Астронавигационная система

Изобретение относится к высокоточным астроинерциальным навигационным системам для применения в составе пилотируемых и беспилотных летательных аппаратов. Астронавигационная система, установленная на летательном аппарате, содержит бесплатформенную инерциальную навигационную систему, включающую акселерометры, гироскопы, приемник спутниковой радионавигационной системы, навигационный вычислитель, автономный источник питания, астровизирующее устройство с вычислителем, определяющим угловые параметры визирования звезд, навигационный вычислитель, блок градиентометров, жестко связанный с бесплатформенной инерциальной навигационной системой, для возможности синхронного перемещения с летательным аппаратом и параллельно плоскости горизонта. Вычислитель бесплатформенной инерциальной навигационной системы выполнен в виде последовательно соединенных программного модуля вычисления матрицы градиентов, программного модуля счисления скорости, программного модуля счисления координат и программного модуля коррекции. Технический результат - повышение точности параметров астроинерциальной системы путем использования косвенных значений градиента вектора напряженности гравитационного поля Земли. 1 ил.

 

Изобретение относится к области приборостроения - высокоточным астроинерциальным навигационным системам для применения в составе пилотируемых и беспилотных летательных аппаратов.

Известен способ и устройство астроинерциальной навигации, включающее стабилизированную платформу с тремя карданными подвесами, на которую установлено астровизирующее устройство с двумя степенями свободы, разработанное для слежения за звездами днем или ночью. Вычислитель хранит данные позиционирования для 61 звезды, реализует алгоритмы платформенной инерциальной системы и осуществляет коррекцию определенных инерциальной системой навигационных параметров по результатам астрономических измерений. Высокая точность астроинерциальных измерений обуславливается качеством привязки оси визирования звезд к местной вертикали, которая реализуется инерциальной навигационной системой посредством установки платформы в горизонтальное положение. Астрокоррекция уменьшает погрешность определения истинного курса и ошибку ее позиционирования независимо от времени полета «Northrop star tracer aboard B-1B. Julian Moxom. Air Force Association Show. October 1983», а также работы «NAS-21 astro/inertial navigation system (United States). Jane′s Avionics, July, 1997».

Однако данным системам присущи существенные недостатки. Точность и надежность систем ограничивается большим количеством вращающихся рамок (не менее пяти), необходимостью прецизионной точности преобразователей, а также необходимостью регулярных наземных калибровок.

Наиболее близким техническим решением является бесплатформенная астроинерциальная навигационная система (Патент РФ №141801 от 13.12.2013 г, МПК G01C 21/02). В ее состав входят:

- бесплатформенная инерциальная навигационная система (БИНС), представляющая моноблок, содержащий лазерные гироскопы, акселерометры, встроенный навигационный приемник сигналов СНС ГЛОНАСС/GPS, блок питания, модуль процессора для обработки цифровой информации и выполнения вычислительных процессов в соответствии с рабочей программой, хранящейся во встроенном запоминающем устройстве (типа flash), обеспечивающий определение угловых параметров положения и решение навигационных задач;

- астровизирующее устройство (АВУ), в состав которого входят звездный датчик, блок электроники, защитный корпус, солнечный датчик;

- блок оптического сопряжения, в состав которого входят искусственный источник света, призма и фотоприемное устройство.

Звездный датчик, в свою очередь, состоит из: основания, узла ПЗС-матрицы, узла видеотракта, объектива со встроенным затвором, бленды. Блок электроники состоит из узла процессора и платы вторичного источника питания.

Недостатками указанного устройства являются ограниченная точность выходных параметров, обусловленная использованием в модуле процессора БИНС расчетных картографических данных, а не фактических значений гравитационной составляющей ускорения силы тяжести.

Технической задачей настоящего изобретения является повышение точности выходных параметров астроинерциальной системы путем использования косвенных значений градиента Г вектора напряженности гравитационного поля Земли.

Для реализации поставленной задачи в астронавигационную систему, установленную на летательном аппарате и содержащую бесплатформенную инерциальную навигационную систему, включающую акселерометры, гироскопы, приемник спутниковой радионавигационной системы, навигационный вычислитель, астровизирующее устройство с вычислителем, определяющим угловые параметры визирования звезд и подключенным к навигационному вычислителю бесплатформенной инерциальной навигационной системы, при этом выходы приемника спутниковой радионавигационной системы и гироскопов соединены с входами навигационного вычислителя бесплатформенной инерциальной навигационной системы, в систему вводят блок из трех градиентометров, жестко связанный с бесплатформенной инерциальной навигационной системой, для возможности синхронного перемещения с летательным аппаратом и параллельно плоскости горизонта, причем выход блока градиентометров подключен к входу навигационного вычислителя бесплатформенной инерциальной навигационной системы, выполненной в виде последовательно соединенных программного модуля вычисления матрицы градиентов градиентометров Г, программного модуля скорости , программного модуля счисления координат, r, ϕ, λ, wЗ и программного модуля коррекции, при этом выходы акселерометров и гироскопов соединены со входами программного модуля счетчика скорости , вторые выходы гироскопов подключены ко входу программного модуля счисления координат r, ϕ, λ, wЗ , а выход приемника спутниковой радионавигационной системы соединен с одним из входов программного модуля коррекции, второй вход блока коррекции соединен с выходом навигационного вычислителя астровизирующего устройства, причем второй выход программного модуля счисления координат r, ϕ, λ, wЗ подключен к второму входу вычислителя астровизирующего устройства, а выход программного модуля коррекции выведен к потребителю.

В программно-алгоритмическом обеспечении современных БИНС используются модели гравитационного поля, соответствующие выбранной модели фигуры Земли, например референц-эллипсоиду Красовского. Это приводит к методической ошибке определения навигационных параметров, связанной с неопределенностями гравитационного поля Земли. По имеющимся оценкам отечественных и зарубежных специалистов, недостаточная информация о параметрах гравитационного поля Земли вносит следующие ошибки:

для серийных инерциальных навигационных систем - 10% в определении координат и до 50% в определении скорости;

для разрабатываемых инерциальных навигационных систем - 40% в определении координат и до 5-75% в определении скорости;

для перспективных систем - 60% в определении координат и до 90% в определении скорости.

В настоящее время фирмой Singer (США) при разработке высокоточной инерциальной системы SKN-2440 HAINS для стратегического бомбардировщика В-1 В предложено решение задачи компенсации гравитационных возмущений при помощи цифровой карты - бортовой модели гравитационного поля Земли. В этой системе используются гравитационные данные управления картографии МО США.

Причина, сдерживающая разработки подобных навигационных систем авиационного назначения с использованием цифровых карт - бортовых моделей гравитационного поля Земли, объясняется необходимостью пересчета эталонных значений аномалий силы тяжести на высоту полета в процессе реализации алгоритмов систем корреляционно-экстремальной навигации (КЭНС). В противном случае в связи с затуханием аномалий силы тяжести с возрастанием высоты будет происходить существенное уменьшение отношения сигнал/шум наблюдений, что при использовании известных алгоритмов корреляционно-экстремальной навигации приведет к снижению точности оценивания и, в конечном итоге, к полной потере работоспособности КЭНС.

Один из способов решения задачи пересчета аномалий силы тяжести на высоту полета заключается в использовании формулы Пуассона, которая в дискретном виде записывается следующим образом.

где Δх, Δy - интервалы дискретизации задания значений аномалий силы тяжести на высоте уровня моря (или иной уровневой поверхности); m=-М/2…М/2, n=-N/2…N/2 - порядковые номера пространственных отсчетов значений Δgz соответственно в восточном Ох и северном Oy направлениях, Δg изменение ускорения силы тяжести на нулевой высоте, h - высота.

Экспериментально установлено эмпирическое правило, которое утверждает, что для выполнения достаточно точного пересчета аномалий силы тяжести на высоту h необходимо, чтобы Δх·М/2>10·h и Δy·N/2>10·h [Bernstein U., Hess R. The effect of vertical deflections on aircraft INS/ AIAA v. 14, №10, с/43-46]. В противном случае ошибки пересчета будут слишком высоки ввиду неучета влияния средних зон. Для случая, когда интервалы дискретизации одинаковы и равны 250 м для вычисления каждого значения аномалий силы тяжести на высоте 5000 м по вышеуказанной формуле необходимо принимать во внимание по крайней мере 160000 значений на уровне моря. Таким образом, для осуществления процедуры пересчета значений аномалий силы тяжести на текущую высоту полета при реализации любого из известных алгоритмов корреляционно-экстремальной навигации потребуется чрезмерно высокая производительность, не реализуемая БЦВМ, особенно учитывая необходимость навигационных определений в реальном масштабе времени. Таким образом, очевиден вывод о необходимости использования в вычислителе навигационной системы измерителей реальных значений ускорения силы тяжести.

Современные астроинерциальные системы имеют четыре режима: полностью автономный (инерциальный), астроинерциальный, инерциально-спутниковый и астроинерциально-спутниковый. Инерциально-спутниковый режим заключается в коррекции координат и скоростей ЛА измерениями приемной аппаратуры спутниковых радионавигационных систем ГЛОНАСС/GPS. В астроинерциальном и астроинерциально-спутниковом режимах основным является инерциальный режим, поскольку для множества потребителей на борту летательного аппарата (ЛА) информация о параметрах навигации и ориентации требуется автономно, вне зависимости от времени суток, погодных и сезонных условий с высокой частотой, не обеспечиваемой средствами спутниковой навигации и средствами астрокоррекции.

Силовая функция П гравитационного потенциала в общем случае является скалярной функцией координат и времени t.

где XYZ - координаты связанной с объектом прямоугольной системы MXYZ.

В данной системе координат вектор напряженности g или удельной гравитационной силы, действующей на единичную массу в точке М равен

где

Градиент Г вектора g имеет девять элементов и представляется матрицей:

Решение задачи инерциальной навигации связано с интегрированием дифференциального уравнения для абсолютного ускорения а, которое во вращающейся системе координат может быть записано как следующее векторное уравнение:

где - вектор абсолютной скорости в системе MXYZ:

- матрица абсолютной угловой скорости системы MXYZ, компоненты которой измеряются лазерными гироскопами из состава бесплатформенной инерциальной навигационной системы:

- вектор кажущегося ускорения, компоненты a X, a Y, a Z которого измеряются акселерометрами, установленными на объекте:

Дифференцирование вектора по времени в системе MXYZ дает

Векторные уравнения (6) и (10) образуют замкнутую систему счисления скорости по измерениям кажущегося ускорения и градиента Г, при этом не требуется знания пространственных угловых и линейных координат, что является важным преимуществом предложенной навигационной системы. Структура уравнений (6) и (10) инвариантна по отношению к выбору системы координат, поскольку оси БИНС и блока градиентометров согласованы непосредственно за счет механического соединения БИНС и блока градиентометров. Уравнения (6), (10) могут также быть записаны в любой другой системе координат

Изобретение поясняется чертежом, где показана структура астронавигационной системы.

Астронавигационная система содержит БИНС 1 и АВУ 2 с вычислителем 3, определяющим угловые параметры визирования звезд, выход которого соединен с одним из входов навигационного вычислителя 4 БИНС.

БИНС 1 включает в свой состав блок кварцевых акселерометров 5 (не менее трех), блок лазерных гироскопов 6 (не менее трех), блок питания 7, приемник 8 спутниковых радионавигационной сигналов системы ГЛОНАСС/GPS. Астронавигационная система также содержит блок 9 градиентометров, жестко связанный механически с корпусом БИНС, при этом выходы блока 9 градиентометров и астровизирующего устройства 2 соединены с входами навигационного вычислителя БИНС 3.

Навигационный вычислитель 4 выполнен в виде последовательно соединенных программного модуля 10 вычисления матрицы градиентов Г, программного модуля 11 счисления скорости , программного модуля 12 счисления координат r, ϕ, λ, wЗ и программного модуля 13 коррекции (спутниковой и астро), при этом выходы акселерометров и гироскопов соединены со входами программного модуля счетчика скорости , вторые выходы гироскопов подключены ко входу программного модуля счисления координат r, ϕ, λ, wЗ, а выход приемника спутниковой радионавигационной системы соединен с одним из входов программного модуля коррекции, второй вход блока коррекции соединен с выходом навигационного вычислителя астровизирующего устройства, причем второй выход программного модуля счисления координат r, ϕ, λ, wЗ, подключен ко второму входу вычислителя астровизирующего устройства, а выход программного модуля коррекции выведен к потребителю.

В рассматриваемой системе сигналы, получаемые на выходе градиентометров, не содержат информации о величине ускорения собственного движения ЛА. Для выделения сигналов о не требуется наличия блока высотомеров (значения компонентов вектора получают после совместного решения уравнений (6) и (10) в программном модуле навигационного вычислителя БИНС). Кроме того, при измерении ускорения силы тяжести на основе измерений блока градиентометров не требуется горизонтирования блока градиентометров, которые производят измерения в осях, согласованных с осями БИНС за счет механического сопряжения БИНС и блока градиентометров.

В программном модуле 11 навигационного вычислителя БИНС производится счисление скорости по измерениям кажущегося ускорения и градиента Г.

В астроинерциальном и астроинерциально-спутниковом режимах система работает следующим образом.

Как показано в прототипе, в основе работы астроинерциальных систем лежит взаимосвязь между различными системами координат (СК), используемыми в работе астроинерциальных систем. К таким системам координат относятся:

ECI - фундаментальная инерциальная СК эпохи J2000;

ECEF - геоцентрическая земная (гринвичская) СК;

ENU - топоцентрическая (местная географическая) СК;

BIMU - приборная СК БИНС (правая прямоугольная СК, оси которой связаны со строительными осями БИНС);

BST - приборная СК АВУ (правая прямоугольная СК, оси которой связаны с оптической осью и плоскостью ПЗС-матрицы АВУ).

Взаимосвязь между перечисленными СК математически удобно представлять в виде простого матричного уравнения, задающего переход от ECI к BST:

где - матрица, характеризующая угловое положение BST относительно ECI;

- матрица привязки BIMU к BST, определяемая и стабилизируемая блоком оптического сопряжения на этапе технологической юстировки АИНС;

, , - матрицы переходов от ENU к BIMU, от ECEF к ENU и от ECI к ECEF соответственно.

Матрицы и из состава уравнения (11) могут быть определены в следующем виде:

где

матрицы элементарных поворотов на углы крена γ, тангажа ϑ и курса ψ соответственно; Rpol - матрица, учитывающая смещение положения полюса Земли в эпоху t (в текущий момент времени); RS - матрица учета суточного вращения Земли; N, Р - матрицы нутации и прецессии в эпоху t соответственно.

С учетом (12)и(13) уравнение (11) можно представить в виде соотношения

или

Основной информацией, поступающей от АВУ в БИНС, являются элементы матрицы ориентации , а параметры матриц , Rpol известны до начала работы АИНС. На основе представленных соотношений (11), (14) и (15) реализуются различные режимы (варианты) астрокоррекции БИНС, включаемые оператором вручную эпизодически при условии видимости небесных светил.

Изобретение поясняется чертежом, где изображена астронавигационная система.

Система работает следующим образом.

БИНС 1 обеспечивает определение навигационных параметров и параметров угловой ориентации, сопровождаемое с течением времени шулеровским накапливанием ошибок. С выхода БИНС на вход астровизирующего устройства 2 постоянно поступает априорная (нескорректированная) информация о пространственном положении оси АВУ и связанной с ней приборной системы координат АВУ в инерциальной системе координат.

В процессе обсервации звезд астровизирующим устройством изображения звезд проецируются на ПЗС-матрицу, являющуюся чувствительным элементом АВУ.

Считывающее устройство АВУ считывает изображения звезд с ПЗС-матрицы, одновременно осуществляя фильтрацию, выделение звездоподобных образований, их селекцию по конфигурационным и энергетическим признакам.

АВУ осуществляет поиск и распознавание выделенных объектов (звезд) на основе сравнения текущего изображения звездного неба и звездного каталога, хранящегося в блоке электроники.

Навигационный вычислитель 3 АВУ 2 вычисляет параметры ориентации оптической оси астровизирующего устройства с учетом эпохи наблюдения, нутации и прецессии, аберрации и рефракции атмосферы. На основе параметров ориентации оптической оси астровизирующего устройства формируется матрица , которая передается в навигационный вычислитель 4 БИНС 1.

Имеется два режима (варианта) астрокоррекции:

1) режим компенсации погрешностей БИНС по определению углов пространственного положения - астроинерциальный спутниковый режим;

2) режим компенсации погрешностей БИНС по определению геодезических координат и угла рыскания - астроинерциальный режим.

Первый режим коррекции включается при наличии уверенного приема сигналов спутниковых навигационных систем ГЛОНАСС/GPS.

В случае отсутствия информации от приемника СНС 7 реализуется второй режим компенсации погрешностей БИНС 1 - компенсации погрешностей по определению геодезических координат и угла рыскания.

Основным режимом работы всех и рассматриваемой навигационной системы является инерциальный режим, который включен непрерывно на протяжении всего полета и функционирует вне зависимости от наличия условий для обсервации звезд и наличия приема сигналов от спутников в приемнике СНС. Режимы астрокоррекции и спутниковой коррекции являются дополнительными к инерциальному и включаются кратковременно

В инерциальном режиме с выходов блока акселерометров 5 данные поступают в блок счисления скорости навигационного вычислителя БИНС 3, туда же непрерывно поступают измерения блока градиентометров 9, предварительно обработанные в программном модуле 10 вычисления матрицы градиентов навигационного вычислителя БИНС. После счисления скорости на основе уравнений (6) и (10) с учетом реальных значений ускорения силы тяжести в навигационном вычислителе БИНС 3 определяют линейные скорости и координаты, уточненные данными блока градиентометров 9. В первом приближении выражения для вычисления координат имеют вид:

Здесь r - радиус-вектор, проведенный из центра масс в точку местоположения ЛА, ϕ, λ - широта и долгота местоположения ЛА, wЗ - угловая скорость вращения Земли.

Таким образом, основным режимом работы навигационной системы является инерциальный режим навигации. При этом основной источник ошибок инерциального определения параметров навигации - неопределенности гравитационного поля Земли устраняется за счет измерений фактических значений в реальном времени гравитационной составляющей силы тяжести градиентометрами. В навигационной системе имеется три режима коррекции - спутниковая коррекция, астрокоррекция и астроспутниковая коррекция. Каждый из режимов поддерживается реальными измерениями ускорения силы тяжести градиентометрами.

Астронавигационная система, установленная на летательном аппарате и содержащая бесплатформенную инерциальную навигационную систему, включающую акселерометры, гироскопы, приемник спутниковой радионавигационной системы, навигационный вычислитель, соединенный с источником питания, астровизирующее устройство с вычислителем, определяющим угловые параметры визирования звезд и подключенным к навигационному вычислителю бесплатформенной инерциальной навигационной системы, при этом выходы приемника спутниковой радионавигационной системы и гироскопов соединены с входами навигационного вычислителя бесплатформенной инерциальной навигационной системы, отличающаяся тем, что в систему вводят блок градиентометров, жестко связанный с бесплатформенной инерциальной навигационной системой, для возможности синхронного перемещения с летательным аппаратом, причем выход блока градиентометров подключен к входу навигационного вычислителя бесплатформенной инерциальной навигационной системы, выполненной в виде последовательно соединенных программного модуля вычисления матрицы градиентов Г, программного модуля счисления скорости , программного модуля счисления координат r, ϕ, λ, wз и программного модуля коррекции, при этом выходы акселерометров и гироскопов соединены со входами программного модуля счетчика скорости , вторые выходы гироскопов подключены ко входу программного модуля счисления координат r, ϕ, λ, wз, а выход приемника спутниковой радионавигационной системы соединен с одним из входов программного модуля коррекции, второй вход блока коррекции соединен с выходом навигационного вычислителя астровизирующего устройства, причем второй выход программного модуля счисления координат r, ϕ, λ, wз подключен ко второму входу вычислителя астровизирующего устройства, а выход программного модуля коррекции является выходом навигационного вычислителя бесплатформенной инерциальной навигационной системы и выведен к потребителю.



 

Похожие патенты:

Изобретение относится к астроинерциальным навигационным системам, в которых основная навигационная информация корректируется по сигналам, поступающим с выхода астровизирующего устройства.

Изобретение относится к астроинерциальным навигационным системам. Отличительной особенностью заявленной системы астровизирования является то, что в блок обработки выходного сигнала телеблока дополнительно введены второй коммутатор, первым входом соединенный со вторым выходом циклического счетчика, вторым входом соединенный со вторым выходом накопителя, а выходом соединенный с четвертым входом сумматора-накопителя, а в блоке обнаружения звезды и определения ее координат второй выход первого блока сравнения соединен со вторым входом пятого блока сравнения, первый вход четвертого блока сравнения соединен с выходом блока запоминания координат звезды при прохождении выходного сигнала сумматора-накопителя блока обработки выходного сигнала телеблока через ноль, а второй и третий входы соответственно со вторыми выходами второго и третьего блоков сравнения, а третий выход четвертого блока сравнения соединен с первым входом вновь введенного шестого блока сравнения, второй вход которого соединен с выходом пятого блока сравнения, а выход соединен со входом вновь введенного блока определения координат визируемой звезды, выход которого соединен со входом блока формирования признака обнаружения визируемой звезды.

Изобретение относится к измерительной технике и может найти применение в системах обнаружения воздушных объектов искусственного происхождения, перемещающихся в атмосфере Земли.

Изобретение относится к области автоматики и может быть использовано при создании систем автоматического управления (САУ) изделиями и объектами ракетно-космической техники (РКТ) и робототехнических комплексов (РТК), работающих в экстремальных внешних условиях.

Изобретение относится к системам автономной навигации и ориентации космического аппарата (КА). Технический результат - расширение функциональных возможностей.

Изобретение относится к области навигационного приборостроения и может найти применение в системах астроориентации и астронавигации космических аппаратов и авиационной техники.

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора космического пространства для наблюдения и обнаружения небесных объектов - звезд, галактик, квазаров и тел Солнечной системы, прежде всего астероидов и комет, опасных для Земли.

Изобретение относится к области навигационных систем. .

Изобретение относится к измерительной технике и может найти применение в бортовых системах управления космическими аппаратами (КА) для определения автономных оценок орбиты и ориентации КА.

Изобретение относится к мореходной астрономии и может быть использовано для определения координат места по наблюдению светил. .

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора космического пространства для обнаружения астероидов и комет, опасных для Земли. Технический результат - расширение функциональных возможностей. Изобретение включает способ обзора космического пространства между Солнцем и Землей, из-за засветки Солнцем недоступного для наблюдения с Земли или околоземных орбит. Обзор этой части космического пространства производится с одного или двух космических аппаратов, расположенных на орбите Земли на постоянном расстоянии от нее. Обзор космического пространства производится в пределах наблюдаемого с космического аппарата контура конуса с вершиной в центре Земли и осью, направленной на Солнце, ограниченного со стороны Солнца углом засветки Солнцем аппаратуры наблюдения космического аппарата. Полный или частичный обзор данной области космического пространства может осуществляться либо в режиме покадровой съемки с заданной экспозицией, либо в режиме сканирования по полосам с заданной угловой скоростью с использованием матричных фотоприемных приборов с зарядовой связью со считыванием сигналов в режиме с временной задержкой и накоплением. Получаемая информация передается на наземные средства приема информации для ее последующей обработки. 12 з.п.ф-лы, 5 ил.

Изобретение относится к области приборостроения и может найти применение в высокоточных астроинерциальным навигационных системах летательных аппаратов (ЛА). Технической результат - повышение точности выходных параметров за счет учета в процессе измерений в реальном времени изменения гравитационных составляющих ускорения силы тяжести. Для этого в астронавигационную систему ЛА дополнительно вводят гравиметры, блок высотомеров для измерения вертикального ускорения летательного аппарата, вычислитель ускорения силы тяжести и сумматоры, при этом гравиметры устанавливают на отдельной платформе, выполненной с возможностью синхронного перемещения с перемещением летательного аппарата и параллельно плоскости горизонта, причем выходы гравиметров и блока высотомеров для измерения вертикального ускорения летательного аппарата соединяют с входами вычислителя ускорения силы тяжести, выходы которого подключены через сумматоры к навигационному вычислителю бесплатформенной инерциальной навигационной системы, а выходы акселерометров соединяют с вторыми входами сумматоров. 1 ил.

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора космического пространства для наблюдения и обнаружения небесных объектов, прежде всего астероидов и комет, опасных для Земли, летящих к Земле со всех направлений, в том числе и со стороны Солнца, определения времени и района падения небесного тела на Землю и выдачи заблаговременного сообщения органам государственного управления и заинтересованным абонентам для предотвращения угрожающего события или принятия мер по снижению катастрофических последствий от возможного столкновения. Технический результат – расширение функциональных возможностей. Для этого космическая система обзора небесной сферы для наблюдения небесных объектов и обнаружения опасных для Земли небесных тел - астероидов и комет - включает в себя наземный информационно-управляющий центр и два космических комплекса. Наземный информационно-управляющий центр системы управляет всеми средствами космической системы, организует обзор космического пространства одновременно двумя космическими комплексами и осуществляет обработку поступающей от них информации. Первый космический комплекс с космическим аппаратом (аппаратами), установленным на геостационарной или близкой к ней геосинхронной орбите, регулярно осматривает всю небесную сферу, кроме околосолнечной области, которую невозможно наблюдать из-за засветки Солнцем аппаратуры наблюдения. Второй космический комплекс с космическим аппаратом (аппаратами), установленным на орбите Земли на расстоянии от 40 млн км до 80 млн км, регулярно осматривает сбоку пространство между Солнцем и Землей, недоступное для наблюдения с Земли. Это пространство представляет собой конус, вершина которого расположена в центре Земли, с осью, направленной на центр Солнца, и углом при вершине, равным углу засветки Солнцем аппаратуры наблюдения космического аппарата первого космического комплекса. Обзор этого конуса ограничивается углом засветки Солнцем аппаратуры наблюдения космического аппарата второго комплекса. Космическая система может быть использована также для исследований космического пространства по различным научным программам. 8 ил.

Изобретение относится к области комплексных навигационных систем, систем управления и наведения летательных аппаратов (ЛА). Технический результат изобретения - повышение точности и быстродействия оптимального оценивания и коррекции всех измеряемых инерциальной навигационной системой (ИНС) навигационных и пилотажных параметров в обеспечение эффективного решения навигационных, боевых и специальных задач. Способ оценивания ошибок инерциальной информации и ее коррекции по измерениям спутниковой навигационной системы заключается в том, что используют традиционную процедуру оптимальной фильтрации и идентификации Калмана, для чего сигналы измерения оптимального фильтра-идентификатора формируют посредством сравнения одноименных географических координат местоположения и горизонтальных составляющих абсолютной линейной скорости в проекциях на оси опорного трехгранника гироплатформы (ГП) ИНС, сформированных по измерениям спутниковой навигационной системы (СНС), а его структуру синтезируют в соответствии с традиционной для ИНС моделью ошибок, при этом характер полета методически организуют таким образом, что после 270 секунд прямолинейного горизонтального полета, на котором реализуют точное «горизонтирование» гироплатформы и оценивают хорошо наблюдаемые параметры горизонтальных каналов ИНС, осуществляют маневр, типа «змейки», координированного или боевого разворотов, после чего активную фазу процедуры оптимальной фильтрации и идентификации приостанавливают и фильтр-идентификатор переводят в режим долгосрочного - до следующего сеанса коррекции, прогноза, для реализации которого сигналы измерения обнуляют, а значения оценок на момент завершения активной фазы процедуры оценивания используют в качестве начальных условий в процедуре прогноза, при этом сам прогноз осуществляют в соответствии с дискретными уравнениями расчета априорных оценок ошибок ИНС, а коррекцию выходных параметров ИНС - географических координат местоположения и составляющих абсолютной линейной скорости, реализуют в разомкнутой схеме ИНС, для чего используют текущие прогнозируемые значения оценок параметров состояния ИНС. При этом модель ошибок ИНС расширяют за счет включения в нее математического описания координат ее местоположения относительно антенного блока (АБ) СНС и представляют их в виде системы трех взаимосвязанных дифференциальных уравнений первого порядка в проекциях на оси опорного трехгранника ГП ИНС, которые одновременно описывают аддитивно входящие в скоростные сигналы измерения кинематические составляющие относительной скорости движения ИНС, а при формировании сигналов измерения и матрицы наблюдения используют кинематические соотношения, связывающие ошибки Δϕ, Δλ, Δχ счисления географических координат местоположения и угла азимутальной ориентации опорного трехгранника ГП ИНС с погрешностями выдерживания вертикали αx, αy и углом αz азимутального ухода ГП ИНС с точностью до величин второго порядка малости относительно таких параметров, как Δϕ, Δλ, αх, αy, αz, обеспечивают определение текущих значений элементов матриц сообщения и наблюдения. 1 з.п. ф-лы, 4 ил.

Изобретение относится к космической технике и может быть использовано при создании космических систем обзора космического пространства для наблюдения и обнаружения опасных астероидов и комет, летящих к Земле со стороны Солнца. Технический результат – расширение функциональных возможностей. Для этого система включает один или более космических аппаратов, расположенных на орбите Земли на постоянном расстоянии от нее, и наземные средства управления, приема информации с космических аппаратов и обработки получаемой информации. Космические аппараты осуществляют постоянный обзор той части космического пространства между Солнцем и Землей, которая из-за засветки Солнцем недоступна для наблюдения с Земли и околоземных орбит. Эта область представляет собой конус с вершиной на Земле, с осью, направленной на Солнце, и углом при вершине, равным углу засветки Солнцем оптической аппаратуры наблюдения, размещенной на Земле и на околоземных орбитах. Наземный информационно-управляющий центр (НИУЦ) формирует и передает на космический аппарат (аппараты) команды управления, программы сканирования космического пространства и времена радиовидимости с наземными средствами приема информации. Космический аппарат (аппараты) ежесуточно на интервалах времени радиовидимости с наземных средств передает на них информацию, получаемую как в реальном времени, так и запомненную при наблюдениях вне интервалов радиовидимости. Наземный Центр обработки информации, входящий в состав НИУЦ, осуществляет обработку полученной информации и вырабатывает окончательную информацию об обнаруженных небесных телах. В случае обнаружения потенциально опасных небесных тел НИУЦ выдает через блок связи с абонентами системы в согласованном формате эту информацию органам государственного управления, МЧС и другим организациям, входящим в состав внешних абонентов предлагаемой космической системы. Данная космическая система может быть использована также для проведения астрономических научных исследований. 2 з.п. ф-лы, 7 ил.

Автогидирующая оптико-механическая система со встречной засветкой оптоволокна содержит оптическое волокно, соединяющее входную и оптическую системы спектрографа и детектор смещения изображения центра звезды с входного торца оптического волокна. При этом вход оптического волокна вклеен по центру одной из граней оптической призмы. Причем перед оптической призмой по ходу луча расположены два компенсирующих оптических элемента, выполненных в виде плоскопараллельных пластин, каждый из которых имеет возможность вращения вокруг своей оси. Оси оптических элементов расположены в ортогональных плоскостях, а их приводы выполнены в виде электродвигателей, управляемых с помощью персонального компьютера посредством специального алгоритма. Технический результат заключается в упрощении конструкции и технологии изготовления автогидирующей оптико-механической системы оптоволоконного спектрографа, основанной на встречной засветке оптоволокна. 1 ил.

Изобретение относится к способам определения ориентации по координатам наблюдаемых звезд, преимущественно для навигационных целей. В частности, для космической навигации путем определения положения космического аппарата относительно изображений звезд, наблюдаемых на небесной сфере. Способ определения ориентации по изображениям участков звездного неба заключается в том, что предварительно составляют и запоминают бортовой каталог координат звезд, ограничивая выбор звезд звездной величиной, отображаемой используемой системой наблюдения. Затем в процессе определения ориентации формируют изображение участка звездного неба, выбирают наиболее яркую звезду в центральной части поля зрения, выбирают соседние с ней звезды. Далее определяют попарные расстояния на изображении от выбранной центральной звезды до выбранных соседних звезд, а затем сравнивают измеренные на полученном изображении расстояния между звездами с расстояниями, полученными из бортового каталога. При совпадении всех этих расстояний отождествляют выбранную центральную звезду на изображении с соответствующей звездой из каталога и определяют ориентацию, учитывая положение этой звезды на изображении в приборной системе координат. При этом каждую звезду при составлении бортового каталога дополнительно характеризуют значениями расстояний до двух ближайших к ней звезд и расстоянием между самими этими звездами или до трех ближайших к ней звезд и по результатам этих определений формируют трехкоординатное признаковое пространство. В процессе определения ориентации, для выбранной на изображении звезды, по указанным измеренным расстояниям определяют положение этой звезды в признаковом пространстве, а затем по ее каталожным координатам на звездном небе определяют ее положение и находят ориентацию аппарата. Техническим результатом заявленного способа является повышение эффективности работы используемых датчиков звездной ориентации. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области астроинерциальных навигационных систем, в которых основная навигационная информация корректируется по сигналам, поступающим с телеблока. Технический результат - повышение точности и помехозащищенности. Для этого поставленная задача решается посредством системы астроинерциальной навигации, состоящей из телеблока, помещенного в рамки двухосного карданова подвеса, снабженного датчиками его углов по азимуту и высоте, двигателями отработки углов его выставки по азимуту и высоте и установленного в рамках внешнего карданова подвеса - повторителя горизонта, бортовой ЦВМ, блока следящих систем отработки углов наведения телеблока, содержащего первую и вторую разностные схемы, первого и второго блоков коррекции, блока вычисления угловых поправок, бортовая ЦВМ первым и вторым выходом подключена к первым входам первой и второй разностных схем, второй вход первой разностной схемы подключен к выходу датчика угла карданова подвеса телеблока по высоте, второй вход второй разностной схемы - к выходу датчика угла карданова подвеса телеблока по азимуту, а выходы - к входам первого и второго корректирующих блоков, выход первого блока коррекции подключен к входу двигателя отработки угла выставки карданова подвеса телеблока по азимуту, выход второго блока коррекции - к входу двигателя отработки угла выставки карданова подвеса телеблока по высоте, а блок вычисления угловых поправок первым входом подключен к выходу двигателя отработки угла выставки телеблока по азимуту, а вторым - к выходу двигателя отработки угла выставки телеблока по высоте, третьим - к третьему выходу бортовой ЦВМ, выходом подключен к входу блока вычисления абсолютной величины разницы между расчетными и фактическими координатами визируемой звезды, выход которого подключен к входу блока сравнения, первый выход которого подключен к входу блока вычисления ошибок корректируемой системы и формирования признака готовности корректирующих поправок, а другой выход которого подключен к входу блока формирования признака неготовности корректирующих поправок. 3 ил.

Изобретение относится к области приборостроения, а именно к способам определения ошибок инерциальных навигационных систем, в которых основная навигационная информация (счисляемые координаты и курс) корректируется по сигналам, поступающим с астровизирующего устройства (телеблока), и применяемых в составе бортового оборудования авиационно-космических объектов. Технический результат – повышение точности и помехозащищенности. Для этого по текущим координатам и времени из каталога звезд, записанного в бортовой ЦВМ, выбирается пара звезд, доступная визированию в данной точке местоположения объекта и в данный момент времени, определяются их координаты в местной системе координат на текущий момент времени, формируются целеуказания в форме углов нацеливания телеблока, производится визирование первой из выбранных звезд путем наведения визирной оси телеблока в расчетную точку, определяемую координатами первой из выбранных из каталога звезд с определением измеренных ее координат, определяются угловые поправки, представляющие разности между измеренными и расчетными значениями углов ее визирования, проводится визирование второй из выбранных из каталога звезд путем наведения визирной оси телеблока в расчетную точку, определяемую координатами второй из выбранных из каталога звезд с определением измеренных ее координат, определяются угловые поправки, представляющие разности между измеренными и расчетными значениями углов ее визирования, затем вычисляется абсолютная величина разницы между расчетным и измеренным углами выбранной пары звезд, обнаруженных в процессе их последовательного визирования, которая сравнивается с заданным пороговым значением и при не превышении этого значения формируется признак разрешения коррекции и проводится пересчет этих угловых поправок в оценке ошибок корректируемой инерциальной системы. 1 ил.
Наверх