Способ обработки металлов

Изобретение относится к области обработки металлов давлением. Способ включает формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с обеспечением выделения тепла, достаточного для нагрева заготовки до заданной температуры. Возможность обработки заготовок некруглого поперечного сечения, например, плоских, обеспечивается за счет того, что формоизменение осуществляют двумя валками, при этом на начальной стадии обработки задают направление вращения валков в направлении протягивания заготовки, на последующей стационарной стадии задают направление вращения валков против направления протягивания заготовки, при этом заданную температуру нагрева обеспечивают выбором соотношения скорости протягивания и скорости вращения валков. 3 ил., 2 пр.

 

Изобретение относится к области производства полуфабрикатов плоского поперечного сечения методом прокатки.

Обычно в практике прокатного производства стремятся выровнять скорость прокатки со скоростью вращения валков [1], добиваясь минимального скольжения, что позволяет уменьшить износ инструмента и снизить энергетические затраты [2]. Полностью исключить скольжение при прокатке не удается из-за наличия зон опережения и отставания [3]. Из практики прокатного производства известно, что при чрезмерно больших углах захвата может реализовываться режим пробуксовки полосы относительно поверхности валков. В этом случае при конечной скорости вращения валков скорость полосы оказывается равна нулю, а скорость скольжения становится равной скорости вращения валков.

При прокатке также может применяться переднее натяжение, цель применения которого - уменьшить уровень давлений, действующих на рабочие валки, и тем самым снизить упругий прогиб валков и повысить точность получаемого проката. Переднее натяжение можно назначить такой величины, что привод валкам не потребуется, и деформация перейдет в стадию роликового волочения [4-6].

Из уровня техники известны способы деформации с одновременным нагревом заготовок до входа в очаг деформации [7, 8]. Цель применения приема нагрева заготовки перед деформацией волочением состоит в повышении уровня пластичности металла, благодаря чему становится возможным применение способа волочения, несмотря на высокий уровень растягивающих напряжений, характерных для этого способа деформации. Недостатком предложенных способов деформации является необходимость использования расплавов металлов в качестве теплоносителей для передачи тепла заготовке. Во многих случаях применение расплавов крайне нежелательно из-за возможной его диффузии в поверхностные слои заготовки.

Наиболее близким по совокупности существенных признаков является способ обработки металлов по патенту РФ №2252091 [9], включающий формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с обеспечением выделения тепла, достаточного для нагрева заготовки до заданной температуры.

В способе по прототипу протягивание осуществляется через деформирующий инструмент, в роли которого выступает волока. Нагрев от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с обеспечением выделения тепла, достаточного для нагрева заготовки до заданной температуры, осуществляется путем применения приема вращения волоки. Повышенное тепловыделение осуществляется за счет дополнительных перемещений в тангенциальном направлении рабочей поверхности волоки относительно поверхности протягиваемого изделия. Естественно, что такое тангенциальное перемещение возможно, если обе поверхности образованы вращением образующих относительно оси волочения. Тем самым способ по прототипу направлен только на обработку заготовок круглого сечения. Следует отметить, что продуктами обрабатывающих производств являются не только круглые профили, включая проволоку, но и плоский прокат, который невозможно обработать приемами способа по прототипу. Недостатком способа по прототипу являются ограниченные технологические возможности, а более конкретно, возможность обработки заготовок только круглого поперечного сечения.

Предлагаемый способ обработки металлов, как и способ по прототипу, включает формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с обеспечением выделения тепла, достаточного для нагрева заготовки до заданной температуры.

Способ отличается тем, что формоизменение осуществляют двумя валками, при этом на начальной стадии обработки задают направление вращения валков в направлении протягивания заготовки, на последующей стационарной стадии задают направление вращения валков против направления протягивания заготовки, при этом заданную температуру нагрева обеспечивают назначением соотношения скорости протягивания и скорости вращения валков.

Сущность предложения состоит в том, что на начальной стадии валки захватывают металл и втягивают его в очаг деформации, часть заготовки при этом прокатывается на расстояние, достаточное для закрепления ее устройством вытягивания. После закрепления передней части заготовки в устройстве вытягивания привод вращения реверсируют. Очаг деформации теперь имеет развитую контактную поверхность, на которой за счет трения можно создать источник тепловыделения. Мощность тепловыделения зависит от площади контактной поверхности, коэффициента трения, удельного давления и скорости скольжения. Таким образом, управлять температурой можно, изменяя скорость вращения валков. Ограничением процесса является соотношение величины контактной поверхности и поперечного сечения. При малом сечении (тонкая полоса) и большой контактной поверхности (большой диаметр валка и большое обжатие) полоса может быть порвана усилием натяжения. В противоположном случае будет наблюдаться режим пробуксовки с величиной тепловыделения, зависящей от указанных выше параметров.

На фиг. 1 показана схема начального периода прокатки в момент захвата при вращении валков в направлении прокатки. На фиг. 1 показана схема начального периода прокатки при вращении валков в направлении прокатки с выходом части заготовки, достаточной для ее закрепления в устройстве вытягивания. На фиг. 3 показана схема стационарной стадии, в которой задают направление вращения валков против направления протягивания заготовки.

Способ осуществляется следующим образом.

Формоизменение заготовки 1 осуществляют двумя валками 2 и 3 (фиг. 1), при этом на начальной стадии обработки задают направление вращения валков (показано круговыми стрелками) в направлении протягивания заготовки (показано прямой стрелкой). На фиг. 2 показано, что часть заготовки при этом прокатывается на расстояние, достаточное для закрепления ее устройством вытягивания. На последующей стационарной стадии задают направление вращения валков против направления протягивания заготовки, что показано сменой направления круговых стрелок на фиг. 3, действующая на переднюю часть заготовки сила показана вектором G.

Из закона сохранения энергии практически вся мощность, расходуемая на трение, превращается в тепло, т.е. за счет процесса трения можно повысить температуру заготовки.

Энергия, необходимая для нагрева в очаге деформации массы m металла теплоемкостью с при разности конечной и начальной температур Δt, равна

Масса m может быть рассчитана через объем V и плотность ρ:

Объем V очага деформации определяется через его длину l, ширину В и среднюю за период обжатия толщину заготовки hc:

После подстановки (4) и (5) в (3) получим

Для определения необходимой мощности N следует правую часть разделить на время нахождения металла в очаге деформации τ:

Скорость протягивания ν может быть рассчитана как путь l, который проходит частица через очаг деформации в течение времени τ:

Тогда формулу (7) можно представить в виде

Тепловыделение W на поверхностях двух валков радиусом R в результате трения в очаге деформации определяется формулой

где F=R*α*B - площадь поверхности трения, α - угол захвата, τт=ψ*τs - напряжения трения, ψ - показатель трения по Зибелю; τs - сопротивление деформации на сдвиг; Δu - скольжение.

Мощность источника тепла Nт определяется тепловыделением в единицу времени, с учетом скорости скольжения νs=Δu/τ получим:

Используя закон сохранения энергии, приравняем правые части уравнений (7) и (9):

откуда соотношение скоростей скольжения и прокатки выражается формулой

В соответствии с последней формулой можно назначить температуру нагрева заготовки и определить соотношения скоростей скольжения и прокатки для достижения заданной температуры. Необходимая скорость скольжения будет тем выше, чем выше параметры: толщина заготовки, плотность материала, его теплоемкость, и ниже параметры: показатель трения, сопротивление деформации, радиус валка и угол захвата.

Пример 1. Заготовкой является лист из электротехнической меди толщиной h0=10 мм который прокатывают до толщины h1=7 мм. Температура начала рекристаллизации электротехнической меди зависит от чистоты и степени предшествующей деформации и ее величина составляет около 200°C [10], т.е. надо обеспечить повышение температуры от комнатной 20°C на Δt=180°C.

При обжатии в валках радиусом 200 мм угол захвата равен α = ( h 0 h 1 ) / R = ( 10 7 ) / 200 = 0,122  рад . Средняя толщина заготовки равна hc=(0,010+0,007)/2=0,085 м.

При величине сопротивления деформации для меди σs=80 МПа получим сопротивление деформации на сдвиг Показатель трения ψ=0,4; плотность ρ=8900 кг/м3.

Рассчитанное по формуле (10) соотношение скоростей составляет величину k=νS/ν=58,3. Если назначить скорость протягивания ν=0,1 м/с, то следует обеспечить скорость скольжения νS=ν∗k=0,1∗58,3=5,83 м/с.

Скорость скольжения равна νS=ν-(-νв)=ν+νв, где νв - скорость вращения валков, здесь показано, что скорости протягивания и вращения валков складываются из-за противоположности их направлений. Из последней формулы следует, что νвS-ν=5,83-0,10=5,73 м/с. Для упрощения расчетов здесь не учтено, что при деформации происходит дополнительное выделение тепла. Предполагается, что это дополнительное тепловыделение компенсируется потерями тепла за счет диссипации энергии в окружающее пространство. Предложенные приемы управления процессом позволяют решить поставленную техническую задачу.

Пример 2. Заготовкой является лист из алюминиевого сплава Д16 толщиной h0=13 мм, который необходимо прокатать до толщины h1=6 мм. Температура начала рекристаллизации алюминиевого сплава Д16 зависит от чистоты и степени предшествующей деформации и ее величина составляет около 300°C, т.е. необходимо обеспечить повышение температуры от комнатной 20°C на Δt=280°C.

Обжатие происходит в валках радиусом R=250 мм. Угол захвата равен Средняя толщина заготовки при этом равна hc=(0,013+0,006)/2=0,095 м.

При величине сопротивления деформации для сплава Д16 σs=140 МПа, получим сопротивление деформации на сдвиг

Показатель трения для данного случая прокатки примем равным ψ=0,3. Плотность сплава Д16 - ρ=2770 кг/м3.

Соотношение скоростей, рассчитанное по формуле (10), составляет величину k=νS/ν=33,56. Если назначить скорость протягивания ν=0,3 м/с, то следует обеспечить скорость скольжения νS=ν∗k=0,3∗33,56=10,07 м/с.

Скорость вращения валков является разницей между скоростью скольжения и скоростью протягивания листа и равна νвS-ν=10,07-0,30=9,77 м/с. В данном расчете, выделение тепла при деформировании, для упрощения, не учитывается. Предполагается, что это дополнительное тепловыделение компенсируется потерями тепла за счет диссипации энергии в окружающее пространство.

Таким образом, здесь показано, что назначением соотношения скорости протягивания и линейной скорости вращения валков можно достичь заданной температуры нагрева.

Технический результат от применения заявляемого объекта в сравнении с прототипом заключается в расширении технологических возможностей, а более конкретно, в возможности обработки заготовок некруглого поперечного сечения, например, плоского проката.

СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ

1. Патент РФ №2135314. Способ автоматического управления процессом непрерывной прокатки с минимальным натяжением или подпором сортового металла. МПК В21В 37/52. Заявка 98104480/02 от 12.03.1998. / Пазухин М.А., Бурмин М.Г., Черкасов Ю.Д., Коробов А.И., Никитин Г.С. Опубл. 27.08.1999.

2. Логинов Ю.Н. Анализ энергозатрат при горячей прокатке листовых полуфабрикатов из алюминия. Производство проката. 2005. №4. С. 19-24.

3. Коновалов Ю.В. Справочник прокатчика. T. 1. М.: Теплотехника. 2008. 640 с.

4. А.с. СССР №799856. Роликовая волока / Новожонов В.И., Логинов Ю.Н., Железняк Л.М. Заявка от 12.04.1978 №2603354/22-02. Бюл. №4 от 30.01.1981.

5. А.с. СССР №812374. Роликовая волока / Логинов Ю.Н., Железняк Л.М. Заявка №2751614/22-02 от 13.04.1979. Опубл. 15.03.1981. Бюл. №10.

6. А.с. СССР №835554. Роликовая волока / Железняк Л.М., Стукач А.Г., Логинов Ю.Н. Заявка №2553771/22-02 от 13.12.1977. Опубл. 7.06.1981. Бюл. №21.

7. А.с. СССР №591244. Устройство для теплого волочения проволоки из малопластичного материала. / Колмогоров В.Л., Новожонов В.И., Логинов Ю.Н. Опубл. 05.02.1978. Бюл. №5.

8. А.c. СССР №710714. Устройство для теплого волочения проволоки. / Колмогоров В.Л., Новожонов В.И., Логинов Ю.Н., Бюл. №3 от 25.01.1980

9. Патент РФ №2252091. Способ волочения заготовок круглого поперечного сечения. Заявка 2004107760/02 от 15.03.2004. / Логинов Ю.Н., Буркин С.П. Опубл. 20.05.2005. Бюл. №14.

10. Патент РФ №2496103. Способ изучения первичной рекристаллизации / Демаков С.Л., Логинов Ю.Н., Илларионов А.Г., Иванова М.А., Степанов С.И. Заявка: 2012107942/28 от 01.03.2012. МПК G01N 19/00. Опубл. 20.10.2013. Бюл. №29.

Способ обработки металлов, включающий формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, при этом обеспечивают выделение тепла, достаточного для нагрева заготовки до заданной температуры, отличающийся тем, что используют деформирующий инструмент в виде двух валков, которые на начальной нестационарной стадии обработки вращают в направлении протягивания заготовки, а на последующей стационарной стадии обработки - против направления протягивания заготовки, причем температуру нагрева задают соотношением скорости протягивания заготовки и скорости вращения валков.



 

Похожие патенты:

Изобретение относится к области прокатки сляба, имеющего перед прокаткой форму усеченной пирамиды с нижним основанием (4), верхним основанием (6) и четырьмя боковыми гранями (8a, 8b, 10a, 10b).

Изобретение относится к области листопрокатного производства и может быть использовано при горячей и холодной прокатке металлических полос с обжатием их боковых кромок в вертикальных валках листопрокатных агрегатов.

Изобретение относится к области металлургии и может быть использовано при производстве толстолистового металла. Способ включает нагрев заготовки, прокатку ее в рабочих валках разного диаметра и пластическую гибку отгибающим роликом.
Изобретение относится к прокатному производству и может быть использовано при холодной прокатке стальных полос толщиной 0,3-1,5 мм на реверсивных и непрерывных станах.

Изобретение относится к машиностроению и может быть использовано при производстве колюще-режущих заградительных лент, используемых для сооружения барьеров безопасности, предназначенных для предотвращения неправомерного проникновения на режимные объекты.

Изобретение предназначено для повышения точности по ширине горячекатаных полос, прокатываемых на непрерывных широкополосных станах. Способ включает нагрев стальных заготовок и их многопроходное обжатие по толщине и ширине в горизонтальных и вертикальных валках.

Изобретение предназначено для повышения потребительских свойств холоднокатаного полосового проката, получаемого на широкополосном пятиклетевом стане 2000. Снижение продольной разнотолщинности стальных полос толщиной 1,6…2,8 мм, прокатываемых до конечной толщины 0,36…0,7 мм при их ширине 1100…1282 м, обеспечивается за счет того, что прокатку ведут при обеспечении неравенств: Δ Q P ≤0,32 или Δ Q P ≥0,44, где величина ΔQ по абсолютному значению определяется по формуле: ΔQ=|Qзад-Qпер|, где Qзад - заданное заднее натяжение, Н; Qпер - заданное переднее натяжение, Н; Р - усилие прокатки, Н.

Транспортное судно содержит металлическое изделие, поверхность которого имеет ребристый рельеф, включающий множество соседних, непрерывно прокатанных продольных ребер, проходящих вдоль поверхности.

Изобретение относится к прокатному производству и может быть использовано для получения холоднокатаной полосы из листовой низкоуглеродистой стали, стабилизированной алюминием, для изготовления изделий методом глубокой вытяжки.

Изобретение относится к области металлургии, конкретнее к способу прокатки толстых листов в интервале толщин 300-80 мм на одноклетьевом реверсивном стане, включающем разбивку ширины, кантовку, прокатку в горизонтальных и вертикальных валках, при этом прокатку листов в горизонтальных валках проводят с относительными обжатиями при соблюдении определенных соотношений, приведенных в описании, что позволяет предотвратить трещинообразование боковых граней, уменьшить величину смещения трещин от кромок раската к его центру и снизить норму боковой обрези.

Изобретение относится к области прокатки листов на реверсивных одноклетевых станах. Способ включает нагрев слябов до температуры прокатки, черновую прокатку слябов и чистовую прокатку подкатов, которую производят в одной реверсивной рабочей клети сериями из двух и более штук, при этом черновую прокатку слябов производят в подкаты толщиной, кратной 3…5 толщинам готового листа, охлаждение до заданной температуры каждого подката совмещают с черновой прокаткой последующих слябов и с чистовой прокаткой предыдущих подкатов. Повышение производительности и улучшение механических свойств листов обеспечивается за счет того, что осуществляют два типа охлаждения каждого подката - естественное воздушное охлаждение и водяное охлаждение, а отношение времени охлаждения каждого подката серии до заданной температуры к времени чистовой или черновой прокатки подката этой серии регламентировано. Прокатный стан содержит нагревательные средства, рабочую реверсивную клеть, рабочие рольганги, раскатные и транспортные рольганги, состоящие из секций, средства охлаждения подкатов, систему управления работой стана. Секция раскатного рольганга перед клетью со стороны нагревательных средств снабжена устройством водяного охлаждения, при этом количество секций перед клетью равно количеству подкатов серии, а количество секций за клетью на единицу меньше количества подкатов в серии. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области прокатки алюминиевой фольги. Способ включает изготовление алюминиевой фольги (1), а также алюминиевой фольги, снабженной интегрированными защитными элементами (6), которую в несколько проходов холодной прокатки прокатывают до толщины менее 150 мкм и при этом одновременно на двух сторонах (4a, 4b) поверхности алюминиевой фольги образуют проходящее в направлении прокатки текстурирование (5a, 5b). Повышение надежности идентификации производимой фольги и уменьшение вероятности подделки обеспечивается за счет того, что по меньшей мере из двух алюминиевых фольг (4) образуют нескрепленную слоистую структуру (8), которая в последнем проходе холодной прокатки подается к паре (9) рабочих валков, у которой по меньшей мере на одной поверхности (11) валка созданное в направлении прокатки путем шлифования рельефное структурирование (11a) поверхности было продавлено контрастно и в зависимости от мотива в пределах (6') от 10 до 50% относительно средней глубины шероховатости для образования мотива защитного элемента (6), который переносится на обращенную к поверхности валка сторону (2a) поверхности алюминиевой фольги, после чего нескрепленную слоистую структуру (8) алюминиевых фольг (1, 4') разделяют. 2 н. и 8 з.п. ф-лы, 8 ил.

Изобретение относится к области металлургии, а именно к титановому листу, который может быть использован для изготовления сепараторов топливных элементов. Титановый лист для сепаратора топливного элемента содержит основу листа из титана или титанового сплава с рекристаллизованной структурой, поверхностный слой и пассивирующий слой. Поверхностный слой содержит титановую матрицу твердого раствора кислорода (O), углерода (C) и азота (N) в титане и соединения титана с по меньшей мере одним из элементов, выбранных из кислорода (O), углерода (C) и азота (N), имеет толщину менее 1 мкм, а пассивирующий слой расположен на поверхностном слое и имеет толщину менее 5 нм. Титановый лист обеспечивает низкое контактное сопротивление. 4 н. и 6 з.п. ф-лы, 3 табл., 6 ил.

Изобретение относится к области прокатного производства. Устройство содержит индукционный нагреватель краевых участков последовательно перемещаемой полосы, размещенный за индукционным нагревателем стан холодной прокатки, установленное перед индукционным нагревателем первое устройство для перемещения полосы в виде натяжных роликов, выполненных с возможностью их наклона и регулирования силы натяжения полосы для устранения смещения ее центральной между краевыми участками части относительно центра траектории перемещения, и установленное после индукционного нагревателя и перед станом холодной прокатки второе устройство для перемещения полосы в виде роликов, зигзагообразно установленных в направлении перемещения полосы с возможностью зажима полосы с каждой из ее сторон по толщине и ограничения ее смещения по ширине. Устройство обеспечивает возможность повышения стабильности прокатки за счет предотвращения трещинообразования в стальном листе. 2 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к микромеханическому компоненту часового механизма (1), включающего в себя металлическое изделие, сформированное из однокомпонентного материала. В соответствии с указанным изобретением указанный однокомпонентный материал представляет собой тип высокоинтерстициальной аустенитной стали, содержащей по меньшей мере один неметалл в качестве межузельного атома в количестве, находящемся в пределах от 0,15% до 1,2% от полной массы указанного материала. 4 н. и 15 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к изготовлению листа, содержащего стальную подложку с нанесенным по меньшей мере на одну из ее поверхностей металлическим покрытием, содержащим Al, Mg и остальные составляющие, которые состоят из Zn, неизбежных примесей, и, при необходимости, по меньшей мере одного дополнительного элемента, выбранного из Si, Sb, Pb, Ti, Ca, Mn, Sn, La, Ce, Cr, Zr или Bi, при этом содержание по массе каждого из дополнительных элементов в металлическом покрытии составляет менее 0,3%, содержание Al по массе составляет от 0,5 до 8%, а содержание Mg по массе составляет от 0,3 до 3,3%. Способ включает стадии, на которых обеспечивают стальную подложку, наносят металлическое покрытие на по меньшей мере одну ее поверхность путем погружения подложки в ванну для получения указанного листа, осуществляют отжимание металлического покрытия при использовании по меньшей мере одного сопла, выпускающего отжимающий газ на металлическое покрытие через по меньшей мере одно выходное отверстие, при этом лист перемещается перед соплом, отжимающий газ выпускается из сопла вдоль основного направления (Е) выпуска, ограничительный кожух определяет ограниченную область по меньшей мере ниже по ходу от зоны воздействия отжимающего газа на лист, осуществляют отверждение металлического покрытия. 2 н. и 14 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к области обработки металлов давлением. Способ включает формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с обеспечением выделения тепла, достаточного для нагрева заготовки до заданной температуры. Возможность обработки заготовок некруглого поперечного сечения, например, плоских, обеспечивается за счет того, что формоизменение осуществляют двумя валками, при этом на начальной стадии обработки задают направление вращения валков в направлении протягивания заготовки, на последующей стационарной стадии задают направление вращения валков против направления протягивания заготовки, при этом заданную температуру нагрева обеспечивают выбором соотношения скорости протягивания и скорости вращения валков. 3 ил., 2 пр.

Наверх