Способ извлечения скандия из хлоридных растворов

Изобретение может быть использовано в гидрометаллургии редких металлов и предназначено для извлечения скандия из хлоридных растворов. Для осуществления способа в качестве экстрагента скандия используют смесь трибутилфосфата с элементным йодом, взятым в количестве 12,5-76 г/л, реэкстрагируют металл водой. Извлечение хлоридных солей скандия достигается за счет образования гидрофобных комплексных анионов, входящих в состав экстрагируемых соединений. Специфика взаимодействия хлоридов скандия с элементным йодом обеспечивает высокую селективность извлечения скандия из хлоридных растворов сложного состава при низких реагентных затратах. В этом процессе элементный йод постоянно находится в органической фазе и его потери с водными растворами незначительны. Способ обеспечивает упрощение процесса извлечения и очистки скандия и снижение расхода реагентов. 1 з.п. ф-лы, 4 табл., 5 пр.

 

Предлагаемое изобретение относится к гидрометаллургии редких металлов и предназначено для извлечения и очистки скандия из хлоридных растворов.

Скандий относится к редким и рассеянным элементам, не имеющим собственных руд. Он сопутствует в небольших количествах другим цветным и редким металлам. Для его извлечения нередко используют солянокислое выщелачивание. В этом случае в раствор переходят наряду со скандием большие количества других металлов. Малые концентрации скандия на фоне высоких содержаний других металлов существенно затрудняют извлечение и очистку этого ценного металла, обусловливают большие реагентные затраты на технологический процесс. В этой связи, задачей данного изобретения является разработка высокоселективного экстрагента для извлечения скандия из хлоридных растворов и последующей очистки.

Известны различные способы извлечения скандия из растворов.

Большой глубины извлечения можно достичь экстракцией скандия ди(2-этилгексил)фосфорной кислотой [Фаворская Л.В., Кошулъко Л.П., Преснецова B.А. / Технология минерального сырья. - Алма-Ата: Каз. ИМС, 1975. - Вып. 2. - C. 67-72], в том числе, используя этот реагент в составе ТВЭКС-ов [Патент RU 2417267. Способ извлечения скандия из скандийсодержащих растворов, твердый экстрагент (ТВЭКС) для его извлечения и способ получения ТВЭКСа]. Однако, наряду со скандием эффективно извлекается большое количество других элементов. Кроме того, реэкстракция металла значительно затруднена и требует использования дорогостоящей плавиковой кислоты или водорастворимых фторидов.

Хорошо известен способ извлечения скандия трибутилфосфатом, изложенный в ряде работ [Коровин С.С. Глубокое Ю.М. Петров К.И. и др. Взаимодействие хлоридов металлов с фосфорорганическими соединениями. В кн. Химия процессов экстракции. М. Наука, 1972, с. 162 171; Фаворская Л.В., Преснецова В.А., Вайнбергер Г.Н. и др. / Технология минерального сырья. - Алма-Ата: Каз. ИМС, 1972. - Вып. 2. - С. 173-177. и др.]. Недостатком данного процесса являются невысокие коэффициенты распределения скандия и, как следствие, необходимость применения очень высоких концентраций высаливателей для повышения глубины извлечения, а также больших объемов органической фазы по отношению к водной.

Наиболее близким по технической сущности к заявляемому способу является технологический процесс, предложенный Самойловым Ю.М. и Исуповым В.П. [Патент RU 2081831, Способ извлечения скандия из растворов хлорида алюминия]. Авторы работы для повышения глубины (эффективности) извлечения скандия предлагают использовать трибутилфосфат в присутствии HFeCl4 (железо - 30 г/л), с добавкой карбоновой кислоты (10 об.). При этом также хорошо экстрагируется литий, если он присутствует в исходном растворе.

Недостатком способа является проблема сохранения в экстракционной системе HFeCl4. Эта комплексная кислота разрушается в нейтральных (слабокислых средах) и перераспределяется между водной и органической фазах, что усложняет проведение процесса и делает невозможным проведение реэкстракции скандия водой без практически полного уноса хлоридов железа с реэкстрактом.

Задачами заявляемого изобретения является упрощение процесса извлечения и очистки скандия при экстракции металла из хлоридных сред и снижение расхода реагентов.

Технический результат достигается тем, что в качестве экстрагента скандия из хлоридных растворов используют смесь трибутилфосфата с элементным йодом. Повышение извлечения хлоридных солей металлов достигается за счет образования гидрофобных комплексных анионов [ClI2]-, входящих в состав экстрагируемых соединений. Специфика взаимодействия хлоридов металлов с элементным йодом обеспечивает высокую селективность процесса для хлорида скандия, экстракция которого в этой системе описывается межфазной реакцией (1).

Поскольку в органическую фазу извлекается нейтральная соль (хлорид скандия), извлечение скандия увеличивается с ростом концентрации хлоридов слабо экстрагируемых металлов. В отсутствии высаливателя, реэкстракция хлорида скандия может быть осуществлена водой. В совокупности эти факторы обеспечивают возможности глубокого извлечения скандия из хлоридных растворов сложного состава при низких реагентных затратах. В этом процессе элементный йод постоянно находится в органической фазе и его потери с водными растворами незначительны.

Разрабатываемый способ подтвержден примерами.

Пример 1. Хлоридный раствор, содержащий 2,52 г/л скандия и 3,9 моль/л хлорида натрия, контактируют с 80% растворами трибутилфосфата в керосине с добавками элементного йода в количестве 12,5-76 г/л при различных концентрациях и равных соотношениях объемов фаз (о:в=1:1). После разделения фаз водной и органической растворы анализируют на содержание скандия. Результаты приведены в таблице 1.

Полученные данные показывают, что добавки в органическую фазу элементного йода приводят к росту коэффициентов распределения скандия по сравнению с трибутилфосфатом без йода более чем на 3 порядка.

Пример 2. Скандий содержащие водные растворы при различных концентрациях хлорид-иона (хлорида магния) контактируют с 80% раствором трибутилфосфата в керосине с добавкой 50 г/л элементного йода (0,2 моль/л) при о:в=1:1 и оценивают данные распределения скандия. Результаты эксперимента приведены в таблице 2.

Приведенные данные свидетельствуют, что хлорид-ион является эффективным высаливателем скандия.

Пример 3. Хлоридный раствор, содержащий приблизительно по 0,001 моль/л хлоридов различных элементов и 4,5 моль/л хлорида аммония, контактируют с 80% раствором трибутилфосфата в керосине с добавкой 76 г/л элементного йода (0,3 моль/л) при о:в=1:1. Затем оценивают межфазное распределение элементов. Результаты эксперимента в виде коэффициентов распределения металлов (CMn+(о)/CMn+(в)) и коэффициентов разделения скандий/металл (βSc3+/Mn+=DSc3+/DMn+) приведены в таблице 3.

По данным таблицы 3 видно, что лучше скандия экстрагируется лишь железо(3+). Однако предварительное восстановление катионов железа(3+) до железа(2+) устраняет мешающее влияние этого металла при экстракции скандия из железосодержащих растворов.

Пример 4. Хлоридный раствор, содержащий 2,52 г/л скандия и 6 г-экв/л хлорид-иона (высаливатель- хлорид магния), контактируют с 80% раствором трибутилфосфата в керосине с добавкой 50 г/л элементного йода при о:в = 1:1, затем экстракт (органическую фазу) отделяют и обрабатывают водой также при равных отношениях объемов фаз. Затем реэкстрагируют металл водой. По данным анализа концентрация скандия в органической фазе после экстракции составила 0,25 г/л, а после реэкстракции водой - около 0,02 г/л. Таким образом, глубина реэкстракции металла водой составила более 92% за 1 контакт.

Пример 5. Хлоридный раствор, содержащий 0,45 г/л скандия и 7 г-экв/л хлорид-иона (высаливатель- хлорид магния), контактируют с растворами трибутилфосфата в керосине с различными концентрациями в присутствии 25 г/л элементного йода, затем экстракт (органическую фазу) отделяют и обрабатывают водой также при равных отношениях объемов фаз. После разделения фаз водной и органической растворы анализируют на содержание скандия. Результаты приведены в таблице 4.

Приведенные выше примеры показывают, что добавление в органические растворы трибутилфосфата элементного йода в количестве 12,5-76 г/л повышает коэффициенты распределения скандия более чем на 3 порядка (пример 1). Причем этот эффект особенно заметен для хлорида скандия, что обеспечивает ему наиболее высокие коэффициенты распределения и селективность (пример 3). Исключение составляет хлорид железа(3+). Для устранения мешающего влияния железа при экстракции скандия из железосодержащих растворов катионы железа(3+) предварительно восстанавливают до железа(2+) (пример 3). Глубокое извлечение хлорида скандия из водных растворов достигается при концентрациях хлорид-иона выше 4 г-экв/л (пример 2). Реэкстрагируют металл водой (пример 4). Величина коэффициентов распределения скандия сохраняется высокой, вплоть до низких содержаний) трибутилфосфата в органической фазе (пример 5).

1. Способ извлечения скандия экстракцией из хлоридных растворов с использованием трибутилфосфата в качестве компонента органической фазы, отличающийся тем, что процесс проводят смесями трибутилфосфата с элементным йодом, взятом в количестве 12,5-76 г/л, а реэкстрагируют металл водой.

2. Способ по п. 1, отличающийся тем, что при экстракции скандия из железосодержащих растворов катионы железа(3+) предварительно восстанавливают до железа(2+).



 

Похожие патенты:

Изобретение относится к области водоснабжения, а именно к установкам водоподготовки подземных вод, в частности для источников высокоцветной и высокомутной воды, и может быть использовано в системах водоснабжения баз отдыха, коттеджных поселков, садоводческих товариществ и иных потребителей воды питьевого качества.

Изобретение может быть использовано в области промышленной экологии для очистки сточных вод от токсичных соединений тяжелых металлов. Сущность предложенного технического решения заключается в применении поли (3-оксапентилендисульфида) формулы (-CH2CH2OCH2CH2SS-)n с молекулярной массой 800-2000 ед.

Изобретение относится к получению сорбентов. Проводят химическую обработку размолотого сырья, выбранного из персиковой, и/или абрикосовой, и/или сливовой косточек, следующего гранулометрического состава (в %): до 0,35 мм 10 от 0,36 до 0,55 мм 55 от 0,56 до 0,75 мм 25 от 0,76 до 1, 25 мм 10 Вначале сырье обрабатывают смесью следующих растворов: 0,5% NH4OH, 0,5% NaOH, 0,5% ЭДТА - натрия, взятых в соотношении 1:1:1, обработку проводят в автоклаве при гидромодуле 1:8, температуре 140-150°C и времени обработки 4-5 часов.

Изобретение может быть использовано для очистки концентрированных сточных вод с трудноокисляемыми органическими примесями и токсичными соединениями. Способ очистки дренажных вод полигонов твердых бытовых отходов включает стадии: электрохимической очистки 4 с выделением на аноде активного хлора, двухступенчатой фильтрации и обратноосмотического разделения.

Изобретение относится к устройствам для получения дистиллята и может быть использовано для выпаривания морской воды. Установка термической дистилляции содержит систему подвода соленой воды 3, испарительную камеру 1, распылитель 2, сепаратор 7 для отделения потока чистого пара от шлама, газодувку 10, компрессор 12, теплообменник-конденсатор 14.
Изобретение относится к технологиям переработки алюмокремниевого сырья с получением алюмокремниевого флокулянта-коагулянта, с получением сухого продукта. Осуществляют обработку нефелинового концентрата ((Na,K)2O·Al2O3·2SiO2) водным раствором серной кислоты, при этом берут 7-11% серную кислоту, производят перемешивание в течение 30-40 минут.

Изобретение относится к устройствам для доочистки водопроводной, артезианской, колодезной и другой условно питьевой воды. Устройство включает расположенные последовательно в одном продольном сосуде зону замораживания воды с кольцевой морозильной камерой, зону вытеснения примесей из фронта льда и концентрации примесей в виде рассола, зону перехода воды из твердого состояния в жидкое с кольцевым нагревательным элементом, раздельные патрубки для вывода примесей в виде рассола и талой питьевой воды, расположенные в нижней части сосуда, приводное устройство перемещения стержня замороженной воды, а также разобщающее устройство в виде трубы с кольцевой режущей частью.

Изобретение относится к технологии очистки сточных вод от ионов металлов сорбцией. Способ очистки сточных вод включает обработку воды напрягающим цементом, перемешивание и отделение осадка.

Изобретение может быть использовано для очистки природных и сточных вод промышленных предприятий от сероводорода, ионов сульфидов и гидросульфидов. Способ включает обработку исходной воды соединениями железа с последующей их регенерацией кислотой.

Изобретение относится к вариантам способа обработки исходного потока, включающего углеводородную жидкость и жидкость на водной основе. Один из вариантов включает: введение исходного потока во впуск резервуара, содержащего композитную среду, состоящую из однофазных частиц однородной формы, причем каждая частица включает смесь материала на основе целлюлозы и полимера; и контакт исходного потока с композитной средой для получения обработанного потока, причем обработанный поток содержит заданную целевую концентрацию углеводородной жидкости.

Изобретение относится к технологии получения нанопорошка иттрий-алюминиевого граната, который используют в качестве исходного порошка оксидной керамики, в диспергированном состоянии в качестве наполнителя или пигмента или в качестве исходного порошка для получения монокристалла или покрытия, нанесенного методом пламенного распыления.

Изобретение относится к новым комплексам лантанидов с основаниями Шиффа, проявляющим люминесцентные свойства. Предлагаются комплексы лантанидов с (2-(тозиламино)бензилиден- N- алкил(арил)аминами формулы LnpXmLk, где где R = Н, алкил, замещенный алкил, арил, замещенный арил, амин или замещенный амин; Х = Cl, NO3 - ; Ln - лантаниды, кроме прометия и церия; р = 1 или 2; k - целое число от 1 до 3·р; m - целое число от 0 до 3·р; (m+k)= 3·р, проявляющие люминесцентные свойства.

Изобретение относится к способу получения органических электролюминесцентных материалов на основе координационных соединений европия для последующего использования в технологии органических светоизлучающих диодов и устройств (ОСИД или OLED).
Изобретение относится к технологии выделения редкоземельных элементов (РЗЭ) из природных фосфорсодержащих концентратов. Монацитовый концентрат обрабатывают при нагревании серной кислотой c получением спека, содержащего сульфаты редкоземельных элементов.
Изобретение относится к способу получения нитрата церия(IV) электрохимическим окислением нитрата церия(III) в анодной камере электролизера, содержащей раствор с начальной концентрацией нитрата церия(III) 100-130 г/л и начальной концентрацией свободной азотной кислоты в анолите и в католите 8-12 г/л, при плотности тока на платинированном ниобиевом аноде 1-3 А/дм2.

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, которые могут быть использованы для изготовления активных элементов твердотельных лазеров ближнего и среднего ИК-диапазонов, для разработки сцинтилляторов и люминофоров, а также в производстве термостойкой керамики.
Изобретение относится к синтезу гептатанталатов европия EuTa7O19 или тербия TbTa7O19, которые могут быть использованы в качестве рентгеноконтрастных веществ, люминофоров, покрытий рентгеновских экранов, оптоматериалов, материалов для электроники.

Изобретение относится к получению нанокристаллического магнитного порошка допированного ортоферрита иттрия. Исходный раствор, содержащий нитрат железа Fe(NO3)3, нитрат иттрия Y(NO3)3 и в качестве допанта нитрат бария Ва(NO3)2, кипятят в течение 5 мин.

Изобретение относится к люминесцирующим растворимым соединениям двухвалентных лантанидов, находящих широкое применение в различных отраслях промышленности и науки.

Изобретение может быть использовано при изготовлении сырья для горячего прессования фторидной лазерной керамики. Способ получения порошка фторида стронция, активированного фторидом неодима, включает взаимодействие раствора фторида аммония с раствором, содержащим нитрат стронция и нитрат неодима.
Изобретение относится к области экологической аналитической химии. Способ включает отбор проб массой 2-4 г, их сушку, измельчение и двухкратную экстракцию целевых компонентов дихлорметаном при воздействии на пробу ультразвуковых колебаний, фильтрование объединенного экстракта и упаривание досуха при давлении не выше 0,1 мм рт.ст.

Изобретение может быть использовано в гидрометаллургии редких металлов и предназначено для извлечения скандия из хлоридных растворов. Для осуществления способа в качестве экстрагента скандия используют смесь трибутилфосфата с элементным йодом, взятым в количестве 12,5-76 гл, реэкстрагируют металл водой. Извлечение хлоридных солей скандия достигается за счет образования гидрофобных комплексных анионов, входящих в состав экстрагируемых соединений. Специфика взаимодействия хлоридов скандия с элементным йодом обеспечивает высокую селективность извлечения скандия из хлоридных растворов сложного состава при низких реагентных затратах. В этом процессе элементный йод постоянно находится в органической фазе и его потери с водными растворами незначительны. Способ обеспечивает упрощение процесса извлечения и очистки скандия и снижение расхода реагентов. 1 з.п. ф-лы, 4 табл., 5 пр.

Наверх