Амплитудный волоконно-оптический сенсор давления


 


Владельцы патента RU 2573708:

Общество с ограниченной ответственностью "РАМИТ" (ООО "РАМИТ") (RU)

Изобретение относится в области сенсорной электроники и может быть использовано для измерения параметров технологических сред, в медицине. Амплитудный волоконно-оптический сенсор давления содержит кремниевый мембранный упругий элемент с жестким центром, оптическое волокно, закрепленное на кремниевом мембранном упругом элементе с возможностью перемещения вместе с жестким центром кремниевого мембранного упругого элемента пропорционально измеряемому давлению, и фотоприемник, причем в него введен дополнительный фотоприемник, при этом оба фотоприемника включены по дифференциальной схеме и размещены на отдельной кремниевой пластине, закрепленной параллельно указанному кремниевому мембранному упругому элементу. Технический результат - создание сенсора, имеющего монотонную преобразовательную характеристику с уменьшенной нелинейностью преобразовательной характеристики. 1 ил.

 

Предлагаемое изобретение относится к области сенсорной электроники и может быть использовано для измерения параметров технологических сред, в медицине.

Известен волоконно-оптический сенсор давления (журнал ″Sensors and Actuators″, А, №39 (1993 г.), стр.49-54.), содержащий в качестве чувствительного элемента вертикальную кремниевую мембрану, изготовленную методами микромеханики, оптическое волокно в качестве проводящей свет среды, электронную схему обработки сигнала. Минимальный детектируемый сигнал для мембранного чувствительного элемента толщиной 4 мкм составляет в этом приборе 1 мкВ, что соответствует давлению 5 Па.

Однако для достижения такого результата необходимо дорогое одномодовое волокно, а также источник когерентного излучения (лазер).

Известен волоконно-оптический сенсор давления (журнал ″Sensors and Actuators″, A, №66 (1998 г.), стр.150-154). Этот сенсор имеет оптическое волокно в качестве проводящей свет среды, в качестве чувствительного элемента мембрану, изготовленную из золота и покрытую хромом, закрепленную на кремниевом основании, что приводит к дополнительным нелинейным искажениям вследствие разного температурного коэффициента линейного расширения материала чувствительного элемента и основания, на котором это чувствительный элемент закреплен; исключается возможность изготовления чувствительного элемента и основания в едином технологическом цикле.

Сенсор имеет ограниченные функциональные возможности, так как может измерять только большие давления (более 0.5 МПа).

При необходимости измерить меньшие перепады давления (то есть повысить чувствительность преобразователя при сохранении хороших метрологических характеристик) необходимо изменять форму чувствительного элемента.

Все вышеописанное приводит к увеличению погрешности измерений, что отрицательно сказывается на точности измерений, ухудшаются функциональные возможности сенсора.

Известен амплитудный волоконно-оптический сенсор давления (журнал ″Sensors and Actuators″, А, №32 (1992 г.), стр.628-631), являющийся прототипом предлагаемого устройства, содержащий мембранный упругий элемент, изготовленный методами микромеханики (жидкостным анизотропным травлением), оптическое волокно, фотоприемник. Мембранный упругий элемент изготовлен из монокристаллического кремния и содержит толстую рамку, тонкую часть и жесткий центр. Оптическое волокно закреплено на жестком центре таким образом, что его ось находится в плоскости, параллельной плоскости мембранного упругого элемента. При этом оптическое волокно имеет возможность перемещаться только вместе с жестким центром мембранного упругого элемента.

В конструкции сенсора используется один фотоприемник, который изготовлен на толстой рамке в плоскости, параллельной плоскости мембранного упругого элемента, что приводит к тому, что оптическое излучение падает на фотоприемник под неоптимальным углом (угол между направлением распространения оптического излучения и плоскостью, в которой расположен фотоприемник, составляет единицы градусов) и преобразовательная характеристика сенсора имеет немонотонный характер (возрастающий и ниспадающий участки и ярковыраженный максимум). Следствием этого является большая нелинейность преобразовательной характеристики сенсора, что приводит к тому, что измерение давления при помощи такого сенсора может носить только качественный характер (можно измерить только наличие или отсутствие давление, но не его количественную величину).

Задачей (техническим результатом) предлагаемого изобретения является создание амплитудного волоконно-оптического сенсора давления, имеющего монотонную преобразовательную характеристику с уменьшенной нелинейностью преобразовательной характеристики.

Это достигается тем, что в амплитудный волоконно-оптический сенсор давления, содержащий кремниевый мембранный упругий элемент с жестким центром, оптическое волокно, служащее для передачи излучения от внешнего источника и закрепленное на мембранном упругом элементе так, что оптическое волокно имеет возможность перемещаться только вместе с жестким центром упругого элемента пропорционально измеряемому давлению, и один фотоприемник, введен дополнительный фотоприемник, и оба фотоприемника, включенные по дифференциальной схеме, размещены на отдельной кремниевой пластине, закрепленной параллельно мембранному упругому элементу.

На чертеже приведен предлагаемый амплитудный кремниевый сенсор давления. Сенсор содержит: кремниевый мембранный упругий элемент (1), с жестким центром (2) оптическое волокно (3), кремниевая пластина (4) с фотоприемниками (5) и (6). Кремниевая пластина (4) закреплена параллельно мембранному упругому элементу (1) в посадочной канавке (7). Боковой скос (8), плоскость которого составляет с плоскостью кремниевого мембранного упругого элемента (1) угол 54°, с алюминиевым покрытием (9) играет роль наклонного зеркала. Такой боковой скос возникает благодаря особенностям процесса жидкостного анизотропного травления. Цифрами (10) и (11) обозначены падающее на зеркало излучение и отраженное от зеркала излучение соответственно.

Сенсор работает следующим образом.

Измеряемое давление с некоторой интенсивностью воздействует на кремниевый мембранный упругий элемент (1), смещая его вместе с оптическим волокном (3) от положения равновесия. Вследствие этого изменяется пространственное положение падающего на зеркало излучения (10) и, далее, отраженного от зеркала излучения (11). В результате величина электрического сигнала на выходе фотоприемников (5) и (6), включенных по дифференциальной схеме, изменяется пропорционально измеряемому давлению, то есть происходит амплитудная модуляция падающего излучения. При этом оптическое излучение падает на фотоприемники в результате отражения от бокового скоса мембранного упругого элемента, играющего роль наклонного зеркала и возникшего в результате жидкостного анизотропного травления.

Вследствие того, что оптическое излучение падает на фотоприемники (5) и (6) под углами, близкими к 90° к плоскости, на которой располагаются фотоприемники, а сами фотоприемники включены по дифференциальной схеме, преобразовательная характеристика предлагаемого амплитудного волоконно-оптического сенсора давления имеет монотонный характер, а ее нелинейность меньше, чем в конструкции прототипа.

Амплитудный волоконно-оптический сенсор давления, содержащий кремниевый мембранный упругий элемент с жестким центром, оптическое волокно, закрепленное на кремниевом мембранном упругом элементе с возможностью перемещения вместе с жестким центром кремниевого мембранного упругого элемента пропорционально измеряемому давлению, и фотоприемник, отличающийся тем, что в него введен дополнительный фотоприемник, при этом оба фотоприемника включены по дифференциальной схеме и размещены на отдельной кремниевой пластине, закрепленной параллельно указанному кремниевому мембранному упругому элементу.



 

Похожие патенты:

Изобретение относится к измерительной технике. Микромеханический волоконно-оптический датчик давления выполнен на основе оптического волокна, содержащего участки ввода и вывода излучения, а также участок, размещенный в пропускном канале корпуса.

Изобретение относится к области измерения статических и динамических давлений на основе использования оптических интерферометрических схем и оптических волокон.

Изобретение относится к оптоволоконным технологиям, в частности к оптическим датчикам давления и температуры, в конструкции которых использованы оптические волокна.

Изобретение относится к контрольно-измерительной технике и может быть использовано в различных отраслях народного хозяйства и, в первую очередь, для измерения разности давления в условиях воздействия внешних дестабилизирующих факторов на изделиях ракетно-космической техники, АЭС, нефтегазовой отрасли и др.

Изобретение относится к измерительной технике, а именно к универсальным оптическим первичным преобразователям амплитудного типа, и может быть использовано в измерительных системах для контроля давления (в т.ч.

Изобретение относится к измерительной технике, а именно к волоконно-оптическим датчикам давления, и может быть использовано в измерительных системах для контроля давления.

Изобретение относится к измерительной технике, а именно к датчикам разности давления, и может быть использовано в различных измерительных системах для контроля давления.

Изобретение относятся к измерительной технике и предназначено для измерения давления (как статического, так и динамического) газов и жидкостей. Датчик давления состоит из записанной на оптическом световоде по меньшей мере одной волоконно-оптической решетки Брэгга (ВБР), мембраны, корпуса, при этом мембрана жестко прикреплена к световоду и имеет возможность движения по осевой линии относительно корпуса, оптический световод жестко прикреплен к торцу корпуса по его осевой линии.

Изобретение относится к измерительной технике, в частности к волоконно-оптическим устройствам измерения давления. Устройство содержит широкополосные полупроводниковые светодиоды, Y-образные волоконно-оптические разветвители и резонаторы Фабри-Перо.

Группа изобретений относятся к исследованиям скважин и может быть использована для мониторинга внутрискважинных параметров. Техническим результатом является оптимизация, автоматизация, повышение эффективности процесса добычи нефти, в т.ч.

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидкостей и газов. Фотоэлектрический сенсор давления содержит упругий элемент в виде основного профилированного кремниевого кристалла с опорной рамкой, измерительной квадратной диафрагмой с жестким центром и V-канавкой, проходящей по оси симметрии опорной рамки и жесткого центра через одну из сторон рамки, в которой расположено и клеевым способом закреплено оптоволокно, один принимающий излучение конец которого расположен за пределами упругого элемента, и интегральный фотодиод, при этом в фотоэлектрический сенсор давления согласно изобретению введены дополнительный кремниевый кристалл с двумя отверстиями, дополнительный интегральный фотодиод, две вспомогательные V-канавки, цилиндрические направляющие и U-канавка, над которой расположен другой свободный излучающий конец оптоволокна и которая проходит по оси симметрии опорной рамки, пересекая другую противоположную сторону рамки, и ширина которой больше размера фотодиода, оба фотодиода расположены на дополнительном кристалле один над другим, разделены узким промежутком и включены дифференциально, на диоды направлен излучающий конец оптоволокна, а сам дополнительный кристалл прикреплен к внешнему краю опорной рамки упругого элемента перпендикулярно плоскости измерительной квадратной диафрагмы, а точная оптическая центровка конструкции сенсора достигается с помощью отверстий на дополнительном кристалле, в которые входят цилиндрические направляющие, закрепленные во вспомогательных V-канавках, расположенных на опорной рамке упругого элемента по обе стороны от оптоволокна. Изобретение позволяет уменьшить нелинейность преобразовательной характеристики и начальный выходной сигнал. 3 ил.

Изобретение относится к области автоматики и может быть использовано для преобразования газоструйного сигнала в электрический. Устройство преобразования газоструйного сигнала в оптический содержит источник и приемник светового потока, проходящего через щелевой канал, в котором располагается вдоль этого канала гибкая лента, поглощающая или отражающая световой поток, закрепленная одним концом в этом канале. Причем в этом щелевом канале относительно закрепленной ленты расположены подводящие каналы, по которым попеременно подаются газоструйные сигналы, под воздействием которых гибкая лента перемещается в щелевом канале, воздействуя на световой поток, излучаемый источником и воспринимаемый приемником светового потока. Техническим результатом является увеличение быстродействия преобразования. 3 ил.
Наверх