Модуль питающей форсунки

Модуль питающей форсунки для прямоточного введения газа и жидкости в объем реактора, где модуль питающей форсунки включает в себя: (а) внутреннюю трубку, ограничивающую газопровод, и внешнюю трубку, расположенную вокруг внутренней трубки, где внешняя поверхность внутренней трубки и внутренняя поверхность внешней трубки ограничивают кольцевой трубопровод для жидкости, и где каждая из трубок имеет входной патрубок и противоположный выходной патрубок; (b) первую форсунку, присоединенную к выходному патрубку внутренней трубки; (с) вторую форсунку, присоединенную к выходному патрубку внешней трубки и расположенную ниже первой форсунки по ходу потока, причем внутренняя трубка содержит продувочные отверстия.5 з.п. ф-лы, 2 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к питающей форсунке для прямоточного введения газа и жидкости в объем реактора, конкретно для введения водяного пара и углеводородного сырья в реактор каталитического крекинга.

Уровень техники

На многих установках нефтеперерабатывающих и химических заводов используются форсунки для распределения жидкого и/или газообразного сырья в установке. В некоторых процессах способность форсунки распределять сырье в установке является важной для производительности установки. Примером такого процесса является флюидизированный каталитический крекинг, в котором находящиеся в сырой нефти углеводородные молекулы с длинной цепью с помощью катализатора расщепляются с образованием меньших и более ценных промышленных продуктов, таких как углеводороды, диапазона бензина и дизельного топлива. Обычно вакуумные дистилляты вводятся через питающие форсунки в реактор-стояк с восходящим слоем, в котором сырье контактирует с регенерированными частицами твердого катализатора. Селективность катализатора способствует протеканию желательных реакций крекинга.

Обычно указанная питающая форсунка содержит внутреннюю трубку, ограничивающую паропровод, и внешнюю трубку, расположенную вокруг внутренней трубки, где внешняя поверхность внутренней трубки и внутренняя поверхность внешней трубки ограничивают кольцевой трубопровод для углеводородов, и где каждая из трубок имеет входной патрубок и противоположный выходной патрубок, причем каждый выходной патрубок имеет форсунку, присоединенную к наружной стороне. Хотя процесс каталитического крекинга обычно имеет длительный пробег, является дешевым и надежным в эксплуатации процессом, могут возникать аварийные ситуации, когда требуется отключение установки, такие как потеря мощности нефтеперерабатывающего завода, повреждение насоса, авария охлаждающей воды, повреждение главной воздуходувки и повреждение золотникового клапана. Если наступает такая аварийная ситуация, подача углеводородного сырья будет прекращена. Однако было обнаружено, что при прекращении подачи сырья катализатор засасывается в углеводородный трубопровод питающей форсунки. Это нежелательно, так как катализатор имеет тенденцию блокировать трубопровод из-за потери подвижности частиц катализатора с образованием суспензии. Полагают, что катализатор засасывается в форсунку, поскольку водяной пар проходит через форсунку подачи газа без поступления углеводородного сырья по кольцевому трубопроводу. По-видимому, при этом возникают области пониженного давления внутри питающей форсунки, что, в свою очередь, вызывает засасывание катализатора внутрь углеводородного трубопровода.

Была найдена возможность модификации питающей форсунки таким образом, чтобы частицы катализатора уже не поступали в питающую форсунку, когда прекращается подача углеводородов, при продолжающемся поступлении водяного пара. Более того, указанная модификация является простой и не мешает нормальной эксплуатации.

В документе US-A-2002/0185552 описано многоступенчатое впрыскивание распыленного флюида в поступающий сырьевой материал и прохождение смеси сырья/распыленного флюида через форсунку. Зоны смешивания могут полностью или, по меньшей мере, частично перекрываться или одна зона может полностью направляться вниз по потоку из другой зоны таким образом, что отсутствует перекрывание между зонами смешивания. Описано, что множественные зоны смешивания создают равномерный поток флюида, поступающий в форсунку. В нисходящем конце форсунки не предусмотрены газопроводы, содержащие проходные отверстия.

Раскрытие изобретения

Настоящее изобретение относится к модулю питающей форсунки для прямоточного введения газа и жидкости в объем реактора, причем модуль питающей форсунки содержит:

(a) внутреннюю трубку, ограничивающую газопровод, и внешнюю трубку, вокруг внутренней трубки, где внешняя поверхность внутренней трубки и внутренняя поверхность внешней трубки ограничивают кольцевой трубопровод для жидкости, и где каждая из трубок имеет входной патрубок и противоположный выходной патрубок;

(b) первую форсунку, присоединенную к выходному патрубку внутренней трубки;

(c) вторую форсунку, присоединенную к выходному патрубку внешней трубки и расположенную ниже первой форсунки по ходу потока, причем внутренняя трубка содержит продувочные отверстия.

Продувочные отверстия представляют собой проходные отверстия, которые обеспечивают прохождение флюида между внутренней и внешней трубками. Обычно продувочные отверстия будут представлять собой диафрагмы во внутренней трубке.

Краткое описание чертежей

Теперь изобретение будет описано более подробно с помощью примера, со ссылкой на прилагаемые чертежи, в которых:

на фигуре 1 показано продольное сечение модуля питающей форсунки согласно изобретению;

на фигуре 2 показано продольное сечение модуля питающей форсунки согласно изобретению, который дополнительно содержит разделяющее устройство для разграничения внутренней и внешней трубок.

Осуществление изобретения

На фигурах 1 и 2 показан модуль питающей форсунки для введения газа и жидкости в сосуд (не показан), например, в реактор каталитического крекинга. Предпочтительно, газ представляет собой диспергирующий газ, такой как водяной пар или инертный газ, например азот. Наиболее предпочтительно диспергирующим газом является водяной пар.

Предпочтительно, жидкость представляет собой углеводородную фракцию, более конкретно тяжелый нефтяной углеводород. Модуль питающей форсунки включает в себя корпус форсунки, содержащий практически цилиндрическую внутреннюю трубку 102, ограничивающую газопровод 103, и внешнюю трубку 101, расположенную вокруг внутренней трубки 102, причем внешняя поверхность внутренней трубки 102 и внутренняя поверхность внешней трубки 101 ограничивают кольцевой трубопровод 104 для жидкости. Внутренняя трубка 102 имеет входной патрубок 105 и напротив выходной патрубок 106, а внешняя трубка 101 имеет входной патрубок 107 и противоположный выходной патрубок 108. Предпочтительно центральная продольная ось внутренней трубки 102 совпадает с центральной продольной осью внешней трубки 101.

Кроме того, модуль питающей форсунки содержит форсунку 4, прочно присоединенную к выходному патрубку 106 внутренней трубки 102, и вторую форсунку 2, прочно присоединенную к выходному патрубку 108 внешней трубки 101 и расположенную вокруг первой форсунки 4.

Предпочтительно форсунка 4 имеет практически цилиндрический входной патрубок и противоположный куполообразный выходной патрубок. Форсунка 4 имеет, по меньшей мере, одно проходное отверстие, обеспечивающее проход газа из газопровода в трубопровод для жидкости и/или во вторую форсунку 2.

Вторая форсунка 2 имеет практически цилиндрический входной патрубок, присоединенный к выходному патрубку внешней трубки 101, причем в противоположном куполообразном выходном патрубке предусмотрено, по меньшей мере, одно проходное отверстие 3. Предпочтительно, проходное отверстие 3 представляет собой продолговатую щель с практически параллельными стенками. Куполообразный выходной патрубок второй форсунки 2 продолжается за пределами куполообразного выходного патрубка первой форсунки 4.

Предпочтительно, в каждой первой форсунке 4 и второй форсунке 2 имеется множество проходных отверстий. В первой форсунке 4, также называемой форсункой водяного пара, предпочтительно предусмотрен один или несколько рядов проходных отверстий, более конкретно от 1 до 8 рядов проходных отверстий, еще более конкретно от 1 до 6 рядов. Указанные проходные отверстия также называются рассеивающими отверстиями. Куполообразный выходной патрубок первой форсунки 4 предпочтительно имеет форму полусферы или форму полуэллипсоида.

Во внутренней трубке имеются продувочные отверстия 5. Указанные продувочные отверстия 5 обеспечивают проход диспергирующего газа через трубопровод 104 для жидкости в случае прекращения подачи углеводородов, например, в аварийной ситуации.

С целью обеспечения максимального использования добавленного диспергирующего газа, предпочтительно, проходные отверстия 5 располагаются выше половины внутренней трубки 102, расположенной внутри внешней трубки.

Площадь поверхности внутренней трубки 102, занимаемая продувочными отверстиями, может быть относительно небольшой, составляя от 0,001 до 1% от площади поверхности внутренней трубки, поскольку указанная площадь поверхности находится внутри внешней трубки, более конкретно от 0,005 до 0,9%, еще более конкретно от 0,01 до 0,8%. Более конкретно, площадь поверхности внутренней трубки, занимаемая продувочными отверстиями, составляет самое большее 0,7%, более конкретно, самое большее 0,6%, еще более конкретно, самое большее 0,5%. Площадь поверхности проходного отверстия или отверстия означает площадь, через которую может проходить флюид, то есть, открытое сечение.

Отношение площади поверхности всех продувочных отверстий к площади поверхности всех проходных отверстий первой форсунки в одном модуле питающей форсунки, предпочтительно, находится в диапазоне от 0,02 до 1, более конкретно от 0,05 до 0,8, более конкретно от 0,1 до 0,7, более конкретно до 0,6 наиболее конкретно вплоть до 0,5.

Более того, площадь поверхности каждого отдельного продувочного отверстия во внутренней трубке, предпочтительно, меньше или равна площади поверхности наибольшего прохода в первой форсунке.

Предпочтительно, чтобы внутренняя трубка дополнительно содержала внутреннюю форсунку ниже продувочных отверстий, но выше первой форсунки, по ходу потока. Эта внутренняя форсунка обеспечивает немного более высокое давление флюида во внутренней трубке вблизи продувочных отверстий, чем вблизи первой форсунки, что предотвращает поступление флюида во внутреннюю трубку из кольцевого пространства через продувочные отверстия.

На фигуре 2 приведен питающий модуль, который дополнительно содержит разделяющее устройство 110 для разграничения внутренней и внешней трубок. Предпочтительно разделяющие устройства 110 представляют собой трубы. Такие трубы обладают тем преимуществом, что они снижают или предотвращают вибрацию внутренней трубки 102. В связи с этим, указанные трубки также называются звукопоглощающими трубами. Предпочтительно, звукопоглощающие трубы удерживаются на месте с помощью кольцеобразной пластины, перпендикулярно оси звукопоглощающих труб, причем в кольцеобразной пластине имеются отверстия для размещения указанных труб. Предпочтительно, звукопоглощающие трубы имеют диаметр от 1 до 5 см, более предпочтительно от 2 до 4 см. Предпочтительно, количество звукопоглощающих труб составляет от 3 до 15, более конкретно от 3 до 12. Предпочтительно, указанные трубы распределены равномерно в пространстве вокруг внутренней трубки. Длина труб обычно составляет самое большее 0,5 м.

При наличии разделяющего устройства 110 предпочтительно, чтобы продувочные отверстия находились выше разделяющего устройства 110, по потоку.

Обычно входной патрубок внутренней трубки расположен на стороне внешней трубки. Такой боковой вход диспергирующего газопровода в модуль питающей форсунки обеспечивает улучшенный доступ к внутренней части питающей форсунки.

Во время обычной эксплуатации модуля питающей форсунки согласно настоящему изобретению диспергирующий газ проходит через практически цилиндрическую внутреннюю трубку 102, в то время как углеводородное сырье поступает во входной патрубок 107 внешней трубки 101 и проходит через кольцеобразный трубопровод 104 для жидкости.

Диспергирующий газ, более конкретно водяной пар, выходящий из первой форсунки 4, смешивается с углеводородом, давая тонкие струи, рассеивающие углеводородную смесь. Вторая форсунка 2 пропускает смесь диспергирующего газа и углеводорода из модуля питающей форсунки в резервуар, предпочтительно в реактор флюид-каталитического крекинга. Вторая форсунка 2 приспособлена для практически равномерного распыления смеси диспергирующего газа и тяжелого нефтяного углеводорода.

Модуль форсунки настоящего изобретения является особенно подходящим для подачи углеводородного сырья в реактор флюид-каталитического крекинга с восходящим слоем катализатора, в объеме которого углеводородное сырье испаряется и расщепляется на более мелкие молекулы за счет контакта и перемешивания с горячим катализатором из регенератора, причем предпочтительно, горячий катализатор имеет температуру, по меньшей мере 600°C. Пары продуктов крекинга в последующем отделяются от отработанного катализатора с помощью циклонов. Обычно углеводородное сырье подогревают, предпочтительно до температуры от 150 до 260°C, до поступления в питающую форсунку и реактор-стояк. В указанном применении обычно форсунки используют для подачи сырья со стороны стояка, причем они представляют собой так называемые питающие форсунки с боковым входом. Предпочтительно, они расположены на обечайке стояка.

С целью обеспечения равномерного распределения нефти в реакторе-стояке предпочтительно, чтобы множество питающих форсунок с боковым входом были расположены на обечайке стояка. Дополнительное преимущество размещения форсунок вокруг обечайки стояка состоит в том, что это приводит к смещению тенденции катализатора мигрировать к стенкам стояка.

1. Модуль питающей форсунки для прямоточного введения газа и жидкости в объем реактора, где модуль питающей форсунки содержит
(a) внутреннюю трубку, ограничивающую газопровод, и внешнюю трубку, вокруг внутренней трубки, где внешняя поверхность внутренней трубки и внутренняя поверхность внешней трубки ограничивают кольцевой трубопровод для жидкости, и где каждая из трубок имеет входной патрубок и противоположный выходной патрубок;
(b) первую форсунку, присоединенную к выходному патрубку внутренней трубки;
(c) вторую форсунку, присоединенную к выходному патрубку внешней трубки и расположенную ниже первой форсунки по ходу потока, причем внутренняя трубка содержит продувочные отверстия;
при этом продувочные отверстия находятся в верхней по потоку половине внутренней трубки, расположенной внутри внешней трубки.

2. Модуль питающей форсунки по п. 1, где модуль питающей форсунки дополнительно содержит
(d) разделяющее устройство для разграничения внутренней и внешней трубок.

3. Модуль питающей форсунки по п. 2, в которой продувочные отверстия расположены выше разделяющего устройства по ходу потока.

4. Модуль питающей форсунки по любому из пп. 1-3, в котором продувочные отверстия занимают от 0,001 до 1% от площади поверхности внутренней трубки, расположенной внутри внешней трубки.

5. Модуль питающей форсунки по любому из пп. 1-3, в котором внутренняя трубка дополнительно содержит внутреннюю форсунку ниже продувочных отверстий по ходу потока.

6. Модуль питающей форсунки по п. 4, в котором внутренняя трубка дополнительно содержит внутреннюю форсунку ниже продувочных отверстий по ходу потока.



 

Похожие патенты:

Изобретение относится к способам и устройствам для регенерации твердых частиц катализатора. Способы включают ввод отработанных частиц катализатора в зону выжигания, образованную в регенераторе с непрерывным потоком катализатора.

Изобретения относятся к химической промышленности. Устройство включает загрузочный лоток (1) частиц катализатора и систему вибрирующих N желобов (2), связанных связующими элементами (3) с нижней частью лотка и с трубами загрузки (4).

Настоящее изобретение касается устройства для дозирования текучих сред или газов и его применения. Устройство для дозирования текучих сред или газов в трубопроводах, реакторах в виде труб или реакторах с внутренним контуром циркуляции содержит одно или несколько дозирующих колец, оснащенных точками дозирования, причем одно или несколько дозирующих колец расположены снаружи, по образующей которых проходит распределительная камера, и внутренняя стенка дозирующего кольца пронизана каналами впрыскивания.

Изобретение относится к реактору непрерывного действия с мешалкой, а также к способу осуществления полимеризации ненасыщенных мономеров с использованием указанного реактора.

Изобретение относится к способам транспортировки твердых частиц из зоны одного давления в зону с другим давлением. .

Изобретение относится к оборудованию для обезвоживания сыпучих материалов и может быть использовано в угольной, горнорудной и другой промышленности, где вода используется для гидротранспорта и обогащения сыпучих материалов.

Изобретение относится к распределительному устройству, а также к колонне с упорядоченной насадкой и с распределительным устройством для тонкого распределения жидкостей.

Предметом настоящего изобретения является способ получения ацетилена и синтез-газа путем частичного окисления углеводородов кислородом, причем исходные газы, в состав которых входит поток, содержащий углеводород, и поток, содержащий кислород, сначала предварительно нагревают по отдельности, затем смешивают в смесительной зоне, а после протекания через блок горелок инициируют их реакцию в камере сгорания, после чего быстро охлаждают; способ отличается тем, что на внутреннюю стенку камеры сгорания подают поток промывного газа, вводят этот поток промывного газа с помощью нескольких подающих трубопроводов, а внутри камеры сгорания выполняют эти подающие трубопроводы так, что ориентация вектора главного направления выпущенного потока промывного газа не более чем на 10° отклоняется от ориентации вектора главного направления подаваемого через блок горелок потока газа, и подающие трубопроводы характеризуются шириной щели выходного отверстия в 1/1000-3/100, предпочтительно 1/500-1/100 от диаметра камеры сгорания, причем если рассматривать применительно к главному направлению подаваемого через блок горелок потока газа, то осуществляется многоэтапная подача потока промывного газа в расположенных друг за другом точках, причем свободное сечение камеры сгорания, которое доступно для протекания выходящему из блока горелок потоку газа, на уровне подающих трубопроводов для потока промывного газа приблизительно постоянно. 2 н. и 9 з.п. ф-лы, 1 табл., 4 ил.

Изобретение относится к устройству и способу его использования для распыления потока жидкости вместе с потоком газа и может быть использовано в каталитическом крекинге с псевдоожиженным слоем. Наконечник сопла для распыления жидкого сырья, проходящего в зону, которая содержит флюидизированные частицы, содержит первый и второй удлиненные пазы. Второй удлиненный паз пересекается с первым удлиненным пазом под углом в диапазоне ориентировочно от 45° до 135° между двумя главными осями первого удлиненного паза и второго удлиненного паза и у сегмента. Главная ось первого удлиненного паза делится на приблизительно равные длины. При помощи первого удлиненного паза и второго удлиненного паза образуется единственное отверстие. Первый паз содержит выступающие элементы вдоль каждой из двух противоположных сторон, параллельных главной оси первого паза, с каждой стороны первого паза, разделенного вторым удлиненным пазом. Способ распыления жидкого сырья предусматривает пропускание жидкого сырья в сопло, содержащее наконечник сопла. Сопло имеет флюидную связь с внутренней частью зоны. Техническим результатом изобретения является обеспечение возможности снижения эрозии, вызванной циркулирующими флюидизированными частицами, и более продолжительного рабочего срока службы наконечника сопла. 2 н. и 17 з.п. ф-лы,4 ил., 1 пр.

Изобретение касается улучшенного способа изготовления ацетилена и синтез-газа. Предложен способ получения ацетилена и синтез-газа путем частичного окисления углеводородов кислородом, причем исходные газы, в состав которых входит поток, содержащий углеводород, и поток, содержащий кислород, сначала предварительно нагревают по отдельности, затем смешивают в смесительной зоне, а после протекания через блок горелок вызывают их реакцию в камере сгорания, после чего быстро охлаждают. При этом на обращенную к камере сгорания поверхность блока горелок подают поток промывного газа, вводят этот поток промывного газа с помощью нескольких отверстий через блок горелок, причем усредненное отношение эффективной площади поверхности блока горелок к числу этих отверстий для потока промывного газа в блоке горелок находится в пределах от 5 до 100 см2, причем усредненное отношение эффективной поверхности блока горелок к числу этих отверстий для потока промывного газа в блоке горелок рассчитывается из отношения совокупной эффективной поверхности блока горелок к общему числу отверстий для промывного газа и причем проводимый через отверстия поток промывного газа распределяют с помощью распределительных устройств таким образом, что 70-100 об.% подаваемого потока промывного газа направляются параллельно обращенной к камере сгорания поверхности блока горелок. Изобретение позволяет получить синтез-газ и ацетилен улучшенным способом частичного окисления углеводородов, который препятствует отложениям на поверхности блока горелок без использования механической очистки. 2 н. и 5 з.п. ф-лы, 4 ил., 3 пр.

Группа изобретений относится к области медицины и может быть использована для введения фармацевтических препаратов в эритроциты. Устройство (1) для введения соединения в эритроциты содержит систему каналов (2), блок введения (3) содержащей эритроциты пробы, разделительный блок (4) для разделения компонентов пробы, объединительный блок (5) с емкостью (6) для получения обработанных эритроцитов, питающий блок (8) для подачи растворов, концентрирующий блок (11) для концентрирования содержимого емкости (6) и сборный блок (12) для сбора обработанных эритроцитов. Устройство также содержит блок управления (15), насосное средство (49), регулировочные средства (29, 30, 33) для регулирования потоков и датчик воздуха (26) для определения присутствия воздуха в каналах между блоками (3) и (4). Группа изобретений относится также к применению указанного устройства для введения соединений в эритроциты, а также к устройству многократного использования для обработки эритроцитов и одноразовому набору для использования в указанном устройстве. Группа изобретений позволяет повысить эффективность и точность введения соединения в эритроциты по существу полностью автоматизированным способом. 4 н. и 15 з.п. ф-лы, 11 ил., 1 табл., 5 пр.

Изобретение относится к усовершенствованному способу оксосинтеза с рециркуляцией преобразованных отходов масел. Способ включает гидроформилирование олефина с синтез-газом в реакторе с полученим продукта оксосинтеза и побочного продукта - отходов масел, характеризующегося более низкой или более высокой температурой кипения, чем продукт оксосинтеза, отделение продукта оксосинтеза от отходов масел, преобразование отделенных отходов масел в синтез-газ, включающее испарение отходов масел газообразным углеводородом в резервуаре испарителя с получением смешанного парообразногопотока газообразного углеводорода и испаренных отходов масел и прямое окисление смешанного парообразного потока с получение синтез-газа, и рециркуляцию синтез-газа. Изобретение обеспечивает эффективный способ оксосинтеза с рециркуляцией преобразованных отходов масел и снижение сажеобразования. 3 н. и 38 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к устройствам (датчикам) микромеханики, которые могут использоваться в любых отраслях промышленности, например в авиации и космонавтике. Установка для заполнения изделий микромеханики технической жидкостью, содержащая вакуумный насос, герметичную вакуумную камеру для дегазации технической жидкости, включающую в себя прозрачный колпак, основание с заполняемыми изделиями, размещенными на нем по окружности, бачок с заливаемой жидкостью, установленный на неподвижной стойке и соединенный с устройством дозирования жидкости, имеющий сливное отверстие, причем изделия снабжены двумя трубками: одна - для заполнения изделий, другая - для контроля заполнения, при этом основание состоит из двух частей: нижней - неподвижной и верхней - с заполняемыми изделиями, имеющей возможность вращения с помощью двигателя, кроме того, устройство дозирования снабжено клапаном, который имеет возможность управления от оптоэлектронного датчика, закрепленного на нижней части основания и имеющего электрическую связь с микроконтроллером. Технический результат - повышение качества заливки изделий. 4 з.п. ф-лы, 4 ил.

Изобретение относится к способам получения алкенилгалогенсиланов. Предложен способ получения алкенилгалогенсиланов путем превращения алкенилгалогенида, выбранного из группы, включающей винилгалогенид, винилиденгалогенид и аллилгалогенид, с галогенсиланом, выбранным из группы, включающей моногалогенсилан, дигалогенсилан и тригалогенсилан, в газовой фазе в реакторе, представляющем собой реакционную трубу (1) с входным отверстием (2) на одном конце и выходным отверстием (3) на другом конце, а также снабженном концентрическим распылителем (4), который имеет центральный ввод (5) для реагента (7) и ввод (6) для других реагентов (8), окружающий центральный ввод (5), причем концентрический распылитель (4) установлен у входного отверстия (2) и выходит внутрь реакционной трубы (1). Для осуществления способа алкенилгалогенид впрыскивают в реакционную трубу (1) через центральный ввод (5), а галогенсилан через ввод (6), окружающий центральный ввод (5), причем соответствующие потоки перемещаются через реакционную трубу (1) в направлении к выходному отверстию (3). Горячую реакционную смесь на конце реакционной трубы (1) со стороны продукта резко охлаждают жидким сырым продуктом. Предложен также реактор для осуществления заявленного способа. Технический результат - предложенный способ позволяет получать алкенилгалогенсиланы с высоким выходом и высокой селективностью. 2 н. и 12 з.п. ф-лы, 1 ил.

Изобретение относится к способу и устройству для гидрообработки риформата. Способ включает приведение риформата в контакт с обладающим каталитическим гидрирующим действием катализатором в условиях жидкофазной гидрообработки в реакторе гидрирования, при этом часть водородсодержащего газа для гидрообработки получена из растворенного водорода, содержащегося в риформате; где гидрообработку проводят в присутствии дополнительного водородсодержащего газа, который инжектируют в риформат перед проведением контактирования и/или во время контактирования через поры с помощью смесителя, который содержит, по меньшей мере, один канал для жидкости, предназначенный для риформата, и, по меньшей мере, один канал для газа, предназначенный для дополнительного водородсодержащего газа, при этом канал для жидкости соединен с каналом для газа посредством компонента, по меньшей мере, часть которого представляет собой пористую область; при этом риформат получают из нижней части газожидкостного сепаратора путем инжекции смеси каталитического риформинга в газожидкостной сепаратор и в продукте, полученном путем проведения контактирования, удаляют летучие компоненты, причем риформат поступает в реактор гидрирования после теплообмена с нефтяным сырьем с удаленными летучими компонентами, нефтяное сырье с удаленными летучими компонентами инжектируют в колонну для удаления тяжелых компонентов и для извлечения ароматических углеводородов из верхней части колонны. Устройство включает реактор каталитического риформинга (5) для приведения углеводородного масла в контакт с катализатором, обладающим каталитическим риформирующим действием в условиях каталитического риформинга, с получением смеси каталитического риформинга; газожидкостной сепаратор (6) для удаления летучих компонентов (7) из смеси каталитичесого риформинга путем газожидкостного разделения с получением риформата из нижней части газожидкостного сепаратора (6); смеситель (8) для инжекции дополнительного водородсодержащего газа в риформат с получением водородсодержащего риформата; реактор гидрирования (9) для приведения водородсодержащего риформата в контакт с катализатором, обладающим каталитическим гидрирующим действием в условиях жидкофазной гидрообработки, колонну (10) для удаления летучих компонентов; колонну (13) удаления тяжелых компонентов; теплообменник (11) для осуществления теплообмена с риформатом. В соответствии со способом по настоящему изобретению риформат, отделенный в сепараторе продуктов риформинга, может напрямую подвергаться жидкофазной гидрообработке; таким образом, не только может быть полностью использован водород, растворенный в риформате, но также могут быть удалены олефины, содержащиеся в риформате, при этом исключается необходимость в рециркуляции водорода и в оборудовании для циркуляции. Риформат, полученный способом по настоящему изобретению, имеет пониженное бромное число ниже 50 мгBr2/100 г и потерю ароматических углеводородов менее 0,5 масс. %. 2 н. и 23 з.п. ф-лы, 8 ил., 2 табл., 6 пр.

Изобретение относится к устройству и способу загрузки каталитических труб, используемых в трубчатых реакторах-теплообменниках, которые могут быть использованы при конверсии с водяным паром природного газа или различных углеводородных фракций с целью получения синтез-газа. Для плотной и равномерной загрузки катализатора в реактор-теплообменник конверсии с водяным паром, состоящий из множества систем из двух коаксиальных труб с кольцевым пространством между ними, заключенных в каландр, кольцевое пространство разделено на два или три одинаковых горизонтальных сектора. Каждый сектор простирается на всю длину труб посредством «центратора», расположенного в верхней части кольцевого пространства, и каждый сектор снабжен собственной системой съемных дефлекторов. Дефлекторы соединены между собой цепью, которая наматывается вокруг барабана, расположенного вне заполняемой трубы. Частицы катализатора подают в кольцевое пространство посредством воронки. 2 н. и 4 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к загрузке каталитических труб, используемых в трубчатых реакторах, проводящих сильноэндотермические или сильноэкзотермические реакции, и применимо к реактору конверсии с водяным паром природного газа или различных углеводородных фракций с получением синтез-газа. Для плотного заполнения катализатора в реакторе обменного типа в кольцевую зону (4) между внутренней трубой (5) и внешней трубой (6) вводят гибкую съемную трубу (7), подающую основную долю необходимого расхода газа, с расположением её нижнего конца на расстоянии от поверхности образующего слоя. Твердое вещество вводят в кольцевую зону при помощи воронки. По мере заполнения кольцевой зоны гибкую трубу поднимают при помощи внешнего наматывающего устройства. Изобретение обеспечивает плотную и равномерную загрузку катализатора в кольцевое пространство байонетной трубы, причем указанное устройство является устройством пневматического типа. 2 н. и 3 з.п. ф-лы, 2 ил., 1 табл., 2 пр.
Наверх