Способ предупреждения нагрева элементов трубной обвязки кранового узла при заполнении участков газопроводов



Способ предупреждения нагрева элементов трубной обвязки кранового узла при заполнении участков газопроводов
Способ предупреждения нагрева элементов трубной обвязки кранового узла при заполнении участков газопроводов

 


Владельцы патента RU 2577896:

Общество с ограниченной ответственностью "Газпром трансгаз Ухта" (RU)
Акционерное общество "Гипрогазцентр" (RU)

Изобретение относится к области эксплуатации газопроводов и может найти применение в газовой промышленности при заполнении участков трубопровода газом, например, при введении их в эксплуатацию после строительства или ремонта. Способ предупреждения нагрева элементов трубной обвязки кранового узла при заполнении участков газопроводов реализуется следующим образом: перед заполнением участка газопровода выполняют трубное соединение тупиковых ответвлений для организации перепуска газа между тупиковыми ответвлениями при заполнении участка газопровода, открывают кран байпасной линии, через которую выполняется заполнение, и одновременно с этим открывают кран на трубном соединении тупиковых ответвлений, выполняют контроль давления газа на заполняемом участке газопровода, после заполнения закрывают кран на трубном соединении и открывают линейный кран для ввода участка в эксплуатацию. В результате чего обеспечивается технический результат изобретения - увеличение скорости заполнения участка газопровода. 2 ил.

 

Изобретение относится к области эксплуатации газопроводов и может найти применение в газовой промышленности при заполнении участков трубопровода газом, например, при введении их в эксплуатацию после строительства или ремонта.

В ряде случаев заполнение участков газопроводов газом посредством трубопроводов крановой обвязки сопровождается нагревом тупиковых трубных элементов обвязки кранового узла вследствие возникновения эффекта Гартмана-Шпренгера, что приводит к оплавлению защитных покрытий труб, нарушению работоспособности кранов, риску возникновения аварий (см. С.В. Савченков, Р.В. Агиней, Д.Г. Репин и др. Численное моделирование в ANSYS CFX явления нагрева тупиковых ответвлений крановых узлов // Газовая промышленность. №10. - 2013 - С. 13-16.).

Известен способ предупреждения нагрева трубных элементов крановой обвязки, взятый в качестве прототипа, который заключается в ограничении скорости подъема давления газа в заполняемом участке газопровода (СП 86.13330.2012 Магистральные трубопроводы, стр. 48), при этом ограничивается скорость движения газа в трубной обвязке и нагрева элементов не происходит.

Недостатком способа является то, что ограничение скорости подъема давления препятствует быстрому вводу газопровода в эксплуатацию (заполнение может происходить до 2-3 сут), кроме этого необходимо вести мониторинг скорости подъема давления заполняемого участка газопровода в его начале, конце и в середине, т.к. она будет различная. Операцию по заполнению необходимо выполнять с привлечением нескольких человек: для мониторинга постоянного давления и определения скорости его подъема, контроля температуры тупиковых ответвлений, регулирования скорости заполнения. Также недостатком является то, что для регулирования скорости заполнения обязательно наличие в обвязке крана-регулятора.

Решаемой технической задачей является упрощение способа предупреждения нагрева трубных элементов крановой обвязки. В результате чего обеспечивается технический результат изобретения - увеличение скорости заполнения участка газопровода.

Технический результат достигается тем, что в способе предупреждения нагрева элементов трубной обвязки кранового узла при заполнении участков газопроводов, включающем регулирование потоков газа, контроль давления газа, перед заполнением выполняют трубное соединение тупиковых ответвлений крановой обвязки и обеспечивают перепуск газа по трубному соединению между тупиковыми ответвлениями крановой обвязки.

В качестве пояснения приводим следующее. В обвязке кранового узла газопроводов присутствуют тупиковые ответвления, предназначенные для отбора импульсного газа, управляющего пневматическими приводами кранов. Тупиковые ответвления установлены на заполняющем и на заполняемом участках газопровода. На заполняющем участке газопровода давление выше, поэтому газ сжат и при заполнении скорости его протекания через тупиковое ответвление недостаточно для возникновения эффекта Гартмана-Шпренгера. Далее вследствие снижения давления скорость газа увеличивается, поэтому в тупиковом ответвлении на заполняемом участке газопровода возникает нагрев из-за срыва потока в тупике и его пульсирования. Обеспечение перепуска газа из одного тупикового ответвления в другое позволяет, во-первых, движением газа устранить условия для возникновения пульсаций и нагрева, во-вторых, вследствие эффекта Джоуля-Томсона, газ расширяясь в тупиковом ответвлении будет охлаждаться и охлаждать само ответвление.

Способ реализуется следующим образом. Перед заполнением участка газопровода выполняют трубное соединение тупиковых ответвления для организации перепуска газа между тупиковыми ответвлениями при заполнении участка газопровода. Открывают кран байпасной линии, через которую выполняется заполнение и одновременно с этим открывают кран на трубном соединении тупиковых ответвлений. Выполняют контроль давления газа на заполняемом участке газопровода. После заполнения закрывают кран на трубном соединении и открывают линейный кран для ввода участка в эксплуатацию.

Описание изобретения поясняется чертежами, где фиг. 1 поясняет первый пример заполнения участка подземного газопровода диаметром 1420 мм газом, а фиг. 2 - второй пример заполнения газом газопровода диаметром 1220 мм.

Пример. 1

Необходимо заполнить участок подземного магистрального газопровода диаметром 1420 мм (1). Рабочее давление в газопроводе 7,4 МПа. Полное открытие кранов (2) диаметром 100 мм, установленных на байпасной линии (3) линейного крана, приводит к разогреву тупикового ответвления (4, 5) со стороны заполняемого участка до температуры более 100°C в течение нескольких секунд (определяется тепловизором). Тупиковые ответвления диаметром 50 мм (4, 5) для отбора импульсного газа имеют выход на поверхность грунта и оканчиваются фланцами с заглушками (6, 7). В базовых условиях выполняют сварку и опрессовку трубного соединения диаметром 50 мм (8), состоящего из фланцев, прямолинейных участков и крана. Перед заполнением закрывают краны DN50 на тупиковых ответвлениях (4, 5), снимают заглушки с фланцев (6, 7), устанавливают трубное соединение (8) при помощи фланцев. Открывают краны (2) диаметром 100 мм, расположенные на байпасной линии линейного крана и одновременно открывают краны диаметром 50 мм трубного соединения (8) и тупиковых ответвлений (4, 5). С помощью тепловизора определяют, что температура тупикового ответвления не превышает 30°C в начальный момент заполнения, затем, при снижении разности давлений в заполняющем и заполняемом участке газопровода, снижается до температуры окружающей среды. После заполнения закрывают кран диаметром 50 мм на трубном соединении и открывают линейный кран для ввода участка в эксплуатацию. В последующем при эксплуатации газопровода трубное соединение тупиковых ответвлений не демонтируют.

Пример 2

Необходимо заполнить участок подземного магистрального газопровода диаметром 1220 мм (1). Рабочее давление в газопроводе 9,8 МПа. Устанавливают, что при полном открытии кранов диаметром 100 мм (2) происходит нагрев тупикового ответвления (3 или 5, в зависимости от направления движения газа) выше 100°C. Определяют, что тупиковые ответвления диаметром 50 мм (3/5) для отбора импульсного газа имеют выход на поверхность грунта и оканчиваются приварными днищами. Для исключения огневых работ в охранной зоне магистрального газопровода, трубное соединение тупиковых ответвлений выполняют при помощи имеющихся трубопроводов импульсного газа диаметром 15 мм (4). В трубопроводе импульсного газа установлены обратные клапаны (КО) для движения газа только в направлении аккумулятора импульсного газа (фиг.). Для организации перепуска газа из одного тупикового ответвления в другое заменяют обратный клапан, расположенный со стороны заполняемого участка газопровода на кран такого же диаметра (15 мм).

При заполнении открывают краны диаметром 100 мм (2), расположенные на байпасной линии линейного крана и одновременно открывают установленный кран диаметром 15 мм на трубопроводе импульсного газа (4). С помощью тепловизора определяют, что температура тупикового ответвления при заполнении составляет порядка минус 2…-5°C, что связано с эффектом дросселирования при движении газа из трубопроводов импульсного газа диаметром 15 мм (4) в тупиковое ответвление диаметром 50 мм (3/5). После заполнения (выравнивания давлений) закрывают кран диаметром 15 мм и открывают линейный кран для ввода участка в эксплуатацию. При эксплуатации газопровода выполняют обратную замену крана обратным клапаном диаметром 15 мм.

Способ предупреждения нагрева элементов трубной обвязки кранового узла при заполнении участков газопроводов, включающий регулирование потоков газа, контроль давления газа, отличающийся тем, что перед заполнением выполняют трубное соединение тупиковых ответвлений крановой обвязки и обеспечивают перепуск газа по трубному соединению между тупиковыми ответвлениями крановой обвязки.



 

Похожие патенты:

Сцепление // 2559375
Изобретение относится к области машиностроения, в частности к автомобилестроению. Сцепление содержит ведущий и ведомые диски, два неподвижных диска.

Изобретение относится к области машиностроения, а именно к крестовым муфтам. .

Изобретение относится к области машиностроения и может использоваться в механизмах, передающих крутящий момент, к примеру, от электродвигателя к насосу, компрессору, центрифуге.

Изобретение относится к машиностроению, в частности к устройствам для передачи вращения между валами. .

Изобретение относится к машиностроению, в частности к шлицевым валам. .

Изобретение относится к постоянным (не допускающим разъединения валов в процессе работы машины) компенсационным муфтам для передачи вращения от ведущего вала к ведомому при наличии небольшой несоосности этих валов.

Изобретение относится к области машиностроения и может быть использовано во всех отраслях народного хозяйства, а точнее к невыключаемым муфтам, обеспечивающим возможность относительного перемещения соединяемых деталей в условиях незначительных перекосов и повышенных смещений осей.

Изобретение относится к области машиностроения. .

Изобретение относится к области машиностроения, в частности к соединительным муфтам вращающихся валов. Упругая муфта содержит две соосно установленные полумуфты в сборе с дисками, снабженными фланцами, расположенный между ними и снабженный фланцами промежуточный вал и два пакета упругих элементов. Каждый из пакетов связан с промежуточным валом и соответствующим диском полумуфт с помощью соединительных элементов. Фланцы дисков имеют впадины, соответствующие выступам фланцев промежуточного вала, боковые поверхности впадин во фланцах дисков и соответствующих им выступов фланцев промежуточного вала лежат в радиальных плоскостях, при этом пакеты упругих элементов расположены в полостях между полумуфтами и дисками. Достигается повышение надёжности. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области универсальных шарниров, предназначенных для передачи вращения с перекосом осей соединяемых валов от двигателя к рабочим механизмам, например, в прокатном, транспортном и другом оборудовании. Шариковый шарнир содержит обойму и втулку с полуцилиндрическими пазами, в которых установлены вкладыши. Полуцилиндрические пазы концентричны относительно центра шарнира, вкладыши имеют наружную поверхность в форме полуцилиндрических пазов, а между собой контактируют по сферической поверхности, центр которой расположен в центре шарнира, при этом в центре имеют полусферические пазы, в которых установлены шарики. Предложенное конструктивное решение позволяет повысить его нагрузочную способность, долговечность, увеличить угол перекоса и обеспечить передачу вращения с равной угловой скоростью. 2 ил.
Наверх