Способ электроосаждения композиционных покрытий на основе никеля и наноразмерного диоксида циркония

Изобретение относится к области гальванотехники и может быть использовано для нанесения на детали, работающие под нагрузкой в агрессивных средах, для повышения надежности работы изделий. Способ включает электроосаждение композиционного покрытия на основе никеля и наноразмерного диоксида циркония из электролита, содержащего соли никеля и частицы диоксида циркония, при этом в качестве солей никеля используют тетрагидрат ацетата никеля в количестве 60-90 г/л и гексагидрат хлорида никеля в количестве 7-15 г/л при рН 4,3-4,7, в которые добавляют золь диоксида циркония, содержащий хлороводородную кислоту 1,3-1,7 моль/л и частицы диоксида циркония с размерами 2-6 нм и концентрацией 15-18 г/л, в количестве 6-56 мл/л, причем процесс электроосаждения проводят при температуре электролита 45-55 °С и плотности тока 2-12 А/дм2. Технический результат: получение покрытий на основе никеля без питтинга с высокими значениями микротвердости, обеспечивающими высокую износостойкость и коррозионную стойкость, в частности, в хлоридных средах. 3 пр.

 

Изобретение относится к гальванотехнике, конкретно - к способам нанесения покрытий металлами и сплавами с повышенными значениями микротвердости, износостойкости и коррозионной стойкости, в частности в хлоридных средах, и может быть использовано для нанесения на детали, работающие под нагрузкой в агрессивных средах, что позволит повысить надежность работы изделий.

Известны процессы получения композиционных покрытий на основе никеля с включением в никелевое покрытие различных частиц неметаллов (алмаз, оксид кремния, диоксид титана, карбид кремния и др.) [1].

В качестве второй фазы для получения композиционного покрытия на основе никеля был выбран диоксид циркония, при добавлении которого в электролит никелирования происходит повышение микротвердости и коррозионной стойкости [2, 3].

Наиболее близким по технической сущности является способ получения композиционных покрытий на основе никелевой матрицы из электролита следующего состава, г/л: NiSO4·7H2O - 260, NiCl2·6H2O - 30, H3BO3 - 30; ПАВ; рН 3,0; температуре электролита 40 °С и плотности тока осаждения 3÷3,3 А/дм2, и включенных в неё частиц диоксида циркония (средний размер частиц 10-30 нм) концентрацией 10 г/л, с содержанием второй фазы в покрытии в количестве 2,9÷4,1 об.% [4]. Эти КЭП обладают улучшенными механическими свойствами: повышенными значениями микротвёрдости и износостойкости.

Существенным недостатком этого способа является неустойчивость суспензии электролит никелирования-частицы дисперсной фазы, приводящая к неравномерному распределению концентрации частиц в композиционном покрытии, нестабильности процесса включения, связанной с изменением гидродинамических условий у поверхности покрываемых изделий, к образованию питтинга.

Задачей предлагаемого изобретения является устранение указанных недостатков, то есть такой процесс получения покрытия никель-диоксид циркония, который обеспечивает устранение питтинга, получение покрытий с высокими значениями микротвердости, и обеспечивающими высокую износостойкость, высокую коррозионную стойкость с одинаковыми характеристиками по всей покрываемой поверхностью изделий благодаря равномерному распределению включающихся частиц диоксида циркония по всей поверхности и толщине покрытия.

Поставленная задача решается способом электроосаждения композиционных покрытий на основе никеля и наноразмерного диоксида циркония из электролита, содержащих соли никеля, включая хлорид никеля и частицы диоксида циркония, отличающимся тем, что с целью повышения микротвердости покрытия и его коррозионной стойкости в качестве солей никеля используют тетрагидрат ацетата никеля в количестве 60÷90 г/л, гексагидрат хлорида никеля в количестве 7÷15 г/л при рН 4,3÷4,7 с добавкой золя диоксида циркония, содержащего хлороводородную кислоту 1,5 моль/л и частицы диоксида циркония с размерами 2÷6 нм и концентрацией 15÷18 г/л, в количестве 6-56 мл/л, причем процесс электроосаждения проводят при температуре электролита 45÷55 °С и плотности тока 2÷12 А/дм2.

Введение в электролит никелирования золя диоксида циркония в концентрации 6-56 мл/л (в пересчете на чистый диоксид циркония 0,1÷1,0 г/л), агрегативно устойчивого в данном электролите, со средними размерами частиц в электролите 60-90 нм обеспечивает равномерное распределение частиц по объему электролита и одинаковую концентрацию у разных участков поверхности покрываемых изделий независимо от гидродинамических условий, причем золь-электролит готовят путем соединения электролита никелирования с золем-концентратом, содержащим хлороводородную кислоту в концентрации 1,5 моль/л и частицы диоксида циркония в концентрации 15÷18 г/л и средним диаметром 2÷6 нм.

Приготовленный по вышеуказанной методике электролит-золь обладает высокой во времени агрегативной и седиментационной устойчивостью, которые и обеспечивают вышеперечисленные его преимущества.

Примеры осуществления способа

Пример 1.

Покрытие, полученное из электролита следующего состава, г/л: Ni(CH3COO)2×4H2O - 60, NiCl2×6H2O - 7, pH - 4,3, с добавкой 6 мл/л золя диоксида циркония, содержащего хлороводородную кислоту 1,3 моль/л и частицы диоксида циркония с размером 2÷6 нм и концентрацией 16 г/л, при плотности тока 2 А/дм2, температуре электролита 45 °С, характеризуются микротвердостью 3,92 ГПа, скоростью коррозии в 1 М HCl 51 г/(м²·сут) и отсутствием питтинга.

Пример 2.

Покрытие, полученное из электролита следующего состава, г/л: Ni(CH3COO)2×4H2O - 75, NiCl2×6H2O - 10, pH - 4,5, с добавкой 29 мл/л золя диоксида циркония, содержащего хлороводородную кислоту 1,5 моль/л и частицы диоксида циркония с размером 2÷6 нм и концентрацией 17 г/л, при плотности тока 5 А/дм2, температуре электролита 50 °С, характеризуются микротвердостью 4,29 ГПа, скоростью коррозии в 1 М HCl 2,6 г/(м²·сут) и отсутствием питтинга.

Пример 3.

Покрытие, полученное из электролита следующего состава, г/л: Ni(CH3COO)2×4H2O - 90, NiCl2×6H2O - 15, pH - 4,7, с добавкой 56 мл/л золя диоксида циркония, содержащего хлороводородную кислоту 1,7 моль/л и частицы диоксида циркония с размером 2÷6 нм и концентрацией 18 г/л, при плотности тока 12 А/дм2, температуре электролита 55 °С, характеризуются микротвердостью 3,91 ГПа, скоростью коррозии в 1 М HCl 2,9 г/(м²·сут) и отсутствием питтинга.

Приведенные примеры продемонстрировали решение поставленной задачи и продемонстрировали устойчивость золя из наночастиц диоксида циркония в электролите никелирования.

Литература

1. Сайфуллин Р.С. Композиционные покрытия и материалы. - М.: Химия. - 1977. - 272 с.

2. L. Benea: Electrodeposition and tribocorrosion behavior Ni-ZrO2 // Journal Applied Electrochemistry. -2009. -Vol. 39, Р. 1671-1681.

3. F. Hou, W. Wang, H. Guo: Effect of dispersibility of ZrO2 nanoparticles in Ni-ZrO2 electroplated nanocomposite coatings on the mechanical properties of nanocomposite coatings // Applied Surface Science. -2006. -Vol. 252, P. 3812-3817.

4. W. Wang, F-Y. Hou, H. Wang, H-T. Guo: Fabrication and characterization of Ni-ZrO2 composite nano-coatings by pulse electrodeposition // Scripta Materialia. 2005. Vol. 53. pp. 613-618.

Способ электроосаждения композиционного покрытия на основе никеля и наноразмерного диоксида циркония из электролита, содержащего соли никеля и частицы диоксида циркония, отличающийся тем, что в качестве солей никеля используют тетрагидрат ацетата никеля в количестве 60-90 г/л и гексагидрат хлорида никеля в количестве 7-15 г/л при рН 4,3-4,7, в которые добавляют золь диоксида циркония, содержащий хлороводородную кислоту 1,3-1,7 моль/л и частицы диоксида циркония с размерами 2-6 нм и концентрацией 15-18 г/л, в количестве 6-56 мл/л, причем процесс электроосаждения проводят при температуре электролита 45-55 °С и плотности тока 2-12 А/дм2.



 

Похожие патенты:

Изобретение относится к области гальванотехники и может быть использовано в различных областях промышленности для повышения износостойкости режущего инструмента деталей, машин и механизмов.

Изобретение относится к области гальванотехники, в частности к электролитическим способам нанесения композиционных хромовых покрытий на металлические изделия, и может быть использовано в металлургии и машиностроении для получения коррозионно-стойких твердых хромовых покрытий.

Изобретение относится к области гальванотехники и может быть использовано для ремонта лопаток соплового аппарата газовой турбины. Согласно изобретению обеспечивают лопатку (120, 130), образующую катод и имеющую покрываемую поверхность, ограничивающую критическую зону (21), анод (19), электролитическую ванну, содержащую нерастворимые частицы, и опору (12), на которой устанавливают упомянутую лопатку в рабочем положении относительно опорной стенки (14), помещают опору (12) в упомянутую ванну и осуществляют соосаждение частиц и металла анода (19), образуя покрытие (20) на покрываемой поверхности, при этом образом упомянутый анод (19) размещен обращенным к критической зоне (21), а упомянутая опора (12) снабжена средством контроля линий тока таким образом, чтобы получить покрытие (20) с толщиной, заданной и относительно постоянной для критической зоны (21) и постепенно уменьшающейся до практически нулевого значения вдоль краев упомянутого покрытия (20).

Изобретение относится к области гальванотехники и может быть использовано в различных областях промышленности, в частности в машиностроении, производстве монет, столовых приборов, дорожных ограждений и других изделий, подверженных истиранию, коррозии и эрозии.
Изобретение относится к области гальванотехники и может быть использовано для создания композиционных электрохимических покрытий различного назначения. Способ получения композиционного покрытия включает осаждение металлического покрытия из водного электролита-суспензии с ультрадисперсными частицами алмаза.

Изобретение относится к области гальванотехники и может быть использовано в радиотехнике и электротехнике. Покрытие равномерно по всему объему серебра содержит астралены в количестве от 0,005 мас % до 0,5 мас %.

Изобретение относится к алмазно-абразивному инструменту, используемому для обработки особо твердых и хрупких материалов, преимущественно кремния, сапфира, гранатов, кварца, керамики, стекла и т.п., в частности к алмазному проволочному инструменту.

Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных износостойких покрытий. Самосмазывающееся покрытие (7) состоит из металлического слоя (8), в который включен смазочный материал (1), способный высвобождаться при износе, при этом смазочный материал (1) состоит по меньшей мере из одного однократно разветвленного органического соединения (2), имеющего по меньшей мере одну функциональную группу (5), обладающую аффинностью к металлическому слою (8) и представляющую собой тиоловую группу (6).
Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железо-дисульфид молибденовых покрытий, применяемых для восстановления и упрочнения поверхностей деталей.

Изобретение относится к восстановлению изношенных деталей машин и механизмов путем нанесения на их поверхность гальванических железных покрытий в проточном электролите.
Наверх