Способ лазерной резки стекла

Изобретение относится к способу лазерной резки хрупких прозрачных неметаллических материалов, например стекла, и может быть использовано в стекольной, авиационной, автомобильной и других отраслях промышленности. Сущность изобретения состоит в том, что разделяемый материал подвергается воздействию двух пучков слабопоглощающегося излучения лазера (прямого и отраженного от находящегося под разрезаемым материалом зеркала), которые направляются на обрабатываемый объект под углом 0,5-20°. В результате этого сечение реза методом лазерного управляемого термораскалывания (ЛУТ) представляет собой ломаную линию, вписанную в полуокружность. Таким образом, способ позволяет осуществлять лазерную резку стекла с получением выпуклой или вогнутой формы сечения торца, причем на выпуклом торце отсутствуют острые кромки. 1 з.п. ф-лы, 6 ил., 5 пр.

 

Изобретение относится к способу лазерной резки хрупких прозрачных неметаллических материалов, например стекла, сфокусированным лазерным излучением и может быть использовано в стекольной, авиационной, автомобильной и других отраслях промышленности.

Известен способ лазерной резки стекла лучом неодимового (YAG) лазера [1], излучение которого слабо поглощается в силикатном стекле. При этом под разрезаемым материалом расположен медный отражатель. В этом случае материал разделяют с высокой точностью без дополнительной ломки и с хорошим качеством края, плоскость которого перпендикулярна плоскости стекла.

Однако резку материала можно осуществлять только в том случае, если перемещается разрезаемый материал, что накладывает существенные ограничения на размеры разрезаемого материала и вследствие этого - на ограничение скорости резки.

Недостатком этого способа является также то, что кромка стекла после резки требует дополнительной операции притупления. Кроме того, обработка кромки для изделий трехмерной конфигурации (3D) этим способом чрезвычайно сложна.

Известен способ лазерного притупления кромок стекла методом оплавления их лазерным лучом, направляемым на кромку, при относительном перемещении стекла и лазерного пучка [2].

Недостатком данного способа является неравномерное охлаждение края стекла, приводящее к возникновению термических напряжений, которые необходимо снимать методом температурного отжига.

Кроме того, на плоскости стекла вблизи торца образуются «наплывы», которые увеличивают толщину торца, что в ряде случаев недопустимо.

Существует также способ снятия кромок стекла методом лазерного управляемого термораскалывания (ЛУТ) [3]. При этом на кромку направляют движущийся относительно стекла сфокусированный пучок СО2 лазера. В данном случае не требуется температурный отжиг, так как после ЛУТ нет существенных напряжений в стекле.

Однако достаточно жесткие требования к точной фокусировке лазерного излучения на кромку стекла создают большие технические трудности.

При этом способе часто происходит отламывание стружки и прекращение процесса притупления кромок, и, кроме того, технология лазерной обработки кромок для изделий трехмерной конфигурации (3D) этим способом сопряжена с большими техническими трудностями.

Наиболее близким к заявленному является способ резки прозрачных хрупких неметаллических материалов, например стекла [4]. Резку производят сфокусированным лазерным лучом при многократном его прохождении через разделяемый материал за счет использования двух расположенных с противоположных сторон сферических зеркал, которые соединяют друг с другом через диэлектрический материал в единую систему посредством использования магнита или электромагнита. Расстояние между фокусами зеркал изменяют в зависимости от толщины разделяемого материала путем перемещения нижнего зеркала.

Это изобретение позволяет во всем диапазоне толщин разрезаемого материала, например стекла толщиной 0,1-30 мм, получать высокие точности реза до 50 мкм, высокое качество (до 12 класса чистоты) разделяемых поверхностей на всех участках разрезаемого материала, как в массиве, так и на его краях.

Однако торцы при этом способе резки имеют плоскую поверхность и недостаточно притупленные грани, требующие дополнительной обработки кромок.

Этот способ пригоден только для резки плоских стекол и требует сложного электрооборудования.

Кроме этого конструкция устройства имеет сложную конфигурацию, необходимую для сохранения точной юстировки зеркал при перемещении режущей головки.

Целью предлагаемого изобретения является:

- получение в процессе лазерной резки стекла с торцами, имеющими в сечении полукруглую и/или ступенчатую форму и не имеющими острых граней, не требующего фацетирования;

- упрощение конструкции узла резки.

Предлагаемый способ заключается в следующем (фиг. 1).

Стекло (1) разделяют методом ЛУТ с использованием слабо поглощающегося в материале лазерного излучения (2). На подобранном (регулируемом) расстоянии под стеклом располагают плоское зеркало (3), которое отражает частично прошедший через стекло луч обратно в зону резки под некоторым (регулируемым) углом по отношению к направлению падающего излучения.

При этом в зоне резки в результате наложения двух пучков (прямого и отраженного), а также отвода тепла из зоны повышенной температуры за счет теплопроводности стекла, естественного теплообмена с окружающим воздухом и принудительного охлаждения хладагентом (6) возникает неравномерный по объему разогрев материала.

Размеры и конфигурацию зоны нагрева формируют путем регулирования угла падения прямого луча на разделяемое стекло, а также угла падения на стекло луча, отраженного от зеркала, которое может быть выполнено из любого хорошо отражающего излучение лазера металла.

Необходимый профиль торца разделяемого стекла обычно представляет собой ломаную линию (7).

Тип профиля торца изделия (выпуклый или вогнутый) определяется асимметрией расположения зон нагрева и зон принудительного охлаждения относительно линии реза.

При этом выпуклый торец пластины не имеет острых кромок, требующих дополнительной операции фацетирования.

Управление процессом резки (фиг. 2) при перемещении луча лазера (А) вдоль линии резки (С) осуществляют при помощи изменения угла между падающим лучом лазера (А) и нормалью (N) к точке падения луча на поверхность стекла (G), а также за счет наклона плоскости падения луча F на определенный угол по оси (С), как показано на фиг. 2 (плоскость F'), одновременно управляя направлением распространения отраженного луча (В) путем поворота зеркала (М) в двух плоскостях.

Пример 1

Плоское силикатное стекло толщиной 6 мм подвергают воздействию излучения иттербиевого непрерывного волоконного лазера с длиной волны 1,07 мкм и гауссовым распределением интенсивности в пучке. Лазерный луч направляют на стекло под углом 5° к нормали поверхности стекла в плоскости падения (продольный угол) и, кроме того, был поворачивают на 2° относительно нормали вокруг оси, совпадающей по направлению с линией реза (поперечный угол). Ниже стекла, на расстоянии 3 мм, помещают латунную пластину, играющую роль зеркала. Диаметр круглого пятна, падающего на стекло луча, составляет 4 мм, скорость движения луча - 10 мм/сек, мощность излучения - 130 Вт. Хладагент (воздушный поток) подают на расстоянии 5 мм вслед за лазерным пятном.

В процессе лазерной резки стекло разделяют на две части, одна из которых имеет выпуклую форму торца без острых кромок (фиг. 3, 4), а другая соответственно вогнутую (фиг. 5, 6). Число плоскостей на выпуклом торце в различных условиях эксперимента получается равным от 1 до 5. Процесс резки происходит без потери материала.

Прочность на поперечный изгиб образцов стекол, вырезанных таким способом (σ=9,8 кгс/мм2), оказывается почти в два раза выше, чем у образцов, вырезанных стеклорезом (σ=5,3 кгс/мм2).

Пример 2. Процесс проводят по примеру 1, за исключением того, что падающий на стекло лазерный луч направляют под углом к нормали к поверхности стекла в плоскости падения луча (продольный угол) под углом 15°, а поперечный угол составляет 2 градуса. В этом случае кромка со стороны падающего луча получается небольшой (0,5 мм), а с тыльной стороны кромка образуется только слегка притупленной, как это обычно бывает при лазерной резке стекла методом лазерного управляемого термораскалывания.

Пример 3. Процесс проводят по примеру 1, за исключением того, что луч падает на стекло и отражается зеркалом перпендикулярно. При этом в центре выпуклого торца образуется небольшая ложбинка, а фаски с обеих сторон достигают приемлемой величины ~1,5 мм.

Пример 4. Процесс проводят по примеру 1. Продольный угол составляет 5 градусов, поперечный - 22 градуса. При этом сверху образца образуется слабая фаска, а снизу она отсутствует, что является отрицательным результатом.

Пример 5. Процесс проводился по примеру 1.

Продольный угол - 22 градуса, поперечный - 2 градуса. В результате сверху образца образуется небольшая фаска, а снизу фаска отсутствует, что также является отрицательным результатом.

Таким образом, предложенное техническое решение обеспечивает лазерное разделение стекла с получением торцов выпуклой формы без острых кромок в едином цикле лазерной резки одним лучом.

Источники информации

1. Патент 10-244386, B23K 26/00, 1998 г., Япония.

2. Патент СВ 2173186, МКИ С03В 21/02, приор. Япония, 03.04.1985.

3. Международный патент WO 03/010103 А1 (06.02.2003). V.S. Kondratenko. «Cattingmethodforbrittlenon-metallicmaterials (two variants)».

4. Евразийский патент №012311, 28.08.2009 г., МПК С03В 33/09. Солинов В.Ф., Чадин B.C., Алиев Т.А., Солинов Е.Ф., Алиев А.К. «Способ лазерной резки хрупких прозрачных неметаллических материалов» (прототип).

1. Способ лазерной резки стекла путем его нагрева сфокусированным лучом лазера, плоскость падения которого совпадает с линией резки, отражения части прошедшего через стекло излучения зеркалом, расположенным под разрезаемым стеклом, и направления его обратно в зону действия падающего луча, отличающийся тем, что используют плоское зеркало, угол между падающим на стекло лучом и нормалью в точке падения устанавливают в диапазоне 0,5-20°, а плоскость падения луча наклоняют относительно нормали к поверхности стекла на угол от 0,5 до 20°, причем отраженный луч направляют на нижнюю поверхность стекла под углом от 0 до 20° к нормали в точке падения отраженного луча.

2. Способ по п. 1, отличающийся тем, что зеркало располагают на расстоянии 0,5-200 мм от нижней поверхности стекла.



 

Похожие патенты:

Изобретение относится к способам обработки стеклоизделий, в частности к способам притупления острых кромок стеклоизделий. Способ включает обработку кромки стекла сфокусированным лазерным лучом при относительном перемещении стеклоизделия и/или луча.

Группа изобретений касается структурного блока, имеющего в качестве линии инициирования разлома лазерный трек, который состоит из углублений, полученных от лазерного луча, для подготовки последующего разделения этого структурного блока на отдельные конструктивные элементы.

Изобретение относится к способам резки хрупких неметаллических материалов, в частности кварцевого стекла и других хрупких термостойких материалов. Техническим результатом настоящего изобретения является расширение возможностей способа резки хрупких неметаллических материалов за счет осуществления резки кварцевого стекла и других хрупких термостойких материалов методом ЛУТ.

Изобретение относится к способу лазерного термораскалывания хрупких неметаллических материалов, преимущественно стекла. .

Изобретение относится к способам лазерного термораскалывания кристаллического кварца. .

Изобретение относится к способу индуцированного лазером термического разделения хрупкого материала. .

Изобретение относится к способам обработки материала, в частности к способам притупления острых кромок изделий из стекла и других хрупких неметаллических материалов.

Изобретение относится к способам резки хрупких неметаллических материалов, в частности приборных пластин из таких материалов, как стекло, керамика, кварц, сапфир, кремний, арсенид галлия, карбид кремния и другие материалы.

Изобретение относится к способам лазерной резки хрупких неметаллических материалов, преимущественно стекла и керамики, под действием термоупругих напряжений по замкнутым криволинейным траекториям.

Изобретение относится к способам резки неметаллических материалов, преимущественно стекла, и применимо в автомобилестроении для изготовления стекол и зеркал, в электронной промышленности, а также в других областях техники.

Изобретение относится к способам резки хрупких неметаллических материалов, в частности сапфировых пластин импульсным лазерным излучением с длиной волны 1064 нм. Изобретение может быть использовано в различных областях техники и технологий для безотходной и высокоточной резки (термораскалывания) сапфировых пластин. Изобретение направлено на решение задачи повышения эффективности и качества резки. Способ лазерного управляемого термораскалывания сапфировых пластин включает направление лазерного луча от импульсного твердотельного Nd:YAG лазера на поверхность сапфировой пластины. Предварительно наносят энергопоглощающие слои графита на обе стороны сапфировой пластины по направлению реза, осуществляют локальный нагрев линии реза лазерным излучением с длительностью импульса 50-100 нс и средней мощностью 80-100 Вт, образование в материале сквозной разделяющей трещины. 3 ил.

Изобретение предназначено для разделения стекла и образования на нём скосов. При разделении стекла с помощью лазерного излучения на заготовки, изготовленные из стекла, сфокусированный лазерный луч (1) направляют на стекло, подлежащее разделению, и при образовании по меньшей мере двух заготовок стекло разделяется, при этом в области разреза расположены боковые поверхности (15). После того как стекло разделено, лазерный луч (1) направляют по меньшей мере на один край (16) боковой поверхности (15) образованной заготовки (5), чтобы отделить стекло от края (16), образуя при этом скос (17), который находится на боковой поверхности (15). Для образования скоса (17) по меньшей мере один лазерный источник (6) и отражатель (19), предназначенный для него, перемещают вдоль боковой поверхности (15) так, чтобы лазерный луч (1), который с плоскостью заготовки (5) образует острый угол, был эффективен для образования скоса (17). В процессе резки обеспечена текучая среда (20), покрывающая область края (16), на котором должен быть произведён скос (17). Показатель преломления среды (20) близок к показателю преломления стеклянного материала изделия. Лазерный источник (6) в области вхождения лазерного луча (1) в изделие и отражатель (19) в области выхода луча из изделия размещены в пределах среды (20). Технический результат изобретения - повышение эффективности лазерной резки стекла и отсутствие необходимости шлифовки скосов стекла. 3 н. и 14 з.п. ф-лы, 11 ил.

Изобретение относится к способам резки (термораскалывания) хрупких материалов, таких как пластины из любого типа стекла, всех типов керамики, а также полупроводниковых материалов, и может использоваться в автомобилестроении для изготовления стекол и зеркал, в электронной промышленности, а также в других областях техники. Способ включает нагрев поверхности материала по линии реза с помощью лазерного пучка, создание несквозного надреза материала по линии реза, дополнительное воздействие на поверхность материала в зоне нанесения надреза упругими волнами, охлаждение зоны нагрева поверхности материала с помощью хладагента, при этом упругими волнами воздействуют на поверхность материала в зоне действия хладагента. Дополнительное воздействие на поверхность материала осуществляют не менее чем двумя источниками упругих волн, которые располагают с противоположных боковых сторон материала поперек линии реза, при этом получают упругие волны, амплитуду и частоту которых выбирают из условия формирования в материале зоны стоячей упругой волны с периодическим изменением механических напряжений, совмещенной с зоной нагрева, для углубления надреза на заданную глубину или сквозной резки. Зону нагрева формируют импульсным лазерным пучком, а зоны стоячей упругой волны совмещают со сформированной зоной нагрева, причем максимальную интенсивность излучения лазера совмещают с временем максимального разряжения механических напряжений. Дополнительно можно сформировать несколько зон нагрева импульсным лазерным пучком для создания дополнительных линий реза. Технический результат заключается в повышении скорости резки материалов и увеличении толщины разрезаемого материала. 2 з.п. ф-лы, 1 ил.
Наверх