приема сигналов, введены опорный генератор и модуль определения координат излучающей контролируемые сигналы мобильной наземной станции, включающий последовательно соединенные устройство корреляционного сжатия спектра сигнала, цифровой сигнальный процессор и ПЭВМ, на второй вход которой подается сигнал с выхода блока программного обеспечения, первый и второй выходы подключены соответственно к управляющим входам блоков наведения антенн трактов приема сигналов, третий выход через управляющую шину соединен с управляющими входами первого и второго блоков стробирования соответствующих трактов приема сигналов, а четвертый выход через синтезатор частот настройки соответственно подключен к управляющим входам радиоприемных устройств трактов приема сигналов, причем второй выход блока оптимальной фильтрации каждого тракта приема сигналов через блок стробирования соединен с соответствующим входом устройства корреляционного сжатия спектра сигнала, а выход опорного генератора подключен соответственно к входам опорного сигнала преобразователей частоты трактов приема сигналов и к входу опорного сигнала синтезатора частот настройки, при этом выход модуля демодуляции и последовательной обработки является первым информационным выходом, а первый выход блока оптимальной фильтрации второго тракта приема сигналов является вторым информационным выходом станции радиомониторинга сигналов ССС.

Введение новых существенных признаков позволяет обеспечить местоопределение мобильной наземной станции ССС без учета информации о структуре неизвестного сигнала и за счет этого существенно повысить эффективность радиомониторинга сигналов ССС.

Сочетание отличительных признаков и свойства предлагаемой станции радиомониторинга сигналов ССС из патентных источников не известны, поэтому она соответствует критериям новизны и изобретательского уровня.

На фиг. 1 приведена функциональная схема станции радиомониторинга сигналов геостационарных ССС.

Станция радиомониторинга сигналов геостационарных ССС, содержит два тракта 1.1, 1.2 приема сигналов, каждый из которых включает последовательную цепь из антенны 2 с блоком 3 наведения, поляризатор 4, малошумящий усилитель 5, преобразователь 6 частоты, радиоприемное устройство 7 и блок 8 оптимальной фильтрации, а также содержит модуль 9 демодуляции и последетекторной обработки сигналов, вход которого соединен с первым выходом блока 8 оптимальной фильтрации первого тракта 1.1 приема сигналов. В станцию введены опорный генератор 10 и модуль 11 определения координат излучающей контролируемые сигналы мобильной наземной станции, включающий последовательно соединенные устройство 12 корреляционного сжатия спектра сигнала, цифровой сигнальный процессор 13 и ПЭВМ 14, на второй вход которой подается сигнал с выхода блока 15 программного обеспечения, первый и второй выходы подключены соответственно к управляющим входам блоков 3 наведения антенн 2 трактов 1.1, 1.2 приема сигналов, третий выход через управляющую шину соединен с управляющими входами первого и второго блоков 16.1, 16.2 стробирования соответствующих трактов приема сигналов, а четвертый выход через синтезатор 17 частот настройки соответственно подключен к управляющим входам радиоприемных устройств 7 трактов 1.1, 1.2 приема сигналов. Второй выход блока 8 оптимальной фильтрации каждого тракта 1.1, 1.2 приема сигналов через соответствующий блок 16,1. 16.2 стробирования соединен с входом устройства 12 корреляционного сжатия спектра сигнала. Выход опорного генератора 10 подключен соответственно к входам опорного сигнала преобразователей 6 частоты трактов 1.1, 1.2 приема сигналов и к входу опорного сигнала синтезатора 17 частот настройки. Выход модуля 9 демодуляции и последовательной обработки является первым информационным выходом, а первый выход блока 8 оптимальной фильтрации второго тракта 1.2 приема сигналов является вторым информационным выходом станции радиомониторинга сигналов ССС.

Станция радиомониторинга сигналов геостационарных ССС функционирует следующим образом.

Станция в ходе радиомониторинга сигналов предусматривает два этапа работы.

На первом этапе с помощью станции контролируется спектр сигналов заданного транспондера. Каждый ствол спектра задается наземным ИРИ. Предполагается, что стационарные ИРИ априорно известны. При появлении в спектре нового неизвестного ранее сигнала, чаще всего задаваемого мобильной наземной станцией, осуществляется контроль его технических параметров и определение мер воздействия на его появление. На этом этапе радиомониторинга необходимо местоопределение ИРИ.

Последовательность и порядок функционирования станции на каждом этапе работы задается программой блока 15.

Для радиомониторинга спектра сигналов транспондера используется тракт 1.1 приема сигналов и модуля 9 демодуляции и последетекторной обработки сигналов. Наведение антенны 2 на заданный транспондер осуществляется с помощью блока 3 наведения, управляющий сигнал на который подается с первого выхода ПЭВМ 14.

Второй тракт 1.2 приема сигналов совместно с модулем 11 определения координат служит для местоопределения мобильных наземных станций, формирующих автономные стволы спектра транспондера. Управляющий сигнал на блок 3 наведения тракта 1.2 подается с выхода 2 ПЭВМ 14 и обеспечивает выделение доступных сигналов той же мобильной станции, коррелированные с сигналом заданного транспондера, но ретранслируемые иными транспондерами, в том числе, возможно, и иных геостационарных систем связи. Такие сигналы могут быть сильно ослаблены за счет пространственной ориентации передающих антенн, но, поскольку перед трактом 1.2 не ставится задача информационного контроля, компенсация потерь достигается за счет взаимокорреляционной обработки сигналов [8] трактов 1.1, 1.2 в модуле 11.

Техническое исполнение трактов 1.1, 1.2 приема сигналов аналогично прототипу.

Выходные сигналы трактов 1.1, 1.2 через блоки 16.1, 16.2 стробирования модуля 11 подаются на входы устройства 12 корреляционного сжатия спектра сигнала.

Управляющие сигналы на блоки 16.1, 16.2 стробирования подаются через шину управления с третьего входа ПЭВМ 14. При этом обеспечивается возможность плавного взаимного изменения временных интервалов между стробами. Максимальный уровень сигнала на выходе устройства 12 будет получен при полном совпадении границ стробов сигналов трактов 1.1, 1.2. Оценка выходного значения сигнала устройства 12 производится с помощью цифрового сигнального процессора 13, обеспечивающего также согласование с ПЭВМ 14, в которой в соответствии с программой блока 15 определяются задержки сигнала на трассе от мобильной наземной станции через соответствующий транспондер до станции радиомониторинга и все операции по дальнейшему местоопределению ИРИ.

Сущность математической обработки полученных при измерениях данных заключаются в следующем.

Система уравнений измерения задержки распространения сигнала τi в геоцентрической системе координат [9] может быть записана в виде:

где

x, y, z - координаты мобильной наземной станции ИРИ,

d i ( x , y , z ) = ( x x i ) 2 + ( y y i ) 2 + ( z z i ) 2 - расстояние от i-го транспондера до ИРИ, i=0,1,2 - номера транспондеров;

xi, yi, zi - координаты транспондера, i=0,1,2;

p i = ( x П x i ) 2 + ( y П y i ) 2 + ( z П z i ) 2 - расстояние от i-го транспондера до пункта приема сигналов, i=0,1,2;

xП, yП, zП - координаты пункта приема сигналов;

εi - погрешность измерения задержки;

c - скорость света.

Выражение fi(x, y, z)=const задает гиперболоид - геометрическое место точек, имеющих равную разность расстояний от i-го и 0-го транспондеров [10].

Условие нахождения мобильной станции на поверхности Земли:

x 2 + y 2 + z 2 = r e 2 , re=6371 км - радиус Земли.

x = r e cos ϕ cos λ ; y = r e cos ϕ sin λ ; z = r e sin λ ,

где φ, λ - широта и долгота точки (x,y,z).

Условие геостационарности транспондера:

zi=0, i=0,1,2.

x i 2 + y i 2 = r 0 2 , где r0=42188 км - радиус орбиты.

xi=r0cosλi; yi=r0sinλi, λi - долгота i-го транспондера, i=0,1,2.

При подстановке выражений для геостационарности транспондеров и условий нахождения ИРИ на поверхности Земли в уравнение измерения задержки распространения (1) будут получены упрощенные выражения:

Для решения данной нелинейной системы уравнений применяются итерации:

где на каждом шаге

являются решением линеаризированной системы уравнений измерения [11]:

τ1=f1(x,y)+gΔх+g1yΔy;

τ2=f2(x,y)+g2xΔx+g2yΔy,

где gix, giy - компоненты вектора градиента функции ft (χ, у).

В качестве начального приближения xн, yн итерационного процесса (3) взята точка пересечения прямых линий - асимптот гипербол, полученных при пересечении гиперболоидов с плоскостью z=0:

,

,

a ix=cosβieix-sinβieiy, i=1,2,

a iy=sinβieix+cosβieiy,

где ;

, ;

b i = ( x i x 0 ) 2 + ( y i y 0 ) 2 - расстояние между основным и вспомогательным транспондерами.

Таким образом, определяется местоположение мобильной станции: - широта, - долгота мобильной станции - ИРИ.

В качестве устройства 12 корреляционного сжатия спектра сигнала может быть использован, например, преобразователь из устройства по патенту RU №2309414 [12], включающий в своем составе первый перемножитель, полосовой фильтр, второй перемножитель и канальный фильтр, а также генератор опорного сигнала. Особенностью такого преобразователя является то, что любая частотная составляющая спектра сигнала, поступившего на первый перемножитель, и коррелированная с ней составляющая сигнала, поступившего на второй перемножитель, дают результирующий отклик на средней частоте канального фильтра. Отсюда выигрыш в чувствительности устройства будет определяться соотношением полос пропускания широкополосных фильтров контролируемого сигнала и полосы пропускания канального фильтра. Это дает возможность определения степени корреляции двух контролируемых сигналов.

Модуль 11 определения координат излучающей сигналы мобильной станции может быть выполнен, например, в виде АРМ - автоматизированного рабочего места [13, с. 1035] на базе ПЭВМ 14 с блоком 15 программного обеспечения, что позволяет существенно упростить его реализацию.

Таким образом, станция радиомониторинга сигналов геостационарных ССС позволяет существенно повысить эффективность мониторинга за счет обеспечения местоопределения мобильных наземных станций при любом виде модуляции несущей частоты, без предварительного структурного анализа сигналов, что дает возможность принимать обоснованные решения при их обнаружении.

Проведенное моделирование работы станции подтвердило правильность и достаточность принятых технических решений.

Источники информации

1. Рембовский A.M., Ашихман А.В., Козьмин В.А. Радиомониторинг - задачи, методы, средства. - Горячая линия - Телеком, 2010.

2. Куприянов А.И., Шустов Л.Н. Радиоэлектронная борьба. Основы теории. - М.: Вузовская книга, 2011.

3. «Телеспутник» №1 (51). Геостационарные спутники связи (обзор), Январь 2000 г.

4. Станция технического контроля сигналов спутниковых линий связи. Патент RU №2176130 С2, МПК Н04В 7/204, 17/00, дата публикации 20.11.2001.

5. Станция технического контроля сигналов спутниковых линий связи. Патент RU №2224373 С2, МПК Н04В 7/204, 17/00, дата публикации 20.02.2004.

6. Панько С.П., Сухотин В.В. Несанкционированный доступ в системы спутниковых коммуникаций. «Успехи современной радиоэлектроники», 2002, №4.

7. Способ определения местоположения VSAT-станции в спутниковой сети. Патент RU №2450284, МПК G01S 5/02, дата публикации 10.05.2012.

8. Жовинский В.Н., Арховский В.Ф. Корреляционные устройства. - М.: Энергия, 1974.

9. Инженерный справочник по космической технике. Под редакцией А.В. Солодова. - М.: Воениздат, 1977.

10. Г. Корн и Т. Корн. Справочник по математике для научных работников и инженеров. М.: Наука, 1977 г.

11. Torriery D.J. Statistical Theory of Passive Location System - IEEE Trans, 1984, v. AES-20, №2, p. 183-192.

12. Устройство для распознавания видов манипуляции цифровых сигналов. Патент RU №2309414, МПК G01R 23/16, зарегистрировано 27.10.2007.

13. Джон Ф. Уэйкерли. Проектирование цифровых устройств. Том 2. Постмаркет, Москва, 2002.

Станция радиомониторинга сигналов геостационарных спутниковых систем связи, содержащая два тракта приема сигналов, каждый из которых включает последовательную цепь из антенны с блоком наведения, поляризатор, малошумящий усилитель, преобразователь частоты, радиоприемное устройство и блок оптимальной фильтрации, а также содержит модуль демодуляции и последетекторной обработки сигналов, вход которого соединен с первым выходом блока оптимальной фильтрации первого тракта приема сигналов, отличающаяся тем, что в нее введены опорный генератор и модуль определения координат излучающей контролируемые сигналы мобильной наземной станции, включающий последовательно соединенные устройство корреляционного сжатия спектра сигнала, цифровой сигнальный процессор и персональную электронно-вычислительную машину, на второй вход которой подается сигнал с выхода блока программного обеспечения, первый и второй выходы подключены соответственно к управляющим входам блоков наведения антенн трактов приема сигналов, третий выход через управляющую шину соединен с управляющими входами первого и второго блоков стробирования соответствующих трактов приема сигналов, а четвертый выход через синтезатор частот настройки соответственно подключен к управляющим входам радиоприемных устройств трактов приема сигналов, причем второй выход блока оптимальной фильтрации каждого тракта приема сигналов через блок стробирования соединен с соответствующим входом устройства корреляционного сжатия спектра сигнала, а выход опорного генератора подключен соответственно к входам опорного сигнала преобразователей частоты трактов приема сигналов и к входу опорного сигнала синтезатора частот настройки, при этом выход модуля демодуляции и последовательной обработки является первым информационным выходом, а первый выход блока оптимальной фильтрации второго тракта приема сигналов является вторым информационным выходом станции радиомониторинга сигналов спутниковых систем связи.



 

Похожие патенты:

Изобретение относится к системе связи и может быть использовано для обеспечения связи на судах различного назначения. Технический результат заключается в обеспечении передачи разнородной информации к различным судовым системам, а также между абонентскими устройствами.

Изобретение относится к области радиосвязи. Техническим результатом является обеспечение возможностей: проводить дуплексные и симплексные телефонные сеансы связи между двумя УРС (узлами радиосвязи) или между УРС и другим радиоабонентом с исключением нежелательных задержек передаваемого речевого сигнала, преобразованного в цифровую форму, при прохождении его через два пункта управления УРС; проводить в управляемом УРС оперативное прогнозирование характеристик ионосферного распространения радиоволн путем проведения вертикального зондирования или возвратно-наклонного зондирования ионосферы с использованием импульсных сигналов, что позволяет повысить надежность сеансов связи, проводимых УРС, за счет выбора ОРЧ (оптимальной рабочей частоты) по результатам зондирования ионосферы, проводимого перед началом каждого сеанса связи без введения в состав УРС дополнительного оборудования (специального ионозонда); а также повышение функциональных возможностей пункта управления и повышение надежности передачи сигналов управления между взаимодействующими составными частями УРС путем резервирования каналов управления, что, в свою очередь, обеспечивает повышение эффективности управления и надежности функционирования УРС в целом.

Изобретение относится к технике беспроводной связи и может быть использовано в системах многопользовательской связи по технологии MIMO (множественный вход-множественный выход).

Изобретение относится к системам радиосвязи и радиолокации и может использоваться для определения углового положения подвижного объекта (ПО) с помощью системы спутниковой связи.

Изобретение относится к радиотехнике и может быть использовано в скоростных системах радиосвязи, использующих импульсные сверхширокополосные сигналы. Технический результат - повышение помехоустойчивости передачи информации в условиях интенсивных помех.

Изобретение относится к области радиосвязи и может использоваться при построении высокоскоростных дуплексных радиолиний, работающих на одной частоте при передаче дискретных или аналоговых сигналов.

Изобретение относится к области связи. Раскрыты способ и система осуществления энергосбережения базовой станции.

Изобретение относится к технике связи и может использоваться в системах циркулярной связи. Технический результат состоит в расширении возможности применения ретрансляторов для организации взаимодействия нескольких радиосетей, работающих в различных диапазонах частот.

Изобретение относится к области передачи цифровой информации и предназначено для применения в декодерах систем связи, работающих в условиях канала с многолучевым распространением.

Изобретение относится к области приема широкополосных сигналов при воздействии сосредоточенных помех в полосе приема. Техническим результатом является минимизация искажения корреляционной функции принимаемого сигнала после прохождения сигнала через адаптивный фильтр при сохранении принципа согласованной фильтрации.

Изобретение относится к области радиотехники и может быть использовано для передачи и приема информации. Технический результат состоит в обеспечении незаметной для вероятного противника радиосвязи. Для передачи радиосигнала используют вихревое электрическое поле, циркулирующее относительно магнитопровода. Для приема радиосигнала используют явление магнитоэлектрической индукции, возникающее при пронизывании магнитопровода приемника вихревым электрическим полем и воздействии на магнитопровод порожденного им переменного магнитного поля, создающего индукционный переменный магнитный поток, индуцирующий в катушке магнитопровода э.д.с., которую подают на блок усиления, преобразования и отделения от помех радиосигналов. Устройство радиосвязи для передачи сигналов через вихревое электрическое поле содержит передатчик и приемник. Передатчик имеет замкнутый по периметру наружный ферромагнитный сердечник, на котором расположена катушка, навитая по спирали. В пространстве, охваченном катушкой, находится замкнутый по периметру внутренний ферромагнитный сердечник, на котором расположена катушка, навитая по спирали. Катушки электрически последовательно соединены между собой в направлении, противоположном навивке, приемник имеет замкнутый по периметру ферромагнитный сердечник с расположенной на нем катушкой, навитой по спирали и электрически соединенной с блоком усиления сигнала, выделения его из помех и преобразования. 2 н.п. ф-лы, 3 ил.

Изобретение относится к командным радиолиниям управления командно-измерительной системы (КИС). Технический результат заключается в увеличении объема передаваемой информации командной радиолинией КИС при совмещении в радиоканале «борт-земля» (обратныйный канал) двух независимых потоков передачи разнотиповой информации. Передачу разнотиповой информации осуществляют двумя независимыми потоками, которые образуют с помощью использования метода квадратурной фазовой модуляции (КФМ). Передающее устройство бортовой аппаратуры содержит N-разрядный генератор псевдослучайной последовательности, тактирующий генератор бортового приемника, формирователь кадровой развертки, первый сумматор по модулю два, формирователь несущей частоты, манипулятор фазы π/2, антенну, при этом дополнительно введены манипулятор фазы π, M-разрядный генератор псевдослучайной последовательности, второй и третий сумматоры по модулю два. 2 н.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к системам беспроводной связи. Технический результат - увеличение объема представляемой информации, относящейся к обратной связи. Различные ресурсы последовательности могут быть выделены мобильному устройству, причем мобильное устройство может исключительно использовать ресурс последовательности относительно базовой станции в течение сеанса связи. Однако если другому мобильному устройству, использующему другую базовую станцию, присваивается соответствующий ресурс последовательности, то могут возникнуть помехи, если мобильные устройства относительно близки друг к другу. Поэтому может иметь место рандомизация ресурсов последовательности, кроме того, результат циклического сдвига может использоваться в выделении ресурса последовательности для попытки минимизирования помех.4 н. и 7 з.п. ф-лы, 15 ил.
Наверх