Флотационно-фильтрационная установка

Изобретение относится к очистным сооружениям, используемым на моечных станциях автотранспорта. Флотационно-фильтрационная установка содержит заборный фильтр, всасывающий трубопровод, обратный клапан, насосный агрегат, эжектор, камеру флотации с фильтром и слоем фильтрующей загрузки. На входе в эжектор установлена защитная сетка. Эжектор связан с двухступенчатым сатуратором, вторая ступень которого через обратный клапан связана с распределительным коллектором через сопла, расположенные в нижней части камеры флотации. Каждое из сопел распределительного коллектора состоит из корпуса сопла со шнеком, соосно расположенным в нижней части корпуса сопла, и расположенный в верхней части корпуса штуцер с цилиндрическим отверстием для подвода жидкости, соединенным с диффузором, осесимметричным корпусу и штуцеру. Шнек запрессован в корпус с образованием цилиндрической камеры, расположенной над шнеком соосно диффузору и соединенной с ним последовательно. Шнек выполнен с центральным дроссельный отверстием, а его внешняя поверхность представляет собой однозаходную винтовую канавку и расположена внутри корпуса, причем выход винтовой канавки соединен с выходной конической камерой, к торцу которой прикреплен пластинчатый распылитель, который состоит из перпендикулярных оси шнека и параллельных между собой, по крайней мере, двух пластин, одна из которых, первая пластина, имеет центральное отверстие, диаметр которого равен диаметру большего из отверстий выходной конической камеры, а вторая пластина выполнена сплошной и крепится к первой посредством, по крайней мере, трех крепежных элементов, включающих в себя винт, гайку и простановочную калиброванную шайбу, устанавливаемую между пластинами и выполняющую функцию регулирующего звена, управляющего зазором. Технический результат - повышение эффективности очистки сточных вод. 3 з.п. ф-лы, 7 ил.

 

Изобретение относится к очистным сооружениям, используемым на различных объектах, в частности на моечных станциях автотранспорта.

Наиболее близким техническим решением к заявляемому объекту является флотационно-фильтрационная установка по патенту РФ № 2357926, F02С 7/24, содержащая заборный фильтр, всасывающий трубопровод, обратный клапан, насосный агрегат, эжектор, соединенный с байпасным трубопроводом и установленный на входе насосного агрегата, камеру флотации с фильтром и слоем фильтрующей загрузки, а на входе в эжектор установлена защитная сетка, служащая для предотвращения засорения сопла эжектора, при этом эжектор имеет два штуцера, один из которых служит для ввода раствора реагента и соединяется трубкой с насосом-дозатором, а другой служит для подсоса атмосферного воздуха, при этом в обоих штуцерах встроены обратные клапана, при этом эжектор связан с двухступенчатым сатуратором, вторая ступень которого содержит манометр и выходную магистраль, соединенную с единым трубопроводом, при этом вторая ступень сатуратора через обратный клапан связана с распределительным коллектором через сопла, расположенные в нижней части камеры флотации, содержащей скребковый механизм, лоток и переливную трубку, связанную с верхней частью фильтра, имеющего слой адсорбирующей фильтрующей загрузки, которая удерживается поддерживающей и прижимной рамками (прототип).

Недостатком известного очистного сооружения является то, что оно не обеспечивает высокой степени очистки сточных вод.

Технический результат - повышение эффективности очистки сточных вод до степени, позволяющей многократное её использование.

Это достигается тем, что во флотационно-фильтрационной установке, содержащей заборный фильтр, всасывающий трубопровод, обратный клапан, насосный агрегат, эжектор, соединенный с байпасным трубопроводом и установленный на входе насосного агрегата, камеру флотации с фильтром и слоем фильтрующей загрузки, а на входе в эжектор установлена защитная сетка, служащая для предотвращения засорения сопла эжектора, при этом эжектор имеет два штуцера, один из которых служит для ввода раствора реагента и соединяется трубкой с насосом-дозатором, а другой служит для подсоса атмосферного воздуха, при этом в обоих штуцерах встроены обратные клапана, при этом эжектор связан с двухступенчатым сатуратором, вторая ступень которого содержит манометр и выходную магистраль, соединенную с единым трубопроводом, при этом вторая ступень сатуратора через обратный клапан связана с распределительным коллектором через сопла, расположенные в нижней части камеры флотации, содержащей скребковый механизм, лоток и переливную трубку, связанную с верхней частью фильтра, имеющего слой адсорбирующей фильтрующей загрузки, которая удерживается поддерживающей и прижимной рамками, каждое из сопел распределительного коллектора состоит из корпуса сопла со шнеком, соосно расположенным в нижней части корпуса сопла, и расположенный в верхней части корпуса штуцер с цилиндрическим отверстием для подвода жидкости, соединенным с диффузором, осесимметричным корпусу и штуцеру, шнек запрессован в корпус с образованием цилиндрической камеры, расположенной над шнеком, соосно диффузору, и соединенной с ним последовательно, причем шнек выполнен с центральным дроссельным отверстием, а внешняя поверхность шнека представляет собой, по крайней мере, однозаходную винтовую канавку и расположена внутри корпуса, причем выход винтовой канавки соединен с выходной конической камерой, к торцу которой прикреплен пластинчатый распылитель, который состоит из перпендикулярных оси шнека и параллельных между собой, по крайней мере, двух пластин, одна из которых, первая пластина, имеет центральное отверстие, диаметр которого равен диаметру большего из отверстий выходной конической камеры, а вторая пластина выполнена сплошной и крепится к первой посредством, по крайней мере, трех крепежных элементов, включающих в себя винт, гайку и простановочную калиброванную шайбу, устанавливаемую между пластинами и выполняющую функцию регулирующего звена, управляющего зазором.

На фиг. 1 изображен общий вид флотационно-фильтрационной установки, на фиг. 2 - адсорбент адсорбирующей фильтрующей загрузки фильтра, выполненный в форме полых шаров, на сферической поверхности которых прорезана винтовая канавка, на фиг. 3 - адсорбент адсорбирующей фильтрующей загрузки фильтра, выполненный в форме цилиндрических колец, на боковой поверхности которых прорезана винтовая канавка, на фиг. 4 - разрез Б-Б фиг. 3, где прорезана винтовая канавка, имеющая в сечении, перпендикулярном винтовой линии, профиль типа «седла Берля» или седла «Италлокс», на фиг. 5 - схема сопла распределительного коллектора, на фиг. 6 - схема элемента насадки шарообразной формы, на фиг. 7 - схема элемента насадки шарообразной формы, на внешней поверхности которой имеются дополнительные элементы в виде сферических поверхностей.

Флотационно-фильтрационная установка (фиг. 1) содержит заборный фильтр 1, всасывающий трубопровод 2, обратный клапан 8, соединенный через тройник 41 с краном 9 для за-пуска насосного агрегата 3, эжектор 4, соединенный с байпасным трубопроводом 5 и установленный на входе насосного агрегата 3, смонтированного на основании 14. Для первоначального запуска насосного агрегата 3 предусмотрен кран 9. На входе в эжектор 4 установлена защитная сетка, служащая для предотвращения засорения сопла эжектора. Эжектор 4 имеет 2 штуцера 11 и 12. Штуцер 11 служит для ввода раствора реагента и соединяется трубкой 42 с насосом-дозатором 6. Насос-дозатор 6 соединен трубкой с канистрой 13. Штуцер 12 служит для подсоса атмосферного воздуха и имеет регулировочный винт 7. В обоих штуцерах встроены обратные клапана.

Смешение сточной воды с раствором реагента и воздухом осуществляется в насосе 3, после чего смесь поступает по трубопроводу 10 в двухступенчатый сатуратор 15, 16, где под давлением 0,50-5,5 МПа происходит растворение воздуха в воде и смешение с реагентом. Вторая ступень сатуратора 16 содержит манометр 17 и выходную магистраль 18, соединенную с единым трубопроводом 38. Кроме того, вторая ступень сатуратора 16 предназначена для подвода очищаемой воды по трубопроводу 19 через обратный клапан 40, которая затем поступает в распределительный коллектор 21 через сопла 20, расположенные в нижней части камеры флотации 22.

Каждое из сопел 20 (фиг. 5) распределительного коллектора 21 содержит корпус 47 со шнеком 53, соосно расположенным в нижней части корпуса, и расположенный в верхней части корпуса штуцер 48 с цилиндрическим отверстием 49 для подвода жидкости, соединенным с диффузором 50, осесимметричным корпусу 47 и штуцеру 48. Для герметичного соединения корпуса 47 со штуцером 48 предусмотрена уплотняющая прокладка 51. Шнек 53 запрессован в корпус с образованием цилиндрической камеры 52, расположенной над шнеком 53, соосно диффузору 50, которая соединена с ним последовательно. Шнек 53 выполнен с центральным дроссельный отверстием 55, причем внешняя поверхность шнека 53 представляет собой, по крайней мере, однозаходную винтовую канавку 54 с правой или левой нарезкой и расположена внутри корпуса 47, причем выход винтовой канавки 54 соединен с выходной конической камерой 56, к торцу которой прикреплен пластинчатый распылитель. Шнек 53 форсунки выполнен из твердых материалов: карбида вольфрама, рубина, сапфира.

Пластинчатый распылитель состоит из перпендикулярных оси шнека 53 и параллельных между собой, по крайней мере, двух пластин, одна из которых, первая пластина 57, имеет центральное отверстие, диаметр которого равен диаметру большего из отверстий выходной конической камеры 56, а вторая пластина 58 выполнена сплошной и крепится к первой посредством, по крайней мере, трех крепежных элементов 60, включающих в себя винт, гайку и простановочную калиброванную шайбу 59, устанавливаемую между пластинами 57 и 58 и выполняющую функцию регулирующего звена, управляющего зазором.

Пена снимается скребковым механизмом (шламоудалителем) 25 и сбрасывается в лоток 26 и далее через патрубок 43 поступает в шламовую емкость (на чертеже не показана) для отстаивания. Для нормальной работы скребковым механизмом используется переливная трубка 39, связанная с верхней частью фильтра 29.

В фильтре 29 вода поступает в нижнюю часть, проходит через слой адсорбирующей фильтрующей загрузки 30, а очищенная вода сбрасывается через переливной карман 33 и патрубок 45, при этом загрузка фильтра 29 удерживается поддерживающей 31 и прижимной 32 рамками. Промывные воды сбрасываются через кран 34 в накопитель. В качестве адсорбента применяют активные угли марок БАУ, АР-Α, СКТ-3 и др.

Если нет необходимости в глубокой очистке, то очищенная вода после флотации сбрасывается через кран 27 и патрубок 44. Все емкости установки имеют сливные краны 34, 35, 36, 37, объединенные единым трубопроводом 38, оканчивающимся патрубком 46. Вода, очищенная флотационным способом, поступает через переливную трубу 24 в оголовок 23 и далее через кран 28 - на глубокую очистку в засыпной встроенный фильтр 29.

Адсорбент 30 выполнен по форме в виде шариков, а также сплошных или полых цилиндров, зерен произвольной поверхности, получающейся в процессе его изготовления, а также в виде коротких отрезков тонкостенных трубок или колец равного размера по высоте и диаметру: 8, 12, 25 мм.

Адсорбент 30 может быть выполнен шарообразной формы (фиг. 6), в которой имеются несквозные радиальные выемки, причем выемки имеют форму цилиндрической, конической, сферической поверхностей или любой поверхности тел вращения, например параболоид, эллипсоид.

Адсорбент 30 может быть выполнен полой шарообразной формы, на внешней поверхности которой имеются дополнительные элементы в виде сферических, конических поверхностей, или любой поверхности тел вращения, например параболоид, эллипсоид (фиг. 7), а внутренняя шарообразная поверхность насадки соединена с внешней посредством, по крайней мере, трех каналов.

Чтобы повысить степень очистки газового потока от целевого компонента за счет увеличения площади контакта адсорбента с целевым компонентом, адсорбент 30 по форме может быть выполнен в виде полых шаров, на сферической поверхности которых прорезана винтовая канавка (фиг. 2), или в виде полых шаров, на сферической поверхности которых прорезана винтовая канавка, имеющая в сечении, перпендикулярном винтовой линии, профиль типа «седла Берля» или седла «Италлокс» (фиг. 4). Адсорбент 30 может быть выполнен в виде цилиндриче-ских колец, на боковой поверхности которых прорезана винтовая канавка (фиг. 3). Адсорбент может быть выполнен в виде цилиндрических колец, на боковой поверхности которых прорезана винтовая канавка, имеющая в сечении, перпендикулярном винтовой линии, профиль типа «седла Берля» или седла «Италлокс» (фиг. 4). Адсорбент может быть выполнен в виде тороидальных колец (на чертеже не показано). Адсорбент может быть выполнен в виде тороидальных колец, имеющих профиль типа «седла Берля» или седла «Италлокс» (на чертеже не показано).

Флотационно-фильтрационная установка работает следующим образом.

Загрязненная вода после предварительной очистки в отстойнике через заборный фильтр 1 по всасывающему трубопроводу 2, через обратный клапан 8 поступает в эжектор 4, установленный на входе насосного агрегата 3. Для первоначального запуска установки корпус насосного агрегата 3 необходимо заполнить водой через кран 9. Рабочий поток жидкости на эжектор поступает по байпасному трубопроводу 5 . На входе в эжектор 4 установлена защитная сетка, служащая для предотвращения засорения сопла эжектора. Эжектор 4 имеет 2 штуцера 11 и 12. Штуцер 11 служит для ввода раствора реагента и соединяется трубкой 42 с насосом-дозатором 6. Насос-дозатор 6 соединен трубкой с канистрой 13. Штуцер 12 служит для подсоса атмосферного воздуха и имеет регулировочный винт 7. В обоих штуцерах встроены обратные клапаны.

В насосе 3 происходит смешение сточной воды с раствором реагента и воздухом, после чего смесь поступает по трубопроводу 10 в двухступенчатый сатуратор 15, 16. Здесь под давлением 0,50-5,5 МПа происходит растворение воздуха в воде и смешение с реагентом. Из 2-й ступени сатуратора 16 очищаемая вода по трубопроводу 19 через обратный клапан 40 поступает в распределительный коллектор 21 через сопла 20 .

Сопло 20 (фиг. 5) распределительного коллектора 21 работает следующим образом.

Жидкость подается по цилиндрическому отверстию 49 в диффузор 50, а из него - в коническую камеру 52, из которой под давлением поступает в винтовую внешнюю полость шнека 53 и через дроссельное отверстие 55 - в коническую камеру 56, а из нее - в распылитель. Вращающийся поток жидкости во внешней винтовой полости шнека образует вихревое движение, при этом происходит дополнительное дробление капель жидкости за счет турбулизации потока на выходе и мелкодисперсный вращающийся поток выходит из форсунки с широким вращающимся факелом распыляющейся жидкости.

В нижней части камеры флотации 22 происходит сброс давления и из воды выделяется растворенный воздух в виде мельчайших пузырьков, к которым прилипают частицы загрязнений. Шлам собирается на поверхности флотационной камеры в виде пены, которая снимается скребковым механизмом (шламоудалителем) 25 и сбрасывается в лоток 26 и далее через патрубок 43 поступает в шламовую емкость (не входящую в комплект поставки) для отстаивания. Шлам может быть сдан на переработку как целиком (если имеется такая возможность), так и отдельными фракциями после отстоя и слива сверху нефтепродуктов и воды из средней части. Нефтепродукты следует сдать на переработку или использовать в качестве жидкого топлива. Вода возвращается на очистку в отстойник. Отстоявшиеся в шламовой емкости взвешенные вещества могут быть вывезены и захоронены на полигоне или использованы в качестве добавки в дорожные покрытия на асфальтобетонных заводах.

В фильтре 29 вода поступает в нижнюю часть, проходит через слой адсорбирующей фильтрующей загрузки 30 . Очищенная вода сбрасывается через переливной карман 33 и патрубок 45 . загрузка фильтра удерживается поддерживающей 31 и прижимной 32 рамками. Загрузка фильтров выбирается в зависимости от технологии очистки сточных вод. Стандартная загрузка фильтра для очистки сточных вод автомоек - пенополиуретановый нефтесорбент (крошка 10-20 мм). При засорении пенополиуретановой крошки фильтр 29 извлекается из установки и промывается сверху струей воды. Промывные воды сбрасываются через кран 34 в накопитель.

Если нет необходимости в глубокой очистке, то очищенная вода после флотации сбрасывается через кран 27 и патрубок 44 . Все емкости установки имеют сливные краны 34, 35, 36, 37, объединенные единым трубопроводом 38, оканчивающимся патрубком 46. Электрическая и гидравлическая схемы установки обеспечивают ее работу в автоматическом режиме в соответствии с потреблением оборотной воды для мойки автомобилей либо по мере поступления сточных вод с помощью датчиков минимального и максимального уровней воды в емкости. Вода, очищенная флотационным способом, поступает через переливную трубу 24 в оголовок 23 и далее через кран 28 - на глубокую очистку в засыпной встроенный фильтр 29 .

Реагентная обработка применяется при повышенных требованиях к очищаемым стокам от автомойки либо при повышенных концентрациях загрязнений сточной воды. Тип, доза и рабочая концентрация реагента принимаются согласно технологии очистки сточных вод. Предлагаемое устройство может работать с реагентной обработкой сточных вод. В связи с тем, что основную часть растворенных загрязнений составляют анионные ПАВ, в качестве реагентов применяются катионные флокулянты, например поливинилпиридин.

Предлагаемое устройство предназначено для использования именно замкнутой системы водопотребления. Характерные уровни дозирования флокулянтов при их использовании в процессах осветления находятся в пределах 0,05-0,2 г/м3, в зависимости от качества неочищенной воды.

1. Флотационно-фильтрационная установка, содержащая заборный фильтр, всасывающий трубопровод, обратный клапан, насосный агрегат, эжектор, соединенный с байпасным трубопроводом и установленный на входе насосного агрегата, камеру флотации с фильтром и слоем фильтрующей загрузки, а на входе в эжектор установлена защитная сетка, служащая для предотвращения засорения сопла эжектора, при этом эжектор имеет два штуцера, один из которых служит для ввода раствора реагента и соединяется трубкой с насосом-дозатором, а другой служит для подсоса атмосферного воздуха, при этом в обоих штуцерах встроены обратные клапана, при этом эжектор связан с двухступенчатым сатуратором, вторая ступень которого содержит манометр и выходную магистраль, соединенную с единым трубопроводом, при этом вторая ступень сатуратора через обратный клапан связана с распределительным коллектором через сопла, расположенные в нижней части камеры флотации, содержащей скребковый механизм, лоток и переливную трубку, связанную с верхней частью фильтра, имеющего слой адсорбирующей фильтрующей загрузки, которая удерживается поддерживающей и прижимной рамками, отличающаяся тем, что каждое из сопел распределительного коллектора состоит из корпуса сопла со шнеком, соосно расположенным в нижней части корпуса сопла, и расположенного в верхней части корпуса штуцера с цилиндрическим отверстием для подвода жидкости, соединенным с диффузором, осесимметричным корпусу и штуцеру, шнек запрессован в корпус с образованием цилиндрической камеры, расположенной над шнеком соосно диффузору и соединенной с ним последовательно, причем шнек выполнен с центральным дроссельным отверстием, а внешняя поверхность шнека представляет собой, по крайней мере, однозаходную винтовую канавку и расположена внутри корпуса, причем выход винтовой канавки соединен с выходной конической камерой, к торцу которой прикреплен пластинчатый распылитель, который состоит из перпендикулярных оси шнека и параллельных между собой, по крайней мере, двух пластин, одна из которых, первая пластина, имеет центральное отверстие, диаметр которого равен диаметру большего из отверстий выходной конической камеры, а вторая пластина выполнена сплошной и крепится к первой посредством, по крайней мере, трех крепежных элементов, включающих в себя винт, гайку и простановочную калиброванную шайбу, устанавливаемую между пластинами и выполняющую функцию регулирующего звена, управляющего зазором.

2. Флотационно-фильтрационная установка по п. 1, отличающаяся тем, что элемент насадки адсорбирующей фильтрующей загрузки имеет шарообразную форму, в нем выполнены несквозные радиальные выемки, причем выемки имеют форму цилиндрической, конической, сферической поверхностей или поверхности тел вращения, например параболоида или эллипсоида.

3. Флотационно-фильтрационная установка по п. 1. отличающаяся тем, что элемент насадки адсорбирующей фильтрующей загрузки имеет полую шарообразную форму, на его внешней поверхности имеются дополнительные элементы в виде сферических, конических поверхностей или поверхности тел вращения, например параболоида, эллипсоида, а внутренняя шарообразная поверхность насадки соединена с внешней посредством, по крайней мере, трех каналов.



 

Похожие патенты:

Изобретение относится к очистным сооружениям. Отстойник с ленточным скребковым устройством содержит корпус коробчатого типа с днищем, внутри корпуса размещено скребковое устройство.

Изобретение относится к очистным сооружениям и может быть использовано на моечных станциях автотранспорта. Устройство для очистки воды содержит цилиндрический корпус с крышкой и днищем, в котором расположен активатор процесса, выполненный в виде инертной насадки.

Изобретение относится к магнитной обработке воды и может быть использовано в пищевой промышленности, медицине, фармакологии и хозяйственно-бытовой деятельности. Воду омагничивают, пропуская ее между магнитопроводом и катушками подключенного трансформатора, выполненного с возможностью подачи на него импульсного выпрямленного напряжения.

Изобретение относится к способам очистки воды. Способ умягчения воды включает перемешивание воды с адсорбентом - 95% глауконитом, предварительно обработанным хлоридом натрия.

Группа изобретений относится к получению озонированной воды. Система для увеличения среднего времени жизни озона, растворенного в жидкости, содержит входное отверстие для жидкости, расположенное для приема жидкости в систему; катионообменную смолу на основе кислоты, флюидно соединенную с входным отверстием для жидкости, причем смола приспособлена к обмену катионов в принятой жидкости с ионами Н+ на смоле; блок растворения озона, флюидно соединенный с входным отверстием для жидкости и катионообменной смолой на основе кислоты; и выходное отверстие для жидкости, флюидно соединенное с входным отверстием для жидкости, катионообменной смолой на основе кислоты и блоком растворения озона, причем блок растворения озона и катионообменная смола на основе кислоты совместно обеспечивают получение кислой ионизированной озонированной жидкости для распределения из системы через выходное отверстие для жидкости.

Изобретение может быть использовано в горнодобывающей промышленности для очистки и утилизации слабокислых металлоносных карьерных вод в условиях болотно-горного рельефа.

Изобретение относится к очистке сточных и оборотных вод, содержащих тиоцианаты (SCN-), и может быть использовано на предприятиях цветной металлургии, химической и золотодобывающей промышленности.

Изобретение может быть использовано для доочистки водопроводной, артезианской, колодезной и другой питьевой воды. Водоочиститель включает расположенные последовательно в одном продольном сосуде (1) зону замораживания воды с кольцевой морозильной камерой (2), зону вытеснения примесей из льда и зону концентрирования примесей в виде рассола, зону перехода воды из твердого состояния в жидкое с кольцевым нагревательным элементом (13), раздельные патрубки для вывода рассола и талой питьевой воды (12), расположенные в нижней части сосуда, приводное устройство перемещения стержня замороженной воды (3), а также разобщающее устройство в виде трубы (11) с кольцевой режущей частью.

Изобретение относится к очистке природных, оборотных и сточных вод. Для осуществления способа проводят окисление 4-аминобензолсульфонамида пероксидом водорода в присутствии Fe/Cu/Al-катализатора - монтмориллонита, интеркалированного смешанными полигидроксокомплексами Fe, Си и Al.

Изобретение относится к устройствам и способам снижения содержания пероксида водорода и перуксусной кислоты в водном потоке и может быть использовано для водного потока, отбираемого из балластного танка судна.

Изобретение относится к устройствам для вакуумной или комбинированной термической и вакуумной дегазации жидкостей, в том числе воды, с использованием центробежного эффекта. Вихревой струйный аппарат для дегазации жидкостей содержит корпус цилиндроконической формы с горловиной между конфузором и диффузором, один или несколько тангенциальных патрубков, присоединенный к ним при помощи трубок насос для подачи дегазируемой жидкости, отношение большего и меньшего диаметров конфузора и диффузора лежит в диапазоне 3-7, отношение большего диаметра конфузора к диаметру тангенциального патрубка лежит в диапазоне 4-6, угол при вершине конфузора составляет 28-32°, угол при вершине диффузора составляет 10-14°, при этом отношение длины горловины к ее диаметру лежит в диапазоне от 5-15, в диффузоре установлен сепаратор жидкой и газовой фаз, содержащий жестко закрепленный в диффузоре и соосно ему конический рассекатель с центральной трубкой, причем трубка выполнена с возможностью осевого перемещения, а в кольцевом пространстве между рассекателем и диффузором установлены одна или несколько лопаток, отношение высоты которых к высоте диффузора находится в диапазоне 0,3-0,7. Технический результат - повышение эффективности дегазации жидкостей и снижение энергетических затрат на проведение процесса. 1 з.п. ф-лы, 2 ил.

Изобретение относится к системам СВЧ-обработки материалов и может быть использовано для обеззараживания осадков промышленных, бытовых и сельскохозяйственных сточных вод. Установка СВЧ-обработки осадков сточных вод содержит по меньшей мере один СВЧ-генератор 1, камеру обработки осадков 2, корпус установки 3, шлюзы загрузки 4 и выгрузки 5, выполненные в виде туннелей, закрывающихся и открывающихся с помощью заслонок 6, ленточный транспортер 7 и средство придания грузонесущей ленте 8 транспортера 7 вогнутой вниз формы в зонах шлюзов загрузки 4 и выгрузки 5 и камеры обработки 2. Заслонки 6 выполнены из эластичного материала, поглощающего СВЧ-энергию. Камера обработки осадков 2 образована снизу грузонесущей лентой 8 транспортера 7 с вогнутой вниз формой, а сверху металлическим кожухом, закрепленным на корпусе установки 3. СВЧ-генераторы 1 установлены на внешней стороне металлического кожуха, с внутренней его стороны к СВЧ-генераторам 1 подсоединены волноводные облучатели, направленные в сторону грузонесущей ленты 8 транспортера 7. Шлюз загрузки 4 включает бункер для размещения подготовленных к обработке осадков и сменный шибер, регулирующий высоту осадков на грузонесущей ленте 8 транспортера 7. Шлюз выгрузки 5 выполнен в виде металлического кожуха, примыкающего к камере обработки осадков 2 и закрепленного на корпусе установки 3. Изобретение обеспечивает возможность непрерывной обработки таких материалов, склонных к растеканию, как осадков сточных вод, обезвоженных до влажности 60-90%, при этом обеспечивается безопасность окружающего пространства от СВЧ-излучения. 4 з.п. ф-лы, 5 ил.

Изобретение относится к устройствам для обеззараживания (стерилизации) воды, а именно к обеззараживанию потока воды физическими методами, конкретно - к бытовым аппаратам для получения кипяченой питьевой воды, может быть использовано для получения холодной кипяченой питьевой воды путем стерилизации водопроводной воды. Устройство содержит рекуперативный противоточный теплообменник 1. Каналы теплообменника соединены через камеру 2, имеющую электрический нагреватель 3. В камере вода обеззараживается при температуре выше 100°С. Высокая эффективность теплообмена достигнута путем заполнения каналов насадкой 4 из посеребренных медных гранул. Гранулы подпрессованы в каналах для увеличения теплопроводности насадки. Изобретение позволяет получать холодную кипяченую воду с наименьшими затратами времени и электроэнергии. 3 з.п. ф-лы, 1 ил.
Изобретение относится к способам переработки промышленных отходов, содержащих экологически опасные токсичные вещества, в частности гликоли. Предложен способ утилизации отработанных противообледенительных жидкостей, включающий перемешивание отработанных противообледенительных жидкостей с мелкодисперсным природным цеолитом, выдерживание суспензии в течение 20-24 часов и отделении водно-гликолевого раствора фильтрацией или декантацией. Изобретение позволяет снизить энергоемкость процесса утилизации.

Изобретение относится к электротехнике, а именно к способу изготовления водной пасты гидрата закиси никеля. В качестве исходного сырья используют щелочные промышленные стоки непосредственно с участка изготовления металлокерамических окислоникелевых электродов, содержащие примесь KOH, K2SO4 и взвесь гидрата закиси никеля, которые отстаивают, затем взвесь промывают и фильтруют. Изобретение позволяет получить мелкодисперсные высокоактивные фракции гидрата закиси никеля при упрощении способа. 3 з.п. ф-лы, 2 пр.

Изобретение относится к дезинфицирующему устройству общего характера с использованием озона, более конкретно изобретение относится к дезинфицирующему устройству с использованием озона, которое подходит для обработки пищи, хотя может быть применено и в других областях. Дезинфицирующее устройство с использованием озона включает смеситель, имеющий в общем полый корпус с входом для воды под давлением, распылительную форсунку для создания в общем конического факела распыла воды, подводимой через вход для воды, камеру контакта, сообщающуюся с входом для газов, обогащенных озоном, и выходное отверстие из камеры контакта, которое соосно распылительной форсунке и отделено от нее на некоторое расстояние. Электронное устройство отслеживания расхода отслеживает величину расхода воды через распылительную форсунку по вибрации, вызываемой водой, протекающей через смеситель. Электронное устройство отслеживания расхода предпочтительно расположено в кармане, выполненном в смесителе, и предпочтительно включает пьезоэлектрический датчик, введенный по меньшей мере по его периметру в затвердевающий материал. Изобретение обеспечивает устройство, которое при использовании распыляет воду с эффективным и подходящим количеством озона в ней. 13 з.п. ф-лы, 8 ил.

Изобретение относится к очистке сточных вод с использованием пневматической флотации и может быть применено при очистке промышленных сточных вод, полученных при мойке средств хранения нефти и нефтепродуктов. Установка для очистки сточных вод от растворенных нефтепродуктов содержит вертикальную емкость 1 с патрубками слива очищенной воды 2 и принудительной подачи воздуха в ее нижней части, распределитель потока воздуха в виде перфорированной горизонтальной трубы 8, узел сбора отделенного нефтепродукта 11 и модификатор флотации 10. Узел сбора отделенного нефтепродукта 11 размещен с наружной стороны вертикальной емкости 1 и выполнен в виде лотка, прикрепленного к ней по периметру. Модификатор флотации 10 выполнен в виде коаксиально установленных цилиндрических обечаек, связанных между собой с образованием кольцевых полостей равновеликих объемов. Высота h образующей цилиндрических обечаек равна 0,75 Н высоты вертикальной емкости. Центральный осевой канал модификатора флотации 10 имеет диаметр, равный 0,2 D диаметра вертикальной емкости. На перфорированной горизонтальной трубе 8 размещен полимерный материал 9 с диаметром пор 0,005-0,1 мкм. Изобретение позволяет повысить эффективность очистки воды от растворенных нефтепродуктов. 2 ил., 1 табл.

Изобретение относится к системам очистки жидкости, преимущественно воды, применяемым в бытовом и/или питьевом водоснабжении. Система очистки жидкости содержит узел питания 1, в котором осуществляется вытеснение концентрата из емкости, представляющей собой устройство концентрирования жидкости 4, содержащее внутреннюю перегородку 17, разделяющую внутреннее пространство устройства 4 на накопительную полость 5 с переменным объемом для исходной жидкости и вытеснительную полость 6 для исходной жидкости, предназначенную для вытеснения концентрата из накопительной полости устройства концентрирования жидкости. Система очистки жидкости содержит также узел фильтрации 8, выполненный с возможностью обеспечения плавного увеличения концентрации жидкости, подаваемой на средство очистки жидкости 11 за счет осуществления перемешивания исходной жидкости с концентратом в накопительной полости емкости. Вход средства очистки жидкости соединен линией 9 подачи смеси концентрата и исходной жидкости, на которой установлено средство повышения скорости жидкости 10, напрямую с накопительной полостью 5 устройства концентрирования жидкости, а линия возврата концентрата 12 из средства очистки в устройство концентрирования подсоединена через соединительный элемент к линии смешения концентрата и исходной жидкости и к основной линии подачи исходной жидкости. Технический результат - сокращение количества энергии и исходной жидкости, подаваемых в систему очистки жидкости. 4 з.п. ф-лы, 1 ил.

Группа изобретений может быть использована для подготовки воды в системах хозяйственно-питьевого и промышленного назначения. Способ включает кавитационную обработку водной среды струйной кавитацией с эжектированием в кавитатор воздуха или кислородно-воздушной смеси, последующую обработку среды в гидродинамическом реакторе с вращающимся магнитным полем и ферромагнитными элементами в виде игл, отстаивание обработанной водной среды и отделение шлама. Технологическая линия содержит струйный кавитатор (2), снабженный средствами эжектирования в него воздуха или кислородно-воздушной смеси, гидродинамический реактор (3) с вращающимся магнитным полем и ферромагнитными элементами в виде игл и блок (5) отстаивания среды, совмещенный с системой удаления шлама (6). Технический результат - повышение скорости очистки и увеличение эффективности очистки и обеззараживания водных сред. 2 н. и 16 з.п. ф-лы, 3 ил., 2 табл.

Группа изобретений может быть использована для биологической очистки хозяйственно-бытовых и промышленных сточных вод. Для осуществления способа не менее 70% активного ила подвергают обработке пероксидом водорода в течение 2 часов в непрерывном режиме с внесением пероксида водорода в количестве от 2 до 4 (масс. %) от абсолютно сухого вещества активного ила при постоянном перемешивании. Устройство для осуществления предлагаемого способа содержит первичный отстойник (1), аэротенк (3), вторичный отстойник (2), насос (6), емкость для обработки активного ила (4), емкость для хранения пероксида водорода (5), насос-дозатор подачи пероксида водорода (7) и насос для подачи активного ила (8). Выход первичного отстойника (1) соединен с первым входом аэротенка (3), выход которого соединен с входом вторичного отстойника (2). Выход вторичного отстойника (2) соединен параллельно с первым входом емкости для обработки активного ила (4) через насос (6) и со вторым входом первичного отстойника (1). Емкость (5) для хранения перекиси водорода через насос-дозатор (7) соединена со вторым входом емкости (4) для обработки активного ила, а выход емкости (4) через насос (8) для подачи активного ила соединен со вторым входом аэротенка (3). Изобретения обеспечивают повышение эффективности процесса очистки сточных вод от биогенных веществ. 2 н.п. ф-лы, 3 ил., 2 табл., 8 пр.
Наверх