Акустическое устройство обнаружения и определения местоположения дефектов в сварных швах

Использование: для неразрушающего контроля качества сварных швов с использованием метода акустической эмиссии. Сущность изобретения заключается в том, что акустическое устройство обнаружения и определения местоположения дефектов в сварных швах содержит измерительный канал, включающий установленный на безопасном расстоянии от сварного шва преобразователь акустических сигналов, первый предварительный усилитель, полосовой фильтр, а также первый аналого-цифровой преобразователь, блок оперативного запоминания акустических сигналов и компьютер с монитором отображения выходных данных, при этом оно снабжено коммутатором, включенным между выходом преобразователя акустических сигналов и входом первого предварительного усилителя, первым амплитудным дискриминатором, соединенным с выходом первого аналого-цифрового преобразователя, вход которого подключен к выходу полосового фильтра, вход которого подключен к выходу первого предварительного усилителя, вторым амплитудным дискриминатором, причем выходы первого амплитудного дискриминатора соединены с соответствующими входами блока оперативного запоминания акустических сигналов и второго амплитудного дискриминатора, блоком записи эталонных сигналов, вход которого соединен с выходом второго амплитудного дискриминатора, блоком вычисления нормированных взаимно корреляционных функций и их максимальных значений. Технический результат: повышение помехозащищенности устройства и обеспечение возможности одностороннего доступа при использовании единственного преобразователя акустико-эмиссионных сигналов на стадии сбора данных и двух преобразователей на стадии определения местоположения дефектов. 2 ил.

 

Изобретение относится к области неразрушающего контроля качества сварных швов с использованием метода акустической эмиссии и может быть использовано для обнаружения дефектов в сварных швах и определения их местоположения в процессе сварки.

Известен способ и устройство комплексного контроля качества сварных соединений, заключающиеся в том, что на начальной стадии неразрушающего контроля используют метод акустической эмиссии, а на последующих стадиях - другие методы неразрушающего контроля. Кроме того, акустико-эмиссионный контроль выполняют в процессе сварки на стадии формирования и охлаждения сварного шва, выявляют акустико-эмиссионно-активные области, а по окончании сварки неразрушающий контроль осуществляют другими методами в объеме, не превышающем объем акустико-эмиссионно-активных областей. Кроме того, по окончании сварки контроль осуществляют ультразвуковым методом (Патент RU №2102740, МПК G01N 29/04, Приоритет от 26.05.1994).

Недостатком данного устройства является низкая достоверность обнаружения дефектов, так как нет доказательства того, что регистрируемые сигналы акустической эмиссии являются сигналами от дефектов, а не шумами и помехами, сопровождающими процесс сварки и остывания сварного шва. Кроме того, приемники акустической эмиссии в количестве не менее трех должны располагаться вдоль сварного шва и по обе стороны от него, что часто затрудняет выполнение технологического процесса сварки.

Известен способ и устройство обнаружения в процессе сварки дефектов в сварных швах и определения их местоположения по акустическим сигналам. Сущность устройства сводится к тому, что широкополосными акустико-эмиссионными приемными преобразователями в количестве не менее двух регистрируют волновую форму широкополосного акустического сигнала, по которой определяют его пиковую и среднюю амплитуды. Устройство содержит блок вычисления соотношения пиковой и средней амплитуд и определения характеристики спектра сигнала, отражающей степень его высокочастотности. В состав устройства также входят дискриминаторы по величине параметра соотношения пиковой и средней амплитуд и параметра высокочастотности сигнала, из них формируют два дополнительных к величине пиковой амплитуды порога фильтрации сигналов для процессов сварки и остывания сварного шва. В процессе сварки при регистрации одним из преобразователей сигнала, превышающего все три порога фильтрации для процесса сварки, автоматически понижают на заданный период времени пороги для этого преобразователя и соседних с ним до значений порогов фильтрации для процесса остывания сварного шва. Продолжают регистрацию акустических сигналов, после обработки которых делают вывод о качестве сварного шва (Патент RU 2156456, МПК G01N 29/14, приоритет от 07.06.1999).

Недостатком данного устройства является то, что прием сигналов акустической эмиссии во время сварки происходит при повышенных значениях порога срабатывания. Это приводит к возможному пропуску сигналов от опасных дефектов на стадии сварки, когда чувствительность приемной системы понижена. К другому недостатку следует отнести необходимость располагать преобразователи акустической эмиссии в количестве не менее двух по обе стороны от сварного шва вдоль всей его длины, что может оказаться неприемлемым в случаях одностороннего доступа к объекту контроля. Кроме того, два преобразователя не позволяют однозначно определить местоположение дефекта на сварном шве.

Наиболее близким по технической сущности и достигаемому результату (прототипом) к изобретению является устройство обнаружения дефектов в сварных швах в процессе сварки и определения их местоположения по акустическим сигналам, содержащее четыре измерительных канала, каждый из которых включает установленный вблизи сварного шва преобразователь акустических сигналов, последовательно соединенные с его выходом предварительный усилитель, полосовой фильтр, а также аналого-цифровой преобразователь, блок оперативного запоминания акустических сигналов и компьютер с монитором отображения выходных данных, причем в каждый канал дополнительно введены два аналоговых компаратора, два сумматора, источник опорного напряжения, таймер-счетчик времен прихода, оперативное запоминающее устройство времен прихода, при этом в устройстве выход фильтра соединен с входом детектора огибающей сигнала, выход которого соединен с неинвертирующими входами трех компараторов, инвертирующие входы первого и второго компараторов соединены с выходами соответственно первого и второго аналоговых сумматоров, первые входы которых объединены и соединены с выходом источника опорного напряжения, вторые входы сумматоров объединены и подключены к инвертирующему входу третьего компаратора и выходу цифроаналогового преобразователя, вход которого соединен с первым выходом устройства управления и входами цифроаналоговых преобразователей блока, выходы компараторов соединены с входами таймер-счетчика времен прихода, аналоговые выходы таймер-счетчиков времен прихода каналов блока объединены и соединены с первым входом устройства управления каналами, цифровые выходы таймер-счетчиков времен прихода каналов блока объединены и соединены двунаправленной шиной с оперативным запоминающим устройством времен прихода, выход оперативного запоминающего устройства времен прихода двунаправленной шиной соединен с устройством управления каналами, второй аналоговый выход устройства управления соединен с управляющими входами аналого-цифрового преобразователя и оперативного запоминающего устройства, цифровой вход которого соединен с выходом аналого-цифрового преобразователя, а выход двунаправленной шиной соединен со вторым цифровым входом устройства управления каналами и шиной компьютера, которая соединена с центральным процессором (Патент RU 2424510, МПК G01N 29/14, приоритет от 14.07.2009).

Недостатком устройства является необходимость использования для обнаружения дефектов в сварных швах в процессе сварки не менее трех приемных преобразователей, расположенных по обе стороны от сварного шва вдоль всей его длины. Устройство не может быть применено в случаях, когда отсутствует свободный доступ с двух сторон от сварного шва или не достаточно места для размещения преобразователей на необходимом расстоянии от сварного шва. Устройство неудобно также для использования при обнаружении дефектов на трубах небольшого диаметра.

Техническим результатом изобретения является повышение помехозащищенности устройства и обеспечение возможности одностороннего доступа для сбора данных при использовании единственного преобразователя акустико-эмиссионных сигналов.

Технический результат достигается за счет того, что предлагаемое устройство обнаружения и определения местоположения дефектов в сварных швах, содержащее измерительный канал, включающий установленный на безопасном расстоянии от сварного шва преобразователь акустических сигналов, первый предварительный усилитель, полосовой фильтр, а также первый аналого-цифровой преобразователь, блок оперативного запоминания акустических сигналов и компьютер с монитором отображения выходных данных, снабжено коммутатором, включенным между выходом преобразователя акустических сигналов и входом первого предварительного усилителя, первым амплитудным дискриминатором, соединенным с выходом первого аналого-цифрового преобразователя, вход которого подключен к выходу полосового фильтра, вход которого подключен к выходу первого предварительного усилителя, вторым амплитудным дискриминатором, причем выходы первого амплитудного дискриминатора соединены с соответствующими входами блока оперативного запоминания акустических сигналов и второго амплитудного дискриминатора, блоком записи эталонных сигналов, вход которого соединен с выходом второго амплитудного дискриминатора, блоком вычисления нормированных взаимно корреляционных функций и их максимальных значений, входы которого соединены с соответствующими выходами блока оперативного запоминания акустических сигналов и блока записи эталонных сигналов, последовательно соединенными с выходом блока вычисления взаимно корреляционных функций блоком фильтрации по уровню коэффициента корреляции, блоком вычисления интегральных энергетических параметров по отдельным группам и дискриминатором браковочного уровня, подключенным к входу компьютера с монитором отображения выходных данных, последовательно соединенными с блоком фильтрации по уровню коэффициента корреляции блоком формирования обращенных во времени сигналов, цифроаналоговым преобразователем, усилителем мощности, соединенным через коммутатор с преобразователем акустических сигналов, а также вторым измерительным каналом, включающим в себя последовательно соединенные второй преобразователь акустических сигналов с малой контактной площадкой, установленный в области сварного шва после его остывания с возможностью перемещения вдоль сварного шва, второй предварительный усилитель, второй аналого-цифровой преобразователь и графопостроитель, соединенный с компьютером с монитором отображения выходных данных.

В основу изобретения положен известный физический эффект, заключающийся в том, что в любом твердотельном акустическом волноводе при возбуждении акустических волн коротким импульсом силы, сосредоточенной в малой окрестности внутри или на поверхности волновода, возникает реверберационный акустический сигнал. Сигнал акустической эмиссии, генерируемый при развитии опасных дефектов (трещин), представляет пример такого типа сигнала. Эти сигналы имеют свойства широкополосных сигналов с большой базой. Следствием указанных свойств является возможность проведения эффективной классификации сигналов по месту положения источника методом выделения группы сигналов с высокой степенью взаимной корреляции. С большой вероятностью каждая выделенная группа будет соответствовать одному дефекту - источникам сигналов акустической эмиссии, близко расположенных друг к другу. Сигналы, принадлежащие одной группе близки по форме и, будучи обращены во времени и излучены в объект контроля, сфокусируются в точке расположения источника акустической эмиссии.

Сущность изобретения поясняется рисунками, где на Фиг. 1 представлена блок-схема предлагаемого устройства, а на Фиг. 2 - сигнал, полученный при совпадении точки касания приемного преобразователя с местоположением источника акустической эмиссии, отличающийся от других сигналов, соответствующих случаям несовпадения этих точек, резким и отчетливым пиком амплитуды.

Устройство содержит установленный на безопасном расстоянии от сварного шва преобразователь акустических сигналов 1, первый предварительный усилитель 3, полосовой фильтр 4, а также первый аналого-цифровой преобразователь 5, блок оперативного запоминания акустических сигналов 7 и компьютер с монитором отображения выходных данных 14, а также коммутатор 2, включенный между выходом преобразователя акустических сигналов 1 и входом первого предварительного усилителя 3, первый амплитудный дискриминатор 6, соединенный с выходом первого аналого-цифрового преобразователя 5, вход которого подключен к выходу полосового фильтра 4, вход которого подключен к выходу первого предварительного усилителя 3, второй амплитудный дискриминатор 8, причем выходы первого амплитудного дискриминатора соединены с соответствующими входами блока оперативного запоминания акустических сигналов 7 и второго амплитудного дискриминатора 8, блок записи эталонных сигналов 9, вход которого соединен с выходом второго амплитудного дискриминатора 8, блок вычисления нормированных взаимно корреляционных функций и их максимальных значений 10, входы которого соединены с соответствующими выходами блока оперативного запоминания акустических сигналов 7 и блока записи эталонных сигналов 9, последовательно соединенные с выходом блока вычисления взаимно корреляционных функций и их максимальных значений 10, блоком фильтрации по уровню коэффициента корреляции 11, блок вычисления интегральных энергетических параметров по отдельным группам 12 и дискриминатор браковочного уровня 13, подключенный к входу компьютера с монитором отображения выходных данных 14, последовательно соединенные с блоком фильтрации по уровню коэффициента корреляции 11, блок формирования обращенных во времени сигналов 15, цифроаналоговый преобразователь 16, усилитель мощности 17, соединенным через коммутатор 2 с преобразователем акустических сигналов 1, а также второй измерительный канал, включающий в себя последовательно соединенные второй преобразователь акустических сигналов с малой контактной площадкой 18, установленный в области сварного шва 20 свариваемого объекта 21 после его остывания с возможностью перемещения вдоль сварного шва, второй предварительный усилитель 3′, второй аналого-цифровой преобразователь 5′ и графопостроитель 19, соединенный с компьютером с монитором отображения выходных данных 14. Устройство работает следующим образом.

Для приема сигналов акустической эмиссии в процессе сварки и остывания сварного шва 20 свариваемого объекта (21) необходим один широкополосный преобразователь акустических сигналов 1. Его размещают на удобном участке поверхности свариваемого объекта 21, на безопасном отдалении от места сварки. Местоположение и посадка преобразователя акустических сигналов должны быть зафиксированы и не должны изменяться в продолжении всего процесса сбора информации.

Сбор акустико-эмиссионных данных начинается с начального момента сварки и продолжается до стадии полного остывания сварного шва. Сигналы акустической эмиссии возникают практически сразу с началом процесса сварки. Для анализа качества шва представляют интерес, прежде всего, импульсы достаточно высокой амплитуды, образующиеся в процессах формирования твердой субстанции сварного шва, его затвердевания, при образовании и развитии несплошностей структуры шва, проявляющихся в виде развития трещин различных размеров. В момент генерации сигналы акустической эмиссии, как правило, представляют собой короткие импульсы продольных и поперечных волн длительностью ~ 10-7-10-6 с. В процессе многочисленных отражений от поверхностей раздела волноведущих конструкций, длительность акустико-эмиссионных сигналов значительно увеличивается, достигая величин ~ 10-3-10-2 с. Импульсы упругих волн акустической эмиссии преобразуются с помощью преобразователя акустических сигналов 1 в электрические сигналы, которые, пройдя через коммутатор 2, усиливаются первым предварительным усилителем 3 и ограничиваются по полосе частот, проходя через полосовой фильтр 4. Сбор данных, особенно непосредственно во время сварки, происходит в режиме высокого уровня помех. Основные типы механических помех имеют максимум энергии в низкочастотной области спектра. Электромагнитные помехи возможны и в области верхних частот. Полоса пропускания фильтра 4 выбирается так, чтобы оптимальным образом отфильтровать или ослабить эти виды помех. В выборе полосы частот также принимается во внимание имеющаяся предпочтительная полоса частот при проведении корреляционной обработки сигналов. С выхода полосового фильтра 4 аналоговые электрические сигналы поступают в первый аналого-цифровой преобразователь 5, где преобразуются в дискретный код (в цифровые сигналы). Все последующие функциональные блоки выполнены в программном виде и реализуются с помощью компьютера. Амплитудный дискриминатор 6 отфильтровывает сигналы, превосходящие определенный заданный уровень А1, чтобы произвести запись в блоке 7, с целью экономии ресурсов вычислительных средств, лишь тех сигналов, которые представляют интерес для оценки качества шва. Блок 6 соединен с блоком 8, представляющим собой еще один второй дискриминатор, задачей которого является выбор из последовательности импульсов акустико-эмиссионных сигналов с амплитудами, превосходящими уровень А2, причем А2>>А1. Амплитудные пороги А1, А2 находятся из предварительных экспериментов. Порог А1 должен ограничить количество записываемых сигналов необходимой допустимой величиной, согласуемой с объемом оперативной памяти компьютера. Величина пороговой амплитуды А2 определяется уровнем сигналов, относящихся ко второму классу по нормативной амплитудной классификации степени опасности дефектов. Первый импульс, превысивший порог А2, запоминается в блоке записи эталонных сигналов 9 и становится эталонным сигналом №1. Этот сигнал в качестве эталонного участвует в процессе вычисления взаимных корреляционных функций в блоке 10 с последовательностью сигналов, записываемых в блоке 7 оперативного запоминающего устройства. В процессе сравнения с сигналом №1 формируется первая группа сигналов после вычисления последовательности нормированных взаимно корреляционных функций и оценки их максимальных значений в блоке 10. Критерий принадлежности к первой группе - превышение установленного уровня коэффициента корреляции K, величина которого определяется в результате предварительных экспериментов. Вторым эталонным сигналом, дающим начало второй группе сигналов, назначается один из последующих сигналов, превысивший порог А2 при условии слабой корреляции с первым эталонным сигналом (по тому же пороговому K критерию). Формирование второй группы происходит аналогично процессу формирования первой группы.

Проведение фильтрации по уровню коэффициента корреляции K, запоминание последовательности сигналов группы и определение энергетических оценочных параметров для акустико-эмиссионных импульсов производится в блоке 11. Точно таким же образом формируются в блоке 11 другие группы данных. Процесс продолжается до естественного его завершения. Процесс обработки данных по формированию групп АЭ сигналов начинается сразу после завершения сварки и заканчивается после полного остывания сварного шва. Каждой группе сигналов ставится в соответствие условный дефект. В блоке 12 вычисляется интегральный энергетический параметр по каждой группе сигналов в отдельности, который характеризует степень опасности дефекта. В случае превышения значения интегрального энергетического параметра по какой-либо группе браковочного уровня в блоке 13 вырабатывается сигнал «опасный дефект». Выходные данные по каждой группе акустико-эмиссионных сигналов отображаются на компьютере с монитором отображения выходных данных 14. Окончательное решение о браковке сварного шва принимается после анализа всего набора выходных данных по всем группам сигналов. Шов может быть забракован, признан «высококачественным» или «условно пригодным».

При реализации первого и третьего варианта оценки предпринимаются дальнейшие действия по определению местоположения зарегистрированных опасных дефектов. В этом случае коммутатором 2 цепь приема акустико-эмиссионных сигналов разрывается (отключается измерительный канал), и преобразователь акустических сигналов 1 подключается к цепи генерации обращенных во времени акустико-эмиссионных сигналов. Последовательности акустико-эмиссионных сигналов, соответствующие зарегистрированным опасным дефектам в блоке 11, преобразуются в блоке 15 в свои обращенные во времени копии. Цифровые коды сигналов в блоке 16 преобразуются в последовательность аналоговых сигналов, усиливаются усилителем мощности 17 и излучаются в объект контроля. Второй преобразователь акустических сигналов с малой контактной площадкой 18, трансформирует акустические отклики в электрические сигналы, которые усиливаются вторым предварительным усилителем 3′ и затем преобразуются вторым аналого-цифровым преобразователем 5′ в цифровые коды. Графопостроитель 19 выводит формы принятых сигналов на компьютер с монитором отображения выходных данных 14. О местоположении дефекта судят по появлению на компьютере с монитором отображения выходных данных 14 сигналов с характерным пиком (фиг. 2), близких по форме к автокорреляционным функциям сигналов акустической эмиссии. На фиг. 2 сигнал, полученный при совпадении точки контакта второго преобразователя акустических сигналов с малой контактной площадкой 18 с местоположением источника акустической эмиссии, отличается от других сигналов, соответствующих случаям несовпадения этих точек, резким и отчетливым пиком амплитуды.

Изобретение обеспечивает повышенную помехозащищенность, а также возможность приема сигналов акустической эмиссии и обнаружения наличия дефектов лишь одним приемником сигналов акустической эмиссии при одностороннем доступе к объекту контроля без уменьшения достоверности обнаружения наличия дефектов. Определение местоположения дефекта производится двумя преобразователями при одностороннем доступе к сварному шву.

Акустическое устройство обнаружения и определения местоположения дефектов в сварных швах, содержащее измерительный канал, включающий установленный на безопасном расстоянии от сварного шва преобразователь акустических сигналов, первый предварительный усилитель, полосовой фильтр, а также первый аналого-цифровой преобразователь, блок оперативного запоминания акустических сигналов и компьютер с монитором отображения выходных данных, отличающееся тем, что оно снабжено коммутатором, включенным между выходом преобразователя акустических сигналов и входом первого предварительного усилителя, первым амплитудным дискриминатором, соединенным с выходом первого аналого-цифрового преобразователя, вход которого подключен к выходу полосового фильтра, вход которого подключен к выходу первого предварительного усилителя, вторым амплитудным дискриминатором, причем выходы первого амплитудного дискриминатора соединены с соответствующими входами блока оперативного запоминания акустических сигналов и второго амплитудного дискриминатора, блоком записи эталонных сигналов, вход которого соединен с выходом второго амплитудного дискриминатора, блоком вычисления нормированных взаимно корреляционных функций и их максимальных значений, входы которого соединены с соответствующими выходами блока оперативного запоминания акустических сигналов и блока записи эталонных сигналов, последовательно соединенными с выходом блока вычисления нормированных взаимно корреляционных функций и их максимальных значений блоком фильтрации по уровню коэффициента корреляции, блоком вычисления интегральных энергетических параметров по отдельным группам и дискриминатором браковочного уровня, подключенным к входу монитора отображения выходных данных, последовательно соединенными с блоком фильтрации по уровню коэффициента корреляции блоком формирования обращенных во времени сигналов, цифроаналоговым преобразователем, усилителем мощности, соединенным через коммутатор с преобразователем акустической эмиссии, а также вторым измерительным каналом, включающим в себя последовательно соединенные второй преобразователь акустических сигналов с малой контактной площадкой, установленный в области сварного шва после его остывания с возможностью перемещения вдоль сварного шва, второй предварительный усилитель, второй аналого-цифровой преобразователь и графопостроитель, соединенный с компьютером с монитором отображения выходных данных.



 

Похожие патенты:

Изобретение относится к области определения одной из основных характеристик шумоизолирующих материалов - коэффициента их звукопоглощения. Способ оценки звукопоглощения волокнисто-пористых материалов заключается в измерении удельного сопротивления протеканию потоком воздуха RS и определении коэффициента звукопоглощения α на заданной частоте по регрессионным уравнениям, связывающим RS и α.

Изобретение относится к области ракетной и измерительной техники и может быть использовано при выходном контроле на предприятии-изготовителе корпуса ракетного двигателя и входном контроле на предприятии-изготовителе твердотопливного заряда.

Использование: для дефектоскопии изделий из титановых сплавов непосредственно после отливки с применением ультразвуковых волн для обнаружения внутренних дефектов.
Использование: для определения состояния подземной части железобетонных опор контактной сети. Сущность заключается в том, что возбуждают собственные колебания опоры, воздействуя на опору ударным импульсом в зоне раздела подземной и надземной частей, а о состоянии подземной части опоры судят по зависимости частот и энергий колебаний от времени из получаемой спектрограммы, сравнивая спектрограмму с эталонными спектрограммами для остродефектной, дефектной и нормальной опор данного типа.

Использование: для определения толщины стенки трубопровода. Сущность изобретения заключается в том, что измеряют толщину стенки трубопровода как функцию от положения с использованием распространения ультразвука.

Использование: для контроля качества сварки металлических деталей. Сущность изобретения заключается в том, что выполняют ультразвуковое зондирование деталей в окрестности сварки, прием и оценку отраженных ультразвуковых сигналов, при этом дополнительно оценивают отраженные ультразвуковые сигналы от структурных неоднородностей металла деталей в зоне термического влияния и настраивают чувствительность ультразвукового дефектоскопа относительно уровня этих сигналов.

Изобретение относится к области неразрушающего ультразвукового контроля изделий и используется при контроле качества продольных и кольцевых швов, а также контроле качества изделий.

Устройство относится к средствам для дистанционного контроля высоковольтного электрооборудования, находящегося под напряжением, и может быть применено в электроэнергетике.

Использование: для неразрушающего контроля дефектов. Сущность изобретения заключается в том, что посылают зондирующий электромагнитный сигнал на преобразователь, возбуждающий в контролируемом образце поверхностные акустические волны, при этом на преобразователь периодически подается зондирующий электромагнитный импульс, в котором частота дискретно меняется по линейному закону, производится измерение частотной зависимости комплексного коэффициента отражения S11 этого преобразователя ПАВ и последующее Фурье- преобразование полученной частотной зависимости, по которому можно определить местоположение и величину дефекта по амплитуде и задержке отраженных от него ПАВ, причем длительность зондирующего электромагнитного импульса выбирается таким образом, что измерения на каждой частоте ведется некоторое время, за которое ПАВ проходит расстояние большее, чем удвоенное расстояние между преобразователем и дефектом, частота заполнения электромагнитного импульса формируется с помощью цифрового синтезатора частоты.

Изобретение относится к способу изготовления снабженной полым профилем конструктивной детали из волокнистого композиционного материала (варианты). Техническим результатом данного изобретения является исключение операции дополнительной обработки заготовки конструктивной детали для закрытия открытых концов полого профиля и исключение отрицательного действия заглушки на испытание без разрушения материала заготовки конструктивной детали посредством ультразвука.

Использование: для оперативной оценки результатов ультразвуковой (УЗ) дефектоскопии. Сущность изобретения заключается в том, что устройство отображения рельсового дефектоскопа содержит подсистему измерения, содержащую несколько акустических блоков, каждый из которых содержит несколько электроакустических преобразователей, соединенных с многоканальным ультразвуковым дефектоскопом, устройство отображения результатов ультразвуковых зондирований на дисплее в виде мнемонического изображения рельса с акустическими блоками, напротив каждого из которых расположены метки электроакустических преобразователей, содержащихся в соответствующем акустическом блоке, устройство автоматического обнаружения дефектов по результатам ультразвукового зондирования, обеспечивающего выделение на дисплее меток акустических блоков и электроакустических преобразователей, обнаруживших дефект, а также отображение сигналов от дефектов и местоположение дефектов на мнемоническом изображении рельса. Технический результат: обеспечение возможности отображения наглядным образом дефектов в контролируемом изделии. 2 ил.

Использование: для неразрушающего контроля изделий из ферромагнитных материалов. Сущность изобретения заключается в том, что электромагнитно-акустический преобразователь для контроля изделий из ферромагнитного материала содержит каркас из немагнитного материала, в котором закреплены узел подмагничивания и выполненные в виде последовательно разнесенных в пространстве решеток излучатель и приемник, при этом приемник размещен на обращенном к изделию полюсе постоянного магнита или электромагнита узла намагничивания, а излучатель размещен на держателе, закрепленном в корпусе, при этом шаг между синфазными проводниками приемника пропорционален длине возбуждаемой волны, а шаг между синфазными проводниками излучателя пропорционален удвоенной длине возбуждаемой волны. Во втором варианте исполнения приемник размещен между двумя обращенными к изделию магнитными полюсами различной магнитной полярности узла намагничивания. Технический результат: повышение достоверности контроля изделий из ферромагнитных материалов. 1 з.п. ф-лы, 2 ил.

Использование: для ультразвукового контроля изделия по всему сечению. Сущность: заключается в том, что на поверхность контролируемого изделия устанавливают систему пьезоэлектрических преобразователей, чередующих работу совмещенного и раздельного режимов излучения-приема ультразвуковых колебаний и, перемещая систему пьезоэлектрических преобразователей вдоль продольной оси контролируемого изделия, излучают в него наклонным пьезоэлектрическим преобразователем ультразвуковые колебания и регистрируют эхо-сигналы, отраженные от вертикальных, вертикально ориентированных, горизонтальных и горизонтально ориентированных стандартных и нестандартных отражателей (дефектов), расположенными в проекции плоскости распространения ультразвуковых колебаний в контролируемом изделии одним или множеством прямых пьезоэлектрических преобразователей, при этом излучение ультразвуковых колебаний в контролируемое изделие производится одним пьезоэлектрическим преобразователем с заданным углом ввода ультразвуковых колебаний, а прием эхо-сигналов одним или множеством прямых пьезоэлектрических преобразователей с углом приема эхо-сигналов 0° в одном цикле. Признаком регистрации отражателей в контролируемом изделии является одновременное срабатывание индикатора при превышении порогового уровня амплитуды эхо-сигналов отраженной дифракционно-продольной волны, возбужденных прошедшей преломленной трансформированной дифракционно-продольной волной, отраженной поперечной волны и отраженной трансформированной дифрагированной продольной волны, возбужденных прошедшей преломленной трансформированной поперечной волной, и ослабление амплитуды эхо-сигналов отраженной дифракционно-продольной волны, отраженных от противоположной параллельной поверхности ввода ультразвуковых колебаний и возбужденных прошедшей преломленной трансформированной дифракционно-продольной волной. Технический результат: повышение достоверности и точности контроля. 2 з.п. ф-лы, 20 ил., 1 табл.

Изобретение относится к способам оценки напряженно-деформированного состояния (НДС) и может быть использовано для определения механических напряжений и деформаций элементов сложных конструкций расчетно-экспериментальным методом. Сущность: осуществляют проведение прямых измерений напряжений в контрольных точках, определение НДС по результатам расчета методом конечных элементов с использованием результатов прямых измерений для корректировки расчетной схемы. Осуществляют выполнение прямых измерений именно методом акустоупругости, позволяющим определить не поверхностные, а усредненные по толщине стенки напряжения, и процедуру определения силовых граничных условий, действующих на каждый элемент сложной конструкции непосредственно по результатам прямых измерений напряжений с последующим выполнением уточняющего прочностного расчета. Технический результат: повышение достоверности расчетной оценки напряженно-деформированного состояния элементов сложных конструкций при выполнении расчета методом конечных элементов за счет определения силовых граничных условий расчетной модели по результатам измерения напряжений инструментальными методами.

Использование: для неразрушающего контроля литых корпусных деталей. Сущность изобретения заключается в том, что выполняют секторное сканирование датчиком ФАР посредством качания луча с одновременным перемещением датчика ФАР по участку контроля сначала в поперечной, а затем в продольной плоскости в прямом и обратном направлении, причем направление перемещения датчика ФАР осуществляют в плоскости качания луча, проводят автоматическую запись результатов ультразвукового контроля совместно с записью координат перемещений датчика ФАР на поверхности участка контроля, посредством анализа записанных данных для каждого угла ввода секторного сканирования находят координаты ФАР на поверхности участка контроля, в которых амплитуда эхо-сигнала превышает уровень фиксации амплитуды эхо-сигнала, соответствующий дефекту, по найденным координатам на поверхности участка контроля и с учетом углов ввода секторного сканирования для каждой координаты, на которых определена максимальная амплитуда эхо-сигнала, определяют координаты точек в сечении отливки с амплитудой эхо-сигнала, превышающей уровень фиксации, причем условную протяженность дефекта определяют как расстояние между крайними положениями проекции определенных точек на плоскость сканирования. Технический результат: повышение достоверности выявления дефектов литых корпусных изделий. 4 ил.

Использование: для обнаружения и контроля дефектов изделий из металла. Сущность изобретения заключается в том, что металлическое изделие сканируют зондирующим сигналом, формирующимся передающим устройством, а возникающий в дефектном металлическом изделии сигнал принимают с помощью приемного устройства, при этом зондирующий сигнал формируют в виде 1-й гармоники сигнала, а в качестве отраженного от металлического изделия принимают 3-ю гармонику этого сигнала, возникающую в дефекте. Технический результат: повышение достоверности обнаружения дефектов. 2 з.п. ф-лы, 5 ил.

Использование: для исследования дефектов. Сущность изобретения заключается в том, что способ исследования дефектов включает в себя: первый этап подачи высокочастотного сигнала во множество катушек индуктивности, которые расположены смежно по отношению друг к другу таким образом, что они частично накладываются друг на друга, в электромагнитном ультразвуковом зонде для генерации ультразвукового колебания в исследуемом объекте; второй этап приема B-эха ультразвукового колебания с использованием каждой из множества катушек индуктивности; третий этап приема F-эха ультразвукового колебания с использованием каждой из множества катушек индуктивности; четвертый этап корректировки интенсивности сигнала B-эха, принятого каждой из множества катушек индуктивности, на основе рабочего состояния каждой из множества катушек индуктивности; и пятый этап вычисления отношения посредством деления интенсивности сигнала F-эха на интенсивность скорректированного сигнала B-эха для каждой из множества катушек индуктивности и оценки внутреннего дефекта исследуемого объекта на основе результата вычисления отношения. Технический результат: повышение точности оценки внутреннего дефекта независимо от изменения промежутка между поверхностью обследуемого объекта и катушкой индуктивности. 2 н. и 7 з.п. ф-лы, 9 ил.

Использование: для определения среднего диаметра зерна металлических изделий посредством ультразвукового излучения. Сущность изобретения заключается в том, что определение среднего диаметра зерна DЗ металла выполняют с использованием градуировочного графика отношения U′ величины структурного шума USN к импульсу релеевской волны UR, описываемого линейной зависимостью DЗ=a+b·U′, где a и b - структурные коэффициенты. При этом устройство для определения среднего диаметра зерна металлических изделий дополнительно предварительно калибруют, проводя испытания n образцов, вычисляя n значений отношения U′ и измеряя с помощью металлографического светового микроскопа n соответствующих им значений среднего диаметра зерна DЗ испытываемых образцов. Технический результат: обеспечение возможности высокой точности определения среднего диаметра зерна металлических изделий. 2 н. и 2 з.п. ф-лы, 4 ил.

Использование: для оценки качества участка сварки в стальном материале неразрушающим методом с использованием ультразвуковых волн. Сущность изобретения заключается в том, что модуль задания точки измерений задает произвольную точку измерений рядом с участком сварки внутри стального материала и предполагает виртуальную отражающую поверхность, которая содержит эту точку измерений и параллельна направлению линии сварки. Вычислительный модуль для управления матричным зондом передает ультразвуковые волны в виде волны сдвига, удовлетворяющие произвольному выражению, и фокусирует их в точке измерений через согласующую среду под заданным углом падения относительно виртуальной отражающей поверхности. Модуль выделения уровня эхо-сигнала регистрирует отраженные волны переданных ультразвуковых волн на границе раздела между участком основного металла и участком сварки. Контроллер оценивает форму участка сварки на основе отраженных волн. Технический результат: повышение достоверности оценки качества участка сварки в стальном материале. 2 н. и 6 з.п. ф-лы, 26 ил.

Изобретение относится к геофизическим, в частности сейсмоакустическим, устройствам исследований и может быть использовано для контроля характеристик преобразователей, применяющихся при мониторинге различных технических объектов. Устройство содержит излучающий элемент, монолитный блок, лазер, фотоприемное устройство, генератор, регистрирующее устройство и калибруемый сейсмоакустический преобразователь. В монолитном блоке выполнено отверстие. Калибруемый сейсмоакустический преобразователь установлен на монолитном блоке центром своей рабочей поверхности на отверстие. На центре рабочей поверхности калибруемого сейсмоакустического преобразователя закреплено зеркало. Излучающий элемент используется с отверстием и закреплен снизу монолитного блока. Отверстия монолитного блока и излучающего элемента установлены концентрично. Приемный модуль расположен в отверстии, не касаясь зеркала, а его выход соединен с помощью оптического волокна с оптическим разветвителем, фотоприемным устройством, лазером. Регистрирующие устройства подсоединены к выходу калибруемого сейсмоакустического преобразователя и фотоприемного устройства. Обеспечивается повышение достоверности и упрощение устройства. 1 ил.
Наверх