Способ производства анодной массы

Изобретение относится к способу изготовления анодной массы для анодов алюминиевых электролизеров. Способ включает приготовление анодной массы смешением зерновых фракций углеродного наполнителя в виде кокса с предварительно подготовленной связующей матрицей (СМ) на основе пылевой фракции кокса и пека в качестве связующего и регулировании гранулометрического состава (СМ) относительно заданного значения логарифма вязкости связующей матрицы корректировкой соотношения пылевых фракций при определении вязкости связующей матрицы в автоматическом режиме. Обеспечивается улучшение и стабилизация свойств анодной массы за счет управления ее пластичностью. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к электродному производству, в частности к производству анодной массы для алюминиевых электролизеров.

Анодная масса для изготовления анода алюминиевого электролизера (как самообжигающегося, так и предварительно обожженного) в расплавленном состоянии должна обладать пластичностью, достаточной для ее самоуплотнения под действием гравитационных сил в самообжигающемся аноде и при прессовании предварительно обожженного анода. Пластичность является основным критерием, по которому ведется управление производством анодной массы.

Анодная масса относится к грубодисперсным системам на основе пека-связующего и углеродного наполнителя. Пластические свойства анодной массы определяются процессами адсорбции и структурирования пека-связующего на поверхности углеродного наполнителя при смешении. Основной вклад в общую поверхность углеродного наполнителя вносит пылевая фракция.

В известном способе [1] управление производством анодной массы для самообжигающегося анода осуществляется контролем пластичности анодной массы. При этом пластичность в способе регулируется изменением содержания пека-связующего. С другой стороны в литературе показано, что количество и тонина помола пылевой фракции существенно влияют на пластичность и физико-механические свойства анодной массы [2]. Поэтому принцип управления в общеизвестном способе не позволяет учесть изменения состава и свойств пылевой фракции, связанные с вариативностью исходного сырья, а, следовательно, не позволяет поддерживать физико-механические показатели анодной массы на должном уровне.

Известны технические решения, в которых предлагаются варианты управления свойствами анодной массы изменением количества и состава пылевой фракции.

Известен способ приготовления анодной массы, который реализуется дифференцированным подбором грансостава пылевой фракции к каждому конкретному пеку-связующему. Для этого предлагается математическая зависимость между содержанием связующего и массовой долей класса - 0,08 мм в пылевой фракции коксовой шихты [3].

Однако нестабильность дисперсного состава фракции - 0,08 мм является одной из причин больших колебаний пластичности массы, что ограничивает применение предлагаемой в способе формулы. Применять данный способ в крупнотоннажном производстве не представляется возможным.

Наиболее близким к предлагаемому техническому решению по технической сущности и достигаемому результату является способ, в котором регулирование производства реализуется по результатам испытаний «связующей» матрицы, представляющей собой композицию из пылевой фракции кокса и пека-связующего [4]. Вопрос оптимизации технологических параметров производства анодной массы решается за счет того, что для конкретных условий готовится серия проб связующей матрицы на основе «типичной» пылевой фракции и пека-связующего. В пробах изменяют содержание пылевой фракции, т.е. величину адсорбционной поверхности коксовой шихты. По результатам испытаний определяют составы, соответствующие лучшему качеству связующей матрицы. Для экстремальных точек авторы рассчитывают индекс структуры связующей матрицы. Индекс структуры - отношение адсорбционной поверхности пылевой фракции к содержанию связующего в связующей матрице. Авторы предлагают использовать структурный индекс для расчета состава анодной массы в зависимости от дозировки связующего.

Недостатком известного способа является то, что для определения оптимальных технологических параметров процесса производства необходимо проводить опробование на пробах «типичной» пыли и пека-связующего, что является весьма неопределенным в рамках многотоннажного производства. Высокая вариативность поступающего сырья не позволит сколько-нибудь долго использовать полученный индекс, особенно для переходных партий анодной массы. К тому же опробование обожженной связующей матрицы достаточно продолжительно по времени, что приводит к значительному запаздыванию полученных результатов и делает принципиально невозможным автоматизацию технологии в оперативном режиме.

Задачей изобретения является повышение оперативности управления производством анодной массы, повышение качества и стабильности физико-механических свойств анодной массы, улучшение экологической обстановки на рабочих местах в промышленной зоне алюминиевых заводов.

Техническим результатом предложенного способа является:

- стабилизация и улучшение свойств анодной массы за счет оперативного изменения технологических параметров в непрерывном режиме;

- снижение расхода анодной массы и обожженных анодов в электролизном производстве;

- улучшение экологической ситуации на рабочих местах в производстве и использовании анодной массы за счет стабилизации на минимальном уровне содержания пека-связующего.

Указанный технический результат достигается тем, что в предлагаемом способе производства анодной массы, включающем смешение пылевых фракций кокса с пеком-связующим, регулирование гранулометрического состава и содержания пылевых фракций кокса и смешение зерновых фракций кокса со связующей матрицей, в соответствии с заявляемым решением подготовка связующей матрицы выделена в отдельный технологический процесс, включающий подготовку пылевой фракции раздельным дозированием не менее двух фракций, смешивание полученной пылевой фракции с пеком-связующим и автоматизированную систему управления пластичностью анодной массы путем изменения соотношения составляющих связующую матрицу фракций. Регулировку гранулометрического состава связующей матрицы относительно заданного значения логарифма вязкости связующей матрицы осуществляют корректировкой соотношения пылевых фракций при определении вязкости связующей матрицы в автоматическом режиме. Подготовленная связующая матрица определенной вязкости затем смешивается с зерновыми фракциями кокса.

Способ дополняют частные отличительные признаки, способствующие достижению поставленной задачи.

Связующую матрицу готовят из пылевых фракций с размером частиц менее 45 мкм и размером от 45 мкм до 300 мкм.

Содержание частиц менее 45 мкм пылевой фракции определяют автоматическим гранулометром.

Регулируют гранулометрический состав связующей матрицы при вязкости 100-3000 мПа·с изменением содержания пылевой фракции менее 0,045 мм от 10% до 80%.

Техническая сущность предлагаемого способа заключается в следующем.

Как отмечалось выше, анодная масса представляет собой грубодисперсную структурированную систему на основе углеродного наполнителя и пека-связующего. Основной характеристикой, определяющей готовность анодной массы на выходе технологического процесса, является величина пластичности при170-230°C. С точки зрения физической химии пластичность дисперсных структур определяется удельной поверхностью дисперсной фазы (наполнителя) и концентрацией дисперсионной среды (связующего). Учитывая, что до 95% поверхности шихты наполнителя приходится на пылевую фракцию, то грубодисперсную анодную массу в расплавленном состоянии можно представить в виде двух фаз: грубодисперсного наполнителя и связующей матрицы на основе пека-связующего и пылевой фракции кокса. В отличие от грубодисперсной анодной массы, расплавленная связующая матрица представляет собой псевдо-ньютонову жидкость, вязкость которой может быть измерена инструментальными методами непосредственно в технологическом режиме автоматическим вискозиметром. Авторами экспериментально установлена зависимость пластичности анодной массы от логарифма вязкости связующей матрицы (фиг. 1). Полученная зависимость легла в основу оперативного управления пластичностью анодной массы. Вязкость связующей матрицы зависит от трех основных факторов: от количества пека-связующего, от количества пылевой фракции кокса, от тонины помола пылевой фракции кокса. Первые два фактора взаимодополняемы, а тонина помола определяется количеством частиц размером менее 45 мкм в составе пылевой фракции кокса (фиг. 2). Кроме основных факторов вязкость связующей матрицы зависит от температуры, свойств кокса и пека-связующего. Управление несколькими факторами с учетом их взаимодействия реализуется в рамках автоматической системы управления технологическим процессом (фиг. 3).

Таким образом, в отличие от прототипа авторы предлагают перейти от опробования образцов «связующей матрицы» на основе «типичных образцов пыли и пека» к управлению вязкостью связующей матрицы непосредственно в производстве изменением количества и состава пылевой фракции кокса.

Общими признаками предлагаемого способа и способа по прототипу является то, что в обоих случаях для получения электродной массы лучшего качества предлагается подбирать оптимальное количество и состав пылевой фракции кокса, но предлагаемое техническое решение существенно отличается от прототипа тем, что

- в прототипе для управления процессом предварительно готовится серия проб связующей матрицы, отличающихся содержанием тонкодисперсной фазы, затем по результатам технологического опробования обожженных проб принимается решение о грансоставе пылевой фракции. Все это требует длительного времени и не позволяет оперативно управлять производством. В предлагаемом способе подготовка связующей матрицы выделена в отдельный технологический процесс, направленный на достижение целевого значения вязкости связующей матрицы, которое достигается контролируемым дозированием компонентов связующей матрицы.

Вышеприведенный анализ прототипа позволяет выявить новую совокупность существенных по отношению к техническому результату отличительных признаков, изложенных в формуле изобретения. Следовательно, изобретение соответствует условию "новизна".

Для проверки соответствия изобретения условию "изобретательский уровень" заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками.

Результаты поиска показали, что изобретение не вытекает явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлен анализ, характеризующийся признаками, тождественными всей совокупности отличительных признаков заявленного способа, направленной на достижение технического результата. Следовательно, изобретение соответствует условию "изобретательский уровень".

Предлагаемое техническое решение позволяет оперативно управлять пластичностью и свойствами анодной массы, не требует специальной подготовки связующей матрицы, ее обжига и технологического опробования. Учитывая, что современные технические средства позволяют измерять вязкость пыле-пековых композиций в технологическом процессе в режиме реального времени, реализация данного предложения не представляет принципиальных трудностей.

Пример реализации предлагаемого способа показан на схеме (фиг. 3).

Процесс подготовки связующей матрицы начинается дозированием дозатором (1) в смесительный модуль (2) определенного количества пека-связующего, обеспечивающего необходимые свойства анодной массы.

Пылевая фракция (размер частиц менее 0,3 мм) готовится из двух компонентов:

с размером частиц 45-300 мкм;

с размером частиц менее 45 мкм.

Каждый компонент дозируется отдельно дозаторами (3, 4) в смесительный модуль. В процессе смешения содержание частиц размером менее 45 мкм в пылевой фракции контролируется автоматическим гранулометром (5), а вязкость определяется встроенным автоматическим вискозиметром (6). Заданная по технологии вязкость связующей матрицы достигается в результате итерационного подбора соотношения компонентов пылевой фракции. Вязкость связующей матрицы зависит экспоненциально от содержания фракции менее 45 мкм. Данные с гранулометра и вискозиметра поступают в блок управления (7), который по определенному алгоритму оптимизирует состав и содержание пылевой фракции в связующей матрице в соответствии с установленной вязкостью. Подготовленная связующая матрица поступает на смешение с зерновыми фракциями коксовой шихты.

Предлагаемый способ автоматического управления производством анодной массы позволяет эффективно и оперативно управлять производством с получением анодной массы с заданной пластичностью и минимальным количеством пека-связующего.

1. Коробов М.А., Дмитриев А.А. Самообжигающиеся аноды алюминиевых электролизеров. - М.: Металлургия, 1972, с. 207.

2. Vidvei Т., Edit Т., Soriie М. «Paste Granulometry and Soderberg Anod Properties» Light Metals, 2003, p. 569.

3. Патент РФ №2116383, м.кл. C25C 3/12, 27.07.1998.

4. Патент РФ №2243296, м.кл. C25C 3/12, 22.04.2012.

1. Способ изготовления анодной массы для формирования анодов алюминиевого электролизера, включающий приготовление связующей матрицы, состоящей из пылевых фракций кокса и пека в качестве связующего, регулирование гранулометрического состава и содержания пылевых фракций кокса и смешение полученной связующей матрицы с зерновыми фракциями кокса, отличающийся тем, что связующую матрицу готовят из не менее двух пылевых фракций кокса, определяют вязкость связующей матрицы по экспоненциальной зависимости от содержания фракции менее 45 мкм и осуществляют регулирование ее гранулометрического состава относительно заданного значения логарифма вязкости изменением соотношения пылевых фракций при определении вязкости связующей матрицы в автоматическом режиме.

2. Способ по п. 1, отличающийся тем, что связующую матрицу готовят из пылевых фракций с размером частиц менее 45 мкм и размером от 45 мкм до 300 мкм.

3. Способ по п. 1, отличающийся тем, что содержание частиц менее 45 мкм пылевой фракции определяют автоматическим гранулометром.

4. Способ по п. 1, отличающийся тем, что регулируют гранулометрический состав связующей матрицы при вязкости 100-3000 мПа·с изменением содержания пылевой фракции менее 45 мкм от 10% до 80%.



 

Похожие патенты:

Изобретение относится к производству алюминия электролитическим способом на электролизерах с угольными и малорасходуемыми анодами. Способ снижения анодного перенапряжения включает подачу на анод импульсов тока высокой частоты с использованием генератора высокочастотных импульсов переменного тока и варьированием частоты импульсов тока от 104 до 108 Гц.

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия. Технический результат - повышение точности контроля токораспределения.

Изобретение относится к аноду для электролитического получения алюминия электролизом фторидных расплавов при температуре менее 930°C. Анод содержит основу, выполненную из сплава, содержащего в мас.%: железо 65-96, медь до 35, никель до 20 и одну или несколько добавок молибдена, марганца, титана, тантала, вольфрама, ванадия, циркония, ниобия, хрома, алюминия (до 1), кобальта, церия, иттрия, кремния и углерода в сумме до 5, и защитный оксидный слой, состоящий главным образом из оксидов железа и комплексных оксидов железа, меди и никеля.

Изобретение относится к анодному блоку из углерода для предварительно обожженного анода электролизера по производству алюминия. Анодный блок имеет верхнюю сторону, нижнюю сторону, размещаемую напротив верхней стороны катода, четыре боковые стороны и по меньшей мере одну канавку, выходящую на по меньшей мере одну из боковых сторон, на которой упомянутая канавка имеет максимальную длину Lmax в плоскости, параллельной нижней стороне, при этом упомянутая канавка не выходит на упомянутые нижнюю или верхнюю стороны или выходит на упомянутые верхнюю или нижнюю стороны на длину L0, меньшую половины максимальной длины Lmax.

Изобретение относится к электролизеру с обожженными анодами для производства алюминия. Электролизер содержит угольные аноды с вертикальными отверстиями и катодное устройство со слоем жидкого алюминия на подине, при этом внутренняя поверхность каждого отверстия анода защищена корундовой трубкой, высота которой превышает высоту анода, отношение этих высот удовлетворяет условию h:H=(1,05÷l,15):1, где: h - высота корундовой трубки; H - высота анода и количество отверстий в аноде составляет не менее одного.

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия.
Изобретение относится к способам формирования вторичного анода алюминиевого электролизера с самообжигающимся анодом. Способ включает использование связующего нефтекаменноугольного пека с удельной плотностью 1,25-1,30 г/см3, преимущественно 1,27-1,29 г/см3, и содержанием бенз(а)пирена не более 7 мг/г пека, приготовление подштыревой анодной массы с содержанием связующего 30-40%, преимущественно 32-36%, формирование вторичного анода из приготовленной подштыревой анодной массы.

Изобретение относится к способу производства анодной массы для анодов алюминиевого электролизера, включающий регулирование процесса производства анодной массы путем изменения соотношения компонентов в коксопековой композиции.

Изобретение относится к способу подготовки анодной массы для формирования сырых анодов электролизера производства алюминия электролизом расплавленных солей. Способ включает приготовление шихты зерновых и пылевых фракций кокса, регулирование гранулометрического состава фракций кокса, нагрев шихты и смешивание шихты с пеком-связующим, охлаждение полученной анодной массы, формирование полученных сырых анодов.

Изобретение относится к способу обслуживания алюминиевого электролизера с самообжигающимся анодом в процессе его эксплуатации. Способ включает загрузку анодной массы в анодный кожух, перемещение анодного кожуха, перемещение анодной рамы относительно зеркала катодного металла и перестановку анодных штырей, при этом для перемещения анодной рамы определяют зависимость порога магнитогидродинамической (МГД) устойчивости электролизера от положения анодной рамы относительно зеркала катодного металла с построением графика, на котором определяют нижнее и верхнее положения анодной рамы относительно зеркала катодного металла, и при достижении анодной рамой позиции, соответствующей равенству упомянутых положений рамы относительно зеркала катодного металла, определяющему заданный порог МГД-устойчивости, осуществляют перемещение анодной рамы.

Изобретение относится к области цветной металлургии, а именно к электролитическому получению алюминия с применением инертных анодов из литых композиционных материалов с коррозионно-стойким покрытием анода. Способ получения инертного анода из литого композиционного материала, одной из составляющих которого является металлический сплав системы Cu-Ni-Fe, а другой составляющей оксидное покрытие, включающий приготовление сплава системы Cu-Ni-Fe, его перегрев до заданной температуры и заливки в кокиль с последующим формированием оксидного покрытия на его поверхности, в сплав системы Cu-Ni-Fe, предварительно модифицированный церием, в количестве 0,02-0,04 мас.% при температуре 1400-1450°C при тщательном перемешивании вводят порошок феррита никеля, с размером частиц не более 0,1 мкм в количестве 5-40 мас.%, предварительно синтезированный и плакированный металлом-протектором. Техническим результатом является получение инертного анода с низким удельным электросопротивлением, высокой коррозионной стойкостью в расплаве электролита, с защитным коррозионно-стойким покрытием непосредственно в литейной форме, экономичностью, простотой изготовления и повышением качества композиционного материала. 2 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к конструкции анодного штыря электролизеров с самообжигающимся анодом и верхним токоподводом при электролитическом производстве алюминия. Анодный штырь содержит стальной цилиндрический стержень, наружная поверхность которого выполнена с резьбой, причем наружная поверхность цилиндрической части штыря, погружаемой в анод, выполнена с трубной резьбой шагом P, равным 0,2÷0,5 длины L анодного штыря, при этом отношение наружного диаметра D анодного штыря к внутреннему диаметру цилиндра D1, вписанного внутренней вершиной резьбы, находится в пределах D:D1=1:0,9÷0,6, а число заходов резьбы n составляет от 2 до 4. Обеспечивается снижение энергозатрат на производство алюминия путем уменьшения падения напряжения в контактном узле анодный штырь-анод за счет увеличения его площади, снижения усилия, которое требуется приложить при вывинчивании штыря из анода, исключения разрушения спеченной части анода при извлечении штыря. 1 ил.

Изобретение относится к электролитическому производству алюминия, а именно к способу формирования самообжигающегося анода алюминиевого электролизера с верхним токоподводом. Способ включает загрузку анодной массы в анодный кожух, установку в жидкую фазу анода вдоль продольной оси анода электролизера частично заглубленных, одинаковых по высоте металлических охлаждающих элементов, подъем анодного кожуха, перестановку стальных анодных штырей на более высокий горизонт анода с извлечением стальных штырей из тела угольного анода, загрузку дозированного количества подштыревой массы и установку штырей в лунку анода, при этом загружают анодную массу на основе нефтяного кокса с содержанием каменноугольного пека 27÷29%, устанавливают горизонтально ориентированные металлические охлаждающие элементы в одну линию между центральными рядами анодных штырей с одинаковой глубиной погружения в жидкую фазу анода, а подъем анодного кожуха осуществляют с подъемом металлических охлаждающих элементов за один прием не более чем на 3,0 см. Обеспечивается уменьшение расхода анодной массы, снижение выхода угольной пены, сокращение расхода электроэнергии и выбросов загрязняющих веществ за счет повышения качества анода. 3 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к способу оптимизации токоподвода к аноду электролизера при электролитическом получении алюминия в электролизерах с самообжигающимся анодом и верхним токоподводом. Способ включает удаление в ходе технологического сопровождения на электролизере токоподводящих штырей внутренних рядов, в проекции которых наиболее развитая трещиноватость, лунки и пустоты, до соотношения количества штырей внутренних и наружных рядов (0,98…0,88):1, при этом упомянутые штыри не устанавливают в дальнейшем. Обеспечивается повышение производительности электролизера за счет снижения потерь от обратного окисления произведенного алюминия посредством стабилизации межполюсного зазора и снижение расхода электроэнергии и трудозатрат на обслуживание электролизера. 1 ил., 1 табл.

Изобретение относится к электролизеру для производства алюминия с биполярными электродами. Электролизер содержит корпус с боковой и подовой футеровкой, концевые аноды и катоды, размещенные на противоположных сторонах корпуса электролизера, и вертикально установленные между ними нерасходуемые биполярные электроды, при этом нерасходуемые биполярные электроды, образующие модули электролиза, установлены вдоль оси электролизера рядами, между которыми расположены модули питания глиноземом и сбора алюминия. Боковая и подовая футеровка электролизера выполнена из глиноземсодержащего материала и покрыта слоем глубокопрокаленного глинозема, а модуль питания глиноземом отделен от модуля сбора алюминия плитой из огнеупорного, неэлектропроводного материала, например карбида кремния или нитрида алюминия. Биполярные электроды могут быть установлены под углом к вертикали не более 10°. Торцевые грани биполярных электродов со стороны модуля питания глиноземом защищены покрытием из огнеупорного, неэлектропроводного материала, например, карбида кремния или нитрида алюминия. Обеспечивается улучшение снабжения глиноземом биполярных электродов, снижение скорости растворения анодной части электродов и трудовых затрат на обслуживание электролизера, обеспечение устойчивой и продолжительной эксплуатации биполярных электродов и производство алюминия коммерческой чистоты (не менее 99,5% Al). 3 з.п. ф-лы, 1 ил.

Изобретение относится к способу замены анодов при электролизе расплава алюминия в алюминиевом электролизере с предварительно обожженными анодами с регенерацией тепла за счет предварительного подогрева анода. Способ включает подогрев новых анодов перед установкой его в электролизер, которые перед заменой предварительно устанавливают под укрытие электролизера, в непосредственной близи рабочих анодов в послепусковой период работы электролизера. Новые аноды выдерживают под укрытием в течение 8-48 ч, извлекают анодный остаток рабочего анода, подогретый анод устанавливают в электролизер, а на место подогретого анода устанавливают новый анод. Обеспечивается улучшение технологии электролиза. 3 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к анодному блоку электролизера с обожженными анодами для производства алюминия. Анодный блок содержит на нижней рабочей поверхности пазы и вертикальные газоотводящие трубки. Высота пазов равна 0,15-0,2 высоты анодного блока, высота вертикальных газоотводящих трубок равна 0,9-1,0 высоты анодного блока, трубки установлены с шагом, равным 0,1-0,2 длины анодного блока при продольном размещении пазов, или с шагом, равным 0,15-0,3 ширины анодного блока при поперечном размещении пазов, при этом нижние концы газоотводящих трубок совмещены с верхней гранью пазов. Обеспечивается сокращение удельного потребления электрической энергии и повышение энергетической эффективности электролизного производства за счет снижения объема газоэлектролитного слоя и уменьшения потерь напряжения на преодоление его сопротивления в течение всего срока службы анода. 2 ил.

Изобретение относится к способу и системе для определения дозировки связующего вещества для объединения с дисперсным материалом с получением электрода. Способ включает получение от необожженного электрода партии N двух показателей, а именно, смоделированную плотность в обожженном состоянии и характеристику изображения. Эти показатели и данные партии N и N-1 используют для определения дозировки связующего вещества для партии N+1. Обеспечивается повышение качества обожженного анода. 3 н. и 26 з.п. ф-лы, 9 ил.

Изобретение относится к ошиновке алюминиевого электролизера большой мощности при поперечном расположении электролизеров в корпусе электролиза. Ошиновка содержит сборные и обводные катодные шины и спуски, установленные вдоль входной и выходной сторон катодного кожуха предыдущего электролизера, в которой анодная ошиновка последующего электролизера соединена с катодными шинами предыдущего электролизера посредством стояков, при этом каждый из пакетов катодных шин, огибающих торцы электролизера, передает 35-50% тока входной стороны. Ошиновка содержит ферромагнитный экран, выполненный в виде утолщенной продольной стенки катодного кожуха, размещенной между анодными стояками входной стороны электролизера и расплавом в электролизере, при этом ферромагнитный экран выполнен по высоте и длине больше проекции расплава на экран. Обеспечивается снижение негативного воздействия магнитного поля на расплав в электролизере. 3 з.п. ф-лы, 1 ил.

Изобретение относится к способу производства углеродных электродов в виде анодов для производства алюминия. Способ включает смешивание высокоплавкого пека с температурой размягчения по Меттлеру (SPM) выше 150°C с углеродистыми твердыми веществами при температуре на 50-120°С выше SPM пека, прессование или уплотнение посредством вибрации или экструзии без преднамеренного охлаждения при температуре, близкой к температуре смешивания, передачу сырых электродов в печь для карбонизации без преднамеренного охлаждения, карбонизацию сырых электродов. Обеспечивается снижение общего потребления энергии и времени пребывания на последующей стадии карбонизации. 7 з.п. ф-лы, 2 ил., 3 табл., 2 пр.
Наверх