Способ подготовки топливного газа



Способ подготовки топливного газа
Способ подготовки топливного газа

 


Владельцы патента RU 2576769:

Курочкин Андрей Владиславович (RU)

Изобретение относится к способу подготовки топливного газа и может быть использовано в нефтегазовой промышленности и энергетике. Способ включает сжатие газа, его охлаждение и сепарацию. Газ предварительно подвергают контактированию с легким абсорбентом, полученный тяжелый абсорбент разделяют на циркулирующий и балансовый, последний смешивают с полученным газом отдувки, сжимают, охлаждают и сепарируют с получением конденсата и газа, который подвергают абсорбции охлажденным циркулирующим тяжелым абсорбентом в условиях отрицательного градиента температур и сепарируют с получением легкого абсорбента и топливного газа. Техническим результатом является снижение потерь углеводородов С5+ с топливным газом и повышение его качества. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к способам подготовки сжатого топливного газа, в частности для газотурбинных энергетических установок, и может быть использовано в нефтегазовой промышленности и энергетике.

Известен способ подготовки газа с помощью блочно-комплектной турбокомпрессорной установки для транспортировки углеводородного газа [RU 2464448, опубл. 20.10.2012 г., МПК F04D 25/00], включающий многоступенчатое сжатие, охлаждение и сепарацию газа с получением сжатого газа и конденсата на каждой ступени компримирования.

Недостатками известного способа являются большие потери тяжелых компонентов газа (углеводородов C5+) со сжатым газом.

Наиболее близок по технической сущности к предлагаемому изобретению способ компримирования газа [RU 252.4790, опубл. 10.08.2014 г., МПК F25J 3/00], включающий сжатие газа, предварительное охлаждение компрессата нестабильным конденсатом в условиях стабилизации последнего с получением газа стабилизации, его смешение с охлажденным компрессатом и охлаждение смеси в условиях дефлегмации и ее сепарацию с получением сжатого газа и конденсата, направляемого на стабилизацию.

Недостатками данного способа являются большие потери углеводородов C5+ со сжатым (топливным) газом и низкое его качество из-за высокой объемной теплотворной способности вследствие высокого содержания тяжелых углеводородов.

Задача изобретения - снижение потерь углеводородов C5+ с топливным газом и повышение его качества.

При осуществлении предложенного способа в качестве технического результата достигается снижение объемной теплотворной способности и повышение качества топливного газа, а также снижение потерь углеводородов C5+ путем их абсорбции в условиях отрицательного градиента температур тяжелым абсорбентом, получаемым отдувкой летучих компонентов из легкого абсорбента.

Указанный технический результат достигается тем, что в известном способе, включающем сжатие газа, его охлаждение и сепарацию, особенностью является то, что газ предварительно подвергают контактированию с легким абсорбентом, полученный тяжелый абсорбент разделяют на циркулирующий и балансовый, последний смешивают с полученным газом отдувки, сжимают, охлаждают и сепарируют с получением конденсата и газа, который подвергают абсорбции охлажденным циркулирующим тяжелым абсорбентом в условиях отрицательного градиента температур и сепарируют с получением легкого абсорбента и топливного газа.

При необходимости часть балансового тяжелого абсорбента может быть выведена в качестве товарного продукта, например углеводородного растворителя. Часть конденсата может быть рециркулирована на стадию компримирования, что позволяет снизить энергозатраты на сжатие газа благодаря поглощению жидкостью теплоты сжатия.

Предварительное контактирование газа с легким абсорбентом осуществляют, например, в насадочном абсорбере с противоточной подачей газа. Абсорбцию в условиях отрицательного градиента температур проводят, например, во фракционирующем абсорбере, в трубное пространство тепломассообменных элементов которого противотоком подают хладоагент.

Предварительное контактирование газа с легким абсорбентом позволяет получить тяжелый абсорбент за счет отдувки газом легких компонентов. Смешение газа отдувки с балансовым тяжелым абсорбентом позволяет предотвратить его накопление в цикле. Абсорбция сжатого, охлажденного и отсепарированного газа в условиях отрицательного градиента температур позволяет удалить из него углеводороды C5+, снизить объемную теплотворную способность и повысить качество топливного газа.

Согласно предлагаемому способу газ 1 направляют в низ абсорбера 2, где из легкого абсорбента 3, подаваемого в верхнюю часть аппарата 2, отдувают легкие углеводороды и получают газ отдувки 4 и тяжелый абсорбент 5, который разделяют циркулирующий 6 и балансовый 7, последний смешивают с газом отдувки 4, сжимают в компрессоре 8, охлаждают в холодильнике 9 и подают в сепарационную секцию фракционирующего абсорбера 10, с низа которой выводят конденсат 11. Полученный газ через полуглухую тарелку 12 подают в абсорбционную секцию абсорбера 10, где подвергают абсорбции охлажденным в холодильнике 13 циркулирующим тяжелым абсорбентом 6 в условиях отрицательного градиента температур, создаваемого за счет противоточной подачи хладоагента 14 в трубное пространство блока тепломассообменных элементов 15. С верха абсорбера 10 выводят топливный газ 16, а с полуглухой тарелки 12 - легкий абсорбент 3. По меньшей мере часть 17 потока 7 может быть выведена в качестве товарного продукта, а часть конденсата 18 может быть рециркулирована на стадию компримирования (показано пунктиром).

При осуществлении способа 10,0 т/час газа, содержащего 11,9% об. углеводородов C5+, неконденсируемые газы и углеводороды С4- - остальное, при 124,2°C и 0,4 МПа отдувают легкие углеводороды из 1,91 т/час легкого абсорбента с получением 1,78 т/час тяжелого абсорбента, 1,6 т/час которого охлаждают до 35°C и подают на верх фракционирующего абсорбера, и газа отдувки, который в смеси с 0,18 т/час тяжелого абсорбента и 10 т/час конденсата сжимают до 1,3 МПа, охлаждают до 40°C и подают в низ фракционирующего абсорбера, с верха которого при 35°C выводят 6,83 тыс. нм3/час топливного газа с теплотворной способностью 43,2 МДж/нм3, содержащего 57,7 кг/час C5+, а с низа выводят 14,1 т/час конденсата, часть которого рециркулируют, а 4,1 т/час выводят.

В аналогичных условиях согласно прототипу получено 7,02 тыс. нм3/час топливного газа, с теплотворной способностью 45,6 МДж/нм3, содержащего 371 кг/час углеводородов C5+.

Приведенный пример свидетельствует, что предлагаемый способ позволяет снизить потери углеводородов C5+, повысить его качество и может быть использован в нефтегазовой промышленности и энергетике.

1. Способ подготовки топливного газа, включающий сжатие газа, его охлаждение и сепарацию, отличающийся тем, что газ предварительно подвергают контактированию с легким абсорбентом, полученный тяжелый абсорбент разделяют на циркулирующий и балансовый, последний смешивают с полученным газом отдувки, сжимают, охлаждают и сепарируют с получением конденсата и газа, который подвергают абсорбции охлажденным циркулирующим тяжелым абсорбентом в условиях отрицательного градиента температур и сепарируют с получением легкого абсорбента и топливного газа.

2. Способ по п. 1, отличающийся тем, что часть конденсата рециркулируют на стадию компримирования.

3. Способ по п. 1, отличающийся тем, что часть тяжелого абсорбента выводят в качестве товарного продукта.



 

Похожие патенты:

Группа изобретений относится к способу и устройству переработки природного газа с использованием процесса низкотемпературной сепарации для удаления кислых компонентов.

Изобретение относится к способу подготовки сжатого топливного газа для газотурбинных энергетических установок и может быть использовано в нефтегазовой промышленности и энергетике.

Изобретение относится к способу подготовки топливного газа для газотурбинных энергетических установок и может быть использовано в нефтегазовой промышленности и энергетике.

Изобретение относится к способу подготовки углеводородных газов путем низкотемпературной конденсации и может быть использовано в газовой промышленности. Предложен способ подготовки природного газа, включающий сепарацию, рекуперативное охлаждение газа и его охлаждение сторонним хладоагентом с конденсацией флегмы, противоточное контактирование газа и флегмы после охлаждения.

Изобретение относится к станции подготовки попутного нефтяного газа, включающей последовательно установленные по меньшей мере один узел компримирования и охлаждения с линией отвода сжатого газа и блок осушки с линиями отвода осушенного газа и газа регенерации.

Группа изобретений относится к химической, нефтяной, газовой и другим отраслям промышленности и предназначена для охлаждения влажного природного газа. В частности, изобретения могут использоваться в аппаратах воздушного охлаждения (далее - ABO), при эксплуатации которых в условиях холодного климата северных регионов могут образовываться гидраты газа.

Изобретение относится к технике подготовки углеводородного газа к переработке или транспорту. Установка подготовки углеводородного газа содержит соединенные трубопроводами компрессорную станцию, холодильник газа и сепаратор отделения газа от жидкости.

Изобретение относится к области теплотехники. Устройство для компримирования и осушки газа содержит многоступенчатый компрессор со ступенью низкого давления, ступенью высокого давления и нагнетательным патрубком и адсорбционный осушитель с зоной осушения и зоной регенерации, причем между ступенью низкого давления и ступенью высокого давления помещен промежуточный холодильник, и при этом устройство дополнительно снабжено теплообменником, имеющим главную камеру с входной частью и выходной частью для первой первичной текучей среды, а концы трубок теплообменника соединены с отдельной входной камерой и выходной камерой для каждого трубного пучка; и при этом первый трубный пучок образует охлаждающий контур промежуточного холодильника, служащий для разогрева газа из ступени высокого давления для регенерации адсорбционного осушителя.

(57) Изобретение относится к газовой и нефтяной отраслямпромышленности и может использоваться при подготовке газа нефтяных и газоконденсатных месторождений для снижения капитальных и эксплуатационных затрат.

Изобретение может быть использовано в установках, предназначенных для дегидратации газов, содержащих углекислый газ. Способ дегидратации газа, содержащего CO2, основан на получении двухфазной смеси при ее расширении и выделении из смеси жидкой фазы в сепараторе.

Изобретение относится к способам регенерации насыщенного раствора поглотителя влаги - диэтиленгликоля, который используют в качестве абсорбента для извлечения водяных паров из газа в установках осушки природных и нефтяных газов.

Изобретение относится к сельскому хозяйству. Осуществляют обработку топочного газа от энергоустановки на биомассе для получения газа с объемной концентрацией диоксида углерода более 85%.

Изобретение может быть использовано в химической области и в области цветной металлургии. Способ очистки отходящих газов титано-магниевого производства включает обработку отходящих газов смесью щелочного реагента с водным раствором карбамида.

Сначала в первом процессе абсорбции абсорбируют диоксид углерода при введении в контакт подводимого содержащего диоксид углерода природного газа с первым обводным потоком растворителя.

Настоящее изобретение предлагает систему обработки жидкостью, включающую реактор, где реактор сконструирован так, что он содержит газообразную фазу и водную фазу, обе фазы, контактирующие с агетерогенным катализатором гидрогенации, иммобилизованным или суспендированным внутри водной фазы, где газообразная фаза включает водород и где водная фаза включает (i) раствор аминов; и (ii) соединения нитрозамина и/или нитрамина, полученные в результате способов десульфуризации газа с помощью аминов.

Изобретение относится к процессам обессеривания газов и может быть использовано в различных отраслях промышленности для очистки газов от сероводорода с одновременным получением серы.

Изобретение относится к установке для производства железа прямого восстановления. Установка содержит восстановительную печь 13, устройство 16 удаления кислых газов, устройство 17 для удаления продуктов разложения, обводной контур L11 для байпасирования части бедного растворителя, подлежащего возврату из регенератора в абсорбер и фильтр 41, размещенный в обводном контуре.

Изобретение относится к захвату аммиака, присутствующего в газообразных продуктах сгорания, которые удаляются с помощью диоксида углерода в блоке водной промывки, участвующем в технологическом процессе охлажденного аммиака.

Описан способ десорбции CO2 и устройство для осуществления этого способа. Более конкретно, описан способ десорбции CO2 из абсорбционной текучей среды без использования традиционного стриппера, вместо которого используют теплообменник в качестве мгновенного испарителя.

Изобретение относится к станции подготовки попутного нефтяного газа, включающей последовательно установленные по меньшей мере один узел компримирования и охлаждения с линией отвода сжатого газа и блок осушки с линиями отвода осушенного газа и газа регенерации.

Изобретение относится к области мембранной технологии. Автоматизированная мембранно-абсорбционная газоразделительная система, состоящая из двух последовательно соединенных мембранно-контакторных модулей, причем каждый мембранно-контакторный модуль состоит из контакторного абсорбера и контакторного десорбера с системой обеспечения рециркуляционного потока между абсорбером и десорбером, причем первый мембранно-контакторный модуль предназначен для очистки биогаза от примесей СО2, а второй мембранно-контакторный модуль - для осушки биогаза от водяных паров, отличающаяся тем, что на выходе из второго мембранно-контакторного модуля установлены датчик влажности газовой смеси, соединенный с блоком регулирования величины потока рециркулята в процессе осушки биогаза во втором мембранно-контакторном модуле, и датчик содержания диоксида углерода в газовой смеси, соединенный с блоком регулирования величины потока и температуры рециркулята в процессе очистки биогаза в первом мембранно-контакторном модуле. Технический результат - автоматизация процесса очистки и осушки биогаза. 1 ил.
Наверх