Вихревой струйный аппарат для дегазации жидкостей



Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей
Вихревой струйный аппарат для дегазации жидкостей

 


Владельцы патента RU 2581630:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" (RU)

Изобретение относится к устройствам для вакуумной или комбинированной термической и вакуумной дегазации жидкостей, в том числе воды, с использованием центробежного эффекта. Вихревой струйный аппарат для дегазации жидкостей содержит корпус цилиндроконической формы с горловиной между конфузором и диффузором, один или несколько тангенциальных патрубков, присоединенный к ним при помощи трубок насос для подачи дегазируемой жидкости, отношение большего и меньшего диаметров конфузора и диффузора лежит в диапазоне 3-7, отношение большего диаметра конфузора к диаметру тангенциального патрубка лежит в диапазоне 4-6, угол при вершине конфузора составляет 28-32°, угол при вершине диффузора составляет 10-14°, при этом отношение длины горловины к ее диаметру лежит в диапазоне от 5-15, в диффузоре установлен сепаратор жидкой и газовой фаз, содержащий жестко закрепленный в диффузоре и соосно ему конический рассекатель с центральной трубкой, причем трубка выполнена с возможностью осевого перемещения, а в кольцевом пространстве между рассекателем и диффузором установлены одна или несколько лопаток, отношение высоты которых к высоте диффузора находится в диапазоне 0,3-0,7. Технический результат - повышение эффективности дегазации жидкостей и снижение энергетических затрат на проведение процесса. 1 з.п. ф-лы, 2 ил.

 

Предлагаемое изобретение относится к устройствам для вакуумной или комбинированной термической и вакуумной дегазации жидкостей, в том числе воды, с использованием центробежного эффекта и может быть использовано для процессов водоподготовки в теплоэнергетике, в том числе для деаэрации питательной воды паровых котлов и подпиточной воды, тепловых сетей, десорбции газов из жидкостей в химической, фармацевтической, пищевой и других отраслях промышленности.

Известен аппарат для дегазации жидкостей, патент РФ №2476767 (МПК F22D 1/50), содержащий корпус с патрубком подвода деаэрируемой воды, патрубками отвода деаэрированной воды и выпара и размещенное на выходе патрубка подвода деаэрируемой воды сопло переменного поперечного сечения, присоединенное к корпусу деаэратора и состоящее из последовательно расположенных конфузорного, цилиндрического и диффузорного участков, отличающийся тем, что деаэратор перегретой воды дополнительно снабжен отражательным экраном, установленным в корпусе деаэратора на пути движения выходящего из диффузорного участка сопла переменного поперечного сечения потока кипящей деаэрируемой воды.

Известный аппарат позволяет повысить эффективность деаэрации перегретой воды путем увеличения поверхности выделения растворенных в воде газов в паровую фазу вследствие дробления потока на мелкие капли за счет установки в корпусе деаэратора на пути движения потока кипящей деаэрируемой воды отражательного экрана. Вместе с тем в известном аппарате используется лишь кинетическая энергия струи воды, которая после удара об отражательный экран трансформируется в поверхностную энергию капель. Для достижения необходимой степени деаэрации воду приходится дополнительно нагревать, чтобы увеличить парциальное давление паров. Это приводит к существенным затратам энергии и снижает общий кпд установки.

Известен аппарат для термической дегазации жидкостей, патент РФ №2473009 (МПК F22D 1/50), включающий установленную на деаэраторном баке деаэрационную колонку, снабженную штуцером для подвода воды, и низконапорным водораспределительным устройством - струйной форсункой, отличающийся тем, что деаэрационная колонка выполнена в виде водоприемной камеры, при этом корпус струйной форсунки встроен в перегородку и имеет входное отверстие для воды, расположенное выше штуцера подвода воды в водоприемную камеру.

Исходный поток воды, подлежащей деаэрации, поступает в водораспределительное устройство - струйную форсунку деаэрационной колонки через штуцер. Струи и капли воды, вытекая из выходных отверстий форсунки, дробятся, разбиваясь при этом на более тонкие струи и более мелкие капли. Далее вода поступает в деаэраторный бак, где проходит следующие стадии обработки. Известное изобретение позволяет предотвратить попадание пара из деаэратора в трубопроводы подвода воды в деаэратор, исключить возможность возникновения в них гидроударов и тем самым обеспечить надежную работу водораспределительного устройства и деаэратора в целом при всех режимах работы деаэратора. К недостаткам известного аппарата относится необходимость предварительного нагрева воды, чтобы увеличить парциальное давление паров и обеспечить заданный уровень деаэрации. Затраты на нагрев воды ввиду ее высокой удельной теплоемкости чрезвычайно высоки, что ведет к недостаточно высокой эффективности использования энергии в процессе дегазации.

Известен аппарат для термической и вакуумной дегазации жидкостей - струйный вихревой деаэратор, патент РФ №2392230 (МПК C02F 1/20), содержащий вертикально размещенный корпус с боковым патрубком подвода нагретой воды, завихритель со спиральными каналами, укрепленный соосно в верхней части корпуса, и обтекатель, укрепленный соосно в нижней его части, отличающийся тем, что спиральные каналы на наружной поверхности завихрителя имеют переменное сечение, сужающееся от входа к выходу, а на входе в корпус между наружной поверхностью завихрителя и внутренней поверхностью стенки корпуса образована кольцевая приемная камера, при этом завихритель выполнен полым с осевым каналом для удаления выпара, вход в который имеет форму раструба и смещен вниз относительно выходных кромок спиральных каналов так, что наружная поверхность раструба вместе с внутренней поверхностью стенки корпуса образуют кольцевую камеру внезапного расширения, сужающуюся в сторону обтекателя, а обтекатель закреплен в корпусе при помощи опоры с отверстиями для выпуска воды так, что между наружной поверхностью обтекателя и внутренней поверхностью корпуса образован кольцевой диффузор, при этом между нижним краем завихрителя и верхним краем обтекателя образована цилиндрическая камера вращения с профилированной внутренней поверхностью.

В известном аппарате вода, нагретая до температуры 70-90°C, через патрубок поступает в форкамеру и равномерно распределяется по входам в спиральные каналы. По мере увеличения скорости статическое давление в каналах снижается. В выходном сечении каналов вода приобретает максимальную скорость и минимальное давление. При выходе из каналов вода попадает в камеру внезапного расширения, где происходит мгновенное вскипание потока. В камере вращения формируется газожидкостный вихрь со сложной структурой. В известном аппарате улучшены условия конвективного массопереноса в ядре потока воды, увеличение коэффициента массопередачи между жидкой и газообразной фазами, повышена эффективность сепарации капель жидкости из потока выпара, устранены механические пульсации внутренней границы вихря.

К недостаткам известного аппарата относятся: 1) узкие спиральные каналы существенно увеличивают гидравлическое сопротивление аппарата, вследствие чего снижается глубина вакуума; 2) в зоне внезапного расширения происходят дополнительные затраты энергии, также снижающие эффективность аппарата; 3) течение жидкости в кольцевых камерах сопряжено с трением о поверхности как внешней, так и внутренней стенок, что повышает энергозатраты; 4) в аппарате не используется эффект увеличения глубины вакуума при переходе от большего радиуса вращения к меньшему, т.е. в недостаточной степени трансформируется кинетическая энергия жидкости; 5) осевой канал для удаления выпара обладает слишком большим проходным сечением, что не позволяет создавать глубокий вакуум в центре вихря.

Наиболее близким к заявляемому устройству является вихревой струйный аппарат, патент РФ №2296007 (МПК B01J 19/26), включающий устройство для ввода дисперсной фазы, емкость, циркуляционный насос, циркуляционные трубопроводы, регулирующие клапаны и штуцеры, устройство для ввода дисперсной фазы включает корпус в виде трубы Вентури, состоящий из цилиндроконического конфузора, горловины и диффузора, установленное в корпусе соосно с ним сопло, заканчивающееся патрубком ввода дисперсной фазы, которое снабжено подводящими патрубками в виде колена, каждый из которых выполнен в виде колена и установлен с возможностью поворота вокруг своей оси, причем подводящие патрубки подключены к линии подачи жидкой сплошной фазы, а сопло выполнено с возможностью осевого перемещения относительно корпуса и подключено к линии подачи дисперсной фазы.

Изобретение позволяет эффективно проводить массообменные процессы в гетерогенных системах при увеличении степени диспергирования дисперсной фазы, достичь более продолжительного времени контакта фаз, а в целом позволяет интенсифицировать реакционные и массообменные процессы. Хотя в горловине известного устройства достигается некоторое разрежение, уровень разрежения недостаточен для достижения приемлемых показателей по дегазации жидкостей, в частности воды. Длина горловины слишком короткая, и массообменные процессы не успевают завершиться, пока жидкость находится в аппарате. Кроме того, в известном аппарате не предусмотрены меры по сепарации жидкой и газовой фаз, что приводит практически к мгновенной резорбции газа жидкостью. Это существенно снижает эффективность аппарата и делает его непригодным для использования в процессах дегазации жидкостей.

Задача предлагаемого изобретения - повышение эффективности дегазации жидкостей и снижение энергетических затрат на проведение процесса.

Поставленная задача решается тем, что в вихревом струйном аппарате для дегазации жидкостей, содержащем корпус цилиндроконической формы с горловиной между конфузором и диффузором, один или несколько тангенциальных патрубков, присоединенный к ним при помощи трубок насос для подачи дегазируемой жидкости, отношение большего и меньшего диаметров конфузора и диффузора лежит в диапазоне 3÷7, отношение большего диаметра конфузора к диаметру тангенциального патрубка лежит в диапазоне 4÷6, угол при вершине конфузора составляет 28÷32°, угол при вершине диффузора составляет 10÷14°, согласно изобретению, отношение длины горловины к ее диаметру лежит в диапазоне от 5÷15, в диффузоре установлен сепаратор жидкой и газовой фаз, содержащий жестко закрепленный в диффузоре и соосно ему конический рассекатель с центральной трубкой, причем трубка выполнена с возможностью осевого перемещения, а в кольцевом пространстве между рассекателем и диффузором установлены одна или несколько лопаток, отношение высоты которых к высоте диффузора находится в диапазоне 0,3÷0,7.

Поставленная задача решается также тем, что в конфузоре установлен осевой патрубок, на осевом патрубке установлен датчик разрежения, а на выходе из диффузора установлен датчик концентрации газа в жидкости, выходы датчиков подключены к контроллеру, соединенному с приводом осевого положения центральной трубки.

Заявляемый вихревой струйный аппарат для дегазации жидкостей позволяет использовать преимущества термической и вакуумной дегазации жидкостей, повысить эффективность вакуумной дегазации жидкостей, снизить энергетические затраты на проведение процесса, увеличить компактность оборудования для дегазации.

Заявляемое техническое решение является новым, обладает изобретательским уровнем и промышленно применимо.

На фиг. 1 а представлена схема вихревого струйного аппарата для дегазации жидкостей, на фиг. 1 б, в - разрезы А-А и Б-Б соответственно, на фиг. 2 - схема вихревого струйного аппарата для дегазации жидкостей с системой автоматической подстройки положения центральной трубки.

Вихревой струйный аппарат для дегазации жидкостей (фиг. 1) содержит конфузор 1 цилиндроконической формы, диффузор 2 и горловину 3 между ними, один или несколько тангенциальных патрубков 4, присоединенных к широкой части конфузора 1. К патрубкам 4 при помощи трубок присоединен насос для подачи дегазируемой жидкости (на фиг. 1 и 2 условно не показан). При этом отношение большего и меньшего диаметров конфузора 1 и диффузора 2 лежит в диапазоне 3÷7, отношение большего диаметра конфузора 1 к диаметру тангенциального патрубка 4 лежит в диапазоне 4÷6, угол при вершине конфузора 1 составляет α=28÷32°, угол при вершине диффузора 2 составляет β=10÷14°. Кроме того, отношение длины горловины 3 к ее диаметру лежит в диапазоне от 5÷15, в диффузоре 3 установлен сепаратор 5 жидкой и газовой фаз, содержащий жестко закрепленный в диффузоре 2 и соосно ему конический рассекатель 6 с центральной трубкой 7, причем трубка 7 выполнена с возможностью осевого перемещения относительно диффузора 2, а в кольцевом пространстве между рассекателем 6 и диффузором 2 установлены одна или несколько лопаток 8, отношение высоты которых к высоте диффузора 2 находится в диапазоне 0,3÷0,7.

Вихревой струйный аппарат для дегазации жидкостей (фиг. 2) дополнительно содержит установленный в конфузоре 1 осевой патрубок 9, на осевом патрубке 9 установлен датчик разрежения 10, а на выходе из диффузора 2 установлен датчик 11 концентрации газа в жидкости, выход датчиков подключены к контроллеру 12, соединенному с приводом 13 осевого положения центральной трубки 7.

Предлагаемое устройство работает следующим образом.

При подаче дегазируемой жидкости насосом через тангенциальный патрубок (патрубки) 4 в конфузор 1 поток закручивается, приобретая начальную скорость движения w1, тангенциальная составляющая которой равна wt1, осевая wz1 и радиальная wr1. Перемещаясь из цилиндрической зоны с радиусом R1 в сужающуюся область конфузора 1, примыкающую к горловине 3 с радиусом R2, рабочий поток ускоряется. Увеличиваются две составляющие скорости - и осевая, и тангенциальная. Из уравнения неразрывности, записанного для широкого и узкого сечений конфузора 1, с учетом того, что остальные компоненты скорости лежат в плоскости этих сечений:

находим осевую компоненту скорости в горловине

Для оценки тангенциальной составляющей воспользуемся приближением идеальной жидкости. В соответствии с законом сохранения момента количества движения (кинетического момента)

где m - масса элементарного объема жидкости,

тангенциальная составляющая скорости у входа в горловину равна

т.е. wt2>wt1.

Таким образом, увеличение осевой компоненты скорости с уменьшением радиуса происходит в степени - 2, а тангенциальной - в степени - 1.

Интегрируя уравнение неразрывности

оценим изменение радиальной компоненты скорости.

Учитывая, что на высоте конфузора h осевая скорость изменяется от wz1 до wz2, производная по осевой координате можно оценить как

а производная по угловой координате в предположении о наличии осевой симметрии ∂uφ/∂φ=0.

Тогда приближенное интегрирование уравнения неразрывности с учетом приближенного соотношения, вытекающего из теоремы о среднем значении

дает

или, после упрощения

Для случая нулевой скорости wr1 находим

Приведем пример оценки скорости, используя геометрические данные для лабораторной установки и типичные значения скорости. Пусть R1=25 мм, R2=5 мм, вода подается со скоростью w1=wt1=5 м/с, давление во входном патрубке, полученное в наших экспериментах, составляет p1=0,2 МПа (изб.).

Интегрированием уравнения Бернулли для течения жидкости без трения в вихревой трубке получено [Федяевский К.К., Войткунский Я.И., Фаддеев Ю.И. Гидромеханика. Л.: Судостроение, 1968. С. 177-180; Доманский И.В. Гидравлика и гидравлические машины: Учебное пособие / ЛТИ им. Ленсовета. Л., 1989. С. 73-75] соотношение для расчета зависимости давления от радиуса r

где р1 - давление рабочего потока в точке его входа в конфузор, т.е. на радиусе R1;

ρ - плотность жидкости в рабочем потоке.

Из формулы (11) следует, что с уменьшением радиуса r давление понижается и, например, у входа в горловину (r=R2) давление вблизи ее стенок будет составлять

откуда видно, что p2<p1, т.е. среднее давление у входа в горловину (на радиусе R2) существенно ниже (а на оси горловины, т.е. в центре вихря - еще ниже), чем в цилиндрической части конфузора (на радиусе R1).

При подаче в тангенциальный патрубок 8 рабочего потока (воды с плотностью ρ=1000 кг/м3) со скоростью wt1=5 м/с, в соответствии с формулой (12), в вихревом струйном аппарате возникает перепад давления

Давление у входа в горловину составит

p2=p1-Δpp=0,2-0,3=-0,1 МПа.

Таким образом, теоретически при указанных параметрах в горловине достижимы значения, близкие к абсолютному вакууму.

Это позволяет полностью или практически полностью отказаться от использования стадии термической десорбции, а значит, существенно сократить затраты энергии на проведение процессов дегазации жидкостей, в том числе деаэрации воды.

Таким образом, благодаря использованию трансформации кинетической энергии жидкости в глубокий вакуум в предлагаемом аппарате достигается высокая движущая сила процесса дегазации.

Благодаря выполнению отношения длины горловины к ее диаметру в диапазоне от 5÷15 достигается необходимое время пребывания жидкости в зоне максимального вакуума (минимального абсолютного давления) при довольно глубоком вакууме в горловине. Исследования показали, что при значениях отношения длины горловины к ее диаметру меньше 5 вакуум глубокий (85-98 кПа), но время пребывания недостаточно для существенного уменьшения концентрации кислорода в воде (с 6 мг/л до 5,4 мг/л), т.е. на 10%. При значениях отношения длины горловины к ее диаметру больше 15 вследствие значительного увеличения гидравлического сопротивления аппарата глубина вакуума снижается и достигает всего 55-60 кПа, в результате чего уменьшается движущая сила процесса дегазации и уменьшение концентрации кислорода в воде происходит с 6 мг/л до 5,2 мг/л), т.е. на 13,3%. При выполнении отношения длины горловины к ее диаметру в диапазоне от 5÷15 вакуум достигает 92-97 кПа, а уменьшение концентрации кислорода в воде с 6 мг/л до 0,7 мг/л, т.е. на 88,3%.

Установка в диффузоре сепаратора 5 жидкой и газовой фаз, содержащего конический рассекатель 6 с центральной трубкой 7, позволяет сразу после дегазации жидкостей разделять потоки газа и жидкости и исключить повторный их контакт, а значит, и резорбцию газов. Выполнение трубки 7 с возможностью осевого перемещения позволяет настроить ее положение на оптимальное в зависимости от расхода жидкости и количества выделяющихся газов. Установка в кольцевом пространстве между рассекателем 6 и диффузором 2 одной или несколько лопаток 8 с отношение высоты лопаток 8 к высоте диффузора 2 в диапазоне 0,3÷0,7 позволяет трансформировать остаток кинетической энергии вращательного движения жидкости на выходе из диффузора в энергию давления и восстановить давление в аппарате до атмосферного, предотвращая подсос жидкости и газа через выходное сечение диффузора внутрь аппарата. Наружные края лопаток 8 устанавливаются вблизи выходного сечения диффузора или вровень с ним, при этом при выдерживании отношения высоты лопаток 8 к высоте диффузора 2 в диапазоне 0,3÷0,7 в горловине 3 достигается уровень вакуума 97-98 кПа.

Исследования показали, что при уменьшении высоты лопаток менее 0,3 от высоты диффузора уровень вакуума снижается с 98 кПа до 20 кПа, то же происходит и при увеличении высоты лопаток более 0,7 от высоты диффузора.

Использование в предлагаемом аппарате дополнительно системы автоматического регулирования положения трубки 7, включающей осевой патрубок 9 с датчиком разрежения 10, датчик концентрации газа в жидкости 11 и контроллер 12 с приводом 13 осевого положения центральной трубки 7 позволяет автоматически выставлять положение среза центральной трубки в зависимости от меняющегося в процессе эксплуатации аппарата расхода жидкости и связанного с ним вакуума у входа в горловину 3 и концентрации кислорода в дегазированной воде.

Примеры конкретного выполнения. Примеры конкретного выполнения рассмотрим на наиболее распространенном примере деаэрации воды в аппарате с термической деаэрацией и в предлагаемом аппарате.

Пример конкретного выполнения 1. Аппарат термической дегазации.

Определим приращение температуры Δt, на которую необходимо нагреть воду для снижения концентрации растворенного кислорода в воде при разовом проходе через аппарат, т.е. δC[O2]0=0,6 мг/л, для сравнения с аналогичным результатом для вихревого струйного аппарата. Температура обрабатываемой воды составляла 21°C, т.е. лежала в интервале температур t=20÷30°C, для которого величина изменения концентрации составляет ΔC[O2]=9,1-7,5=1,6 мг/л [Хаммер М. Технология обработки природных и сточных вод. М.: Стройиздат, 2013. 401 с.]. Проведем расчет, используя линейную интерполяцию. Изменение концентрации кислорода в воде на каждый градус в интервале температур t=20÷30°C равно

Тогда изменению концентрации кислорода в воде на δC[O2]0=0,6 мг/л соответствует нагрев воды на температуру:

Количество энергии, необходимое для нагрева жидкости на температуру Δt, рассчитывается по формуле:

QTD=CmΔt,

где С - удельная теплоемкость жидкости, Дж/(кг·К);

m - масса нагреваемой жидкости, кг.

Количество энергии, необходимое для нагрева воды массой m=0,25 кг (именно столько воды находится в вихревом струйном аппарате при обработке) на температуру Δt=3,75°C, составляет QTD=3928 Дж.

Пример конкретного выполнения 2. Вихревой струйный аппарат.

В лабораторной установке, включавшей аппарат, схема которого показана на фиг. 1, проводили испытания степени деаэрации дистиллированной воды. Отношение длины горловины к ее диаметру составляло 2. Измерение концентрации кислорода проводили с использованием анализатора растворенного кислорода типа "ОКСИКОН-02П". Начальная концентрация кислорода в воде составляла 5,65 мг/л, концентрация на выходе из аппарата 4,95 мг/л, т.е. снижение концентрации кислорода в воде составило 0,60 мг/л.

Определим затраты энергии на снижение концентрации растворенного кислорода в вихревом струйном аппарате. Диссипированная в вихревом струйном аппарате мощность:

N=qΔp,

где q - объемный расход жидкости, м3/с;

Δр - потери давления в аппарате, кПа.

Время пребывания жидкости в аппарате составляет:

где Va - объем жидкости, находящейся в аппарате, м3, Va=0,00025 м3 (полный объем аппарата составлял 0,0005 м3);

расход воды q=1.82 м3/ч=5.05·10-4 м3/с.

Гидравлическое сопротивление аппарата составляло в среднем Δр=200 кПа. Тогда затраты энергии в ВСА на снижение концентрации кислорода на 0,6 мг/л за один проход через аппарат составляют:

Из полученных результатов можно сделать вывод, что затраты энергии на снижение количества растворенного кислорода в воде при помощи ВСА в 3928/50=78,6 раза меньше, чем для процесса термической десорбции до аналогичной концентрации.

Таким образом, предлагаемый вихревой струйный аппарат для дегазации жидкостей позволяет многократно повысить эффективность дегазацию жидкостей и снизить энергетические затраты на проведение процесса до 78,6 раз.

1. Вихревой струйный аппарат для дегазации жидкостей, содержащий корпус цилиндроконической формы с горловиной между конфузором и диффузором, один или несколько тангенциальных патрубков, присоединенный к ним при помощи трубок насос для подачи дегазируемой жидкости, отношение большего и меньшего диаметров конфузора и диффузора лежит в диапазоне 3-7, отношение большего диаметра конфузора к диаметру тангенциального патрубка лежит в диапазоне 4-6, угол при вершине конфузора составляет 28-32º, угол при вершине диффузора составляет 10-14º, отличающийся тем, что отношение длины горловины к ее диаметру лежит в диапазоне от 5-15, в диффузоре установлен сепаратор жидкой и газовой фаз, содержащий жестко закрепленный в диффузоре и соосно ему конический рассекатель с центральной трубкой, причем трубка выполнена с возможностью осевого перемещения, а в кольцевом пространстве между рассекателем и диффузором установлены одна или несколько лопаток, отношение высоты которых к высоте диффузора находится в диапазоне 0,3-0,7.

2. Вихревой струйный аппарат для дегазации жидкостей по п. 1, отличающийся тем, что в конфузоре установлен осевой патрубок, на осевом патрубке установлен датчик разрежения, а на выходе из диффузора установлен датчик концентрации газа в жидкости, выходы датчиков подключены к контроллеру, соединенному с приводом осевого положения центральной трубки.



 

Похожие патенты:

Изобретение относится к очистным сооружениям, используемым на моечных станциях автотранспорта. Флотационно-фильтрационная установка содержит заборный фильтр, всасывающий трубопровод, обратный клапан, насосный агрегат, эжектор, камеру флотации с фильтром и слоем фильтрующей загрузки.

Изобретение относится к очистным сооружениям. Отстойник с ленточным скребковым устройством содержит корпус коробчатого типа с днищем, внутри корпуса размещено скребковое устройство.

Изобретение относится к очистным сооружениям и может быть использовано на моечных станциях автотранспорта. Устройство для очистки воды содержит цилиндрический корпус с крышкой и днищем, в котором расположен активатор процесса, выполненный в виде инертной насадки.

Изобретение относится к магнитной обработке воды и может быть использовано в пищевой промышленности, медицине, фармакологии и хозяйственно-бытовой деятельности. Воду омагничивают, пропуская ее между магнитопроводом и катушками подключенного трансформатора, выполненного с возможностью подачи на него импульсного выпрямленного напряжения.

Изобретение относится к способам очистки воды. Способ умягчения воды включает перемешивание воды с адсорбентом - 95% глауконитом, предварительно обработанным хлоридом натрия.

Группа изобретений относится к получению озонированной воды. Система для увеличения среднего времени жизни озона, растворенного в жидкости, содержит входное отверстие для жидкости, расположенное для приема жидкости в систему; катионообменную смолу на основе кислоты, флюидно соединенную с входным отверстием для жидкости, причем смола приспособлена к обмену катионов в принятой жидкости с ионами Н+ на смоле; блок растворения озона, флюидно соединенный с входным отверстием для жидкости и катионообменной смолой на основе кислоты; и выходное отверстие для жидкости, флюидно соединенное с входным отверстием для жидкости, катионообменной смолой на основе кислоты и блоком растворения озона, причем блок растворения озона и катионообменная смола на основе кислоты совместно обеспечивают получение кислой ионизированной озонированной жидкости для распределения из системы через выходное отверстие для жидкости.

Изобретение может быть использовано в горнодобывающей промышленности для очистки и утилизации слабокислых металлоносных карьерных вод в условиях болотно-горного рельефа.

Изобретение относится к очистке сточных и оборотных вод, содержащих тиоцианаты (SCN-), и может быть использовано на предприятиях цветной металлургии, химической и золотодобывающей промышленности.

Изобретение может быть использовано для доочистки водопроводной, артезианской, колодезной и другой питьевой воды. Водоочиститель включает расположенные последовательно в одном продольном сосуде (1) зону замораживания воды с кольцевой морозильной камерой (2), зону вытеснения примесей из льда и зону концентрирования примесей в виде рассола, зону перехода воды из твердого состояния в жидкое с кольцевым нагревательным элементом (13), раздельные патрубки для вывода рассола и талой питьевой воды (12), расположенные в нижней части сосуда, приводное устройство перемещения стержня замороженной воды (3), а также разобщающее устройство в виде трубы (11) с кольцевой режущей частью.

Изобретение относится к очистке природных, оборотных и сточных вод. Для осуществления способа проводят окисление 4-аминобензолсульфонамида пероксидом водорода в присутствии Fe/Cu/Al-катализатора - монтмориллонита, интеркалированного смешанными полигидроксокомплексами Fe, Си и Al.

Изобретение относится к газовой промышленности и может быть использовано для транспортировки газов по трубопроводам. Скважинную продукцию газоконденсатного месторождения (I) сепарируют (1) с получением газа входной сепарации (II), водного конденсата (III) и углеводородного конденсата (IV), который дросселируют и сепарируют с получением газа стабилизации (V) и стабилизированного углеводородного конденсата (VI), который фракционируют совместно с широкой фракцией легких углеводородов (VII) с получением дистиллята среднего (VIII) и широкого (IX) фракционного состава.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для предварительного разделения газожидкостной смеси в системе сбора и подготовки продукции нефтяных и газовых скважин.

Изобретение относится к установкам подготовки сероводородсодержащей нефти и может быть использовано в нефтедобывающей промышленности при подготовке сероводородсодержащей нефти.

Предлагаются способ и установка для удаления диоксида углерода из потока углеводородного газа. Газовый поток охлаждают, расширяют до промежуточного давления и подают в ректификационную колонну в точку ввода питания в верхней части колонны.

Изобретение относится к способу термического разделения раствора, состоящего из термопластичного полимера и растворителя. Раствор нагревают под давлением выше критической точки растворителя и затем декомпрессируют в сепаратор высокого давления.

Изобретение предназначено для разделения неоднородной системы газ/пар-жидкость с низкой концентрацией дисперсной газовой/паровой фазы в жидкой фазе и может быть использовано в нефтеперерабатывающей, газовой, нефтехимической, химической, пищевой и других отраслях промышленности для разделения газожидкостных смесей.

Изобретение относится к области газовой промышленности и является усовершенствованным способом промысловой подготовки продукции газоконденсатных залежей. Способ деэтанизации нестабильного газового конденсата (НГК) включает разделение НГК на два потока.

Изобретение относится к процессам промысловой подготовки нефти. Способ дегазации и обезвоживания нефти заключается в подаче нефтегазоводяной смеси в двухсекционный нефтегазоводоразделитель, отделении в нем нефтяного газа и нагреве водонефтяной эмульсии посредством размещенных друг над другом верхней и нижней U-образных жаровых труб с горизонтально ориентированными друг относительно друга ветвями, причем в процессе дегазации и обезвоживания нефти контролируют тепловую мощность, требуемую для нагрева свободной воды в поступающей нефтегазоводяной смеси, по следующей зависимости: N=Qн(W1-W2) с Δt/(1-W1)(1-W2), где N - тепловая мощность, Qн - расход нефти, W1, - общее содержание воды в поступающей нефтегазоводяной смеси, W2 - содержание воды в водонефтяной эмульсии, с - теплоемкость воды, Δt - требуемый перепад температур на выходе и входе нефтегазоводоразделителя, сравнивают тепловую мощность, требуемую для нагрева свободной воды, с контрольной величиной тепловой мощности нижней жаровой трубы и при ее превышении этой контрольной величины производят отключение нижней жаровой трубы.

Изобретение относится к технологии гидравлических испытаний электрогидромеханических систем и их агрегатов. Устройство предусматривает установку патрубка слива в жидкостно-жидкостной эжектор конфузорно-диффузорного типа с перфорированным диффузором с экраном, который снабжен устройством углового поворота относительно оси патрубка слива, приводом поворота, причем поворот экрана меняет площадь перфорированной поверхности диффузора, через перфорацию которого поток вытекает в бак из эжектора.

Изобретение относится к оборудованию для нефтедобывающей промышленности, а именно к установкам для разделения газожидкостной смеси на газ и жидкость. Сепаратор-депульсатор содержит основной вертикальный вихревой циклон с тангенциальным подводом газожидкостной смеси, шнековым завихрителем, центральным трубопроводом для отвода газа и с расположенной под циклоном емкостью для сбора жидкости.

Изобретение относится к созданию оборудования для разделения многофазных смесей, в частности к сепараторам газ/жидкость, действие которых основано на разности плотностей фаз. Газожидкостный сепаратор содержит вертикальный цилиндрический корпус с патрубком подачи газожидкостной смеси, внутренний цилиндр с каналом, сообщенным рядом отверстий, выполненных вдоль центральной оси, с полостью канала и с полостью под нижней поверхностью направляющего аппарата и патрубком для отвода газа, винтовой направляющий аппарат, размещенный между ними и образующий в спиральном канале в потоке газожидкостной смеси участки с флуктуациями в скорости, камеру расширения с патрубком для отвода дегазированной жидкости в нижней части корпуса. Газожидкостный сепаратор снабжен диспергирующим элементом с по меньшей мере одним участком сопротивления, образующим в газожидкостной смеси участок с флуктуациями в скорости потока, участок сопротивления выполнен в виде перфорации или перфорации и выступов или перфорации и впадин на диспергирующем элементе. При этом диспергирующий элемент установлен первым со стороны патрубка подачи газожидкостной смеси над направляющим аппаратом с образованием между ними спирального канала. Техническим результатом является повышение степени отделения газа от жидкости. 1 ил., 1 табл.
Наверх