Устройство для разобщения отдельных участков ствола скважины

Изобретение относится к области добычи нефти и газа. Техническим результатом является повышение рабочих давления и температуры. Устройство для разобщения отдельных участков ствола скважины содержит опорный элемент, уплотнительный элемент, установленный концентрично НКТ между нею и обсадной трубой, подвижный элемент сжатия уплотнительного элемента, установленный концентрично НКТ под элементом сжатия. Устройство содержит два отрезка НКТ, выполненных из титана по обе стороны от опорного элемента, опорную сопло-муфту в нижней части НКТ, а уплотнительный элемент выполнен из базальтового волокна, имеющего диаметр от 0,5 до 3,5 мкм, при этом базальтовое волокно насыщено частицами металла. 10 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано при разработке месторождений природных битумов, тяжелых и высоковязких нефтей, а также для комплексного освоения нефтеносных сланцевых плеев.

Конкретно предложен высокотемпературный скважинный пакер для тепловых методов увеличения нефтеотдачи (МУН).

По данным World Energy Council, геологические запасы природных битумов, тяжелых и высоковязких нефтей в России суммарно составляют 55 млрд. тонн, а их месторождения в России сосредоточены, главным образом, в Волго-Уральской (Татарстан, Удмуртия, Башкортостан, Самарская область и Пермский край), Восточно-Сибирской (Тунгусский бассейн) и Тимано-Печорской нефтегазоносных провинциях. Современная концепция внутрипластового ретортинга, предполагающая внутрипластовую конверсию тяжелых углеводородов в их более легкие формы, требует использования высокотемпературного теплового воздействия на продуктивные пласты, при котором температура рабочего агента, преимущественно в форме перегретого пара, может достигать 500°C.

Но наиболее значительные запасы углеводородов России все же сосредоточены в Баженовской свите, причем большая их часть сосредоточена в керогене, - около 383,1 млрд. тонн. Содержание же нефти низкопроницаемых пород в продуктивных пластах Баженовской свиты не превышает 22 млрд. тонн. По мнению экспертов отрасли, освоение Баженовской свиты, основанное только на извлечении нефти низкопроницаемых пород, и без вовлечения в активную разработку керогена, - малоперспективно и убыточно. В свою очередь, вовлечение в активную разработку керогена также предполагает использование высокотемпературных тепловых МУН для его внутрипластовой пиролизации. При этом в продуктивный пласт должен инжектироваться рабочий агент в форме воды, находящейся в сверхкритическом состоянии (СК-вода), и, имеющий следующие термобарические характеристики: давление до 45 МПа и температура до 500°C.

Технологическая схема высокотемпературного теплового воздействия на продуктивные пласты, содержащие природные битумы, тяжелые и высоковязкие нефти, а также кероген, предусматривает использование термостойкого пакера. Но таких термостойких пакеров, способных работать при температуре до 500°C, нет ни в России, ни за рубежом. Необходимость же работы термостойкого пакера в присутствии высоких давлений (до 45 МПа) еще более усугубляет названную проблему.

Так, например, известен термостойкий пакер "ArrowTherm Mechanical-Set Thermal Packer" компании Weatherford, который может эксплуатироваться при давлении до 20,68 МПа и температуре до 288°C. В случае необходимости по специальному заказу компанией Weatherford может быть изготовлена более совершенная модификация этого же термостойкого пакера для эксплуатации при температуре до 343°C («Каталог пакеров», Weatherford, 2005-2010 гг., стр. 86.).

Также известен термостойкий пакер "ХНР Premium Production Packer" компании Schlumberger, который способен работать при очень высоких давлениях, - до 103 МПа, но не может эксплуатироваться при температуре выше 218°C («Каталог пакеров», Schlumberger, 2009 г., стр. 17.).

Известны способ и устройство для разработки вязкой нефти по патенту РФ на изобретение №2548639, МПК Е21 ВЗЗ/128, опубл. 20.04.2015 г (прототип).

Это устройство для разобщения полостей скважин (пакер) выполнено с радиальным расширением под действием осевого давления.

С целью повышения герметичности установки пакера в скважине пакер опорно-механический содержит ствол, телескопически соединенный посредством манжет с опорным ниппелем с возможностью их осевого перемещения между собой. Ствол оснащен кольцевым уплотнением, присоединительной муфтой, регулировочной гайкой с верхним нажимным кольцевым упором, установленной на муфте с возможностью регулирования положения кольцевого уплотнения на стволе между упорами на регулировочной гайке и на втулке, соединенной с опорным ниппелем. Во втулке выполнена ступенчатая поверхность, упирающаяся уступом ступени в буртик на стволе. На буртике выполнена канавка, взаимодействующая со срезными штифтами, установленными во втулке. На стволе выполнены треугольные насечки, взаимодействующие с цангой, внутри которой выполнены ответные треугольные насечки и наружный конус. Цанга расположена в полости втулки с упором в торец опорного ниппеля и удерживается от осевых перемещений стопорным кольцом с внутренним конусом, взаимодействующим с наружным конусом цанги для фиксации кольцевого уплотнения в сжатом состоянии, с возможностью перемещения вдоль ствола на длину, большую величины сжатия кольцевого уплотнения с радиальным расширением до герметичного разобщения полости скважины. Стопорное кольцо выполнено с канавкой под дополнительные срезные штифты, установленные во втулке.

Недостаток известного изобретения заключается в невозможности работы устройства при высоких давлениях (до 45 МПа) и температурах (до 500°C).

Задачей заявленного изобретения, совпадающей с техническим результатом, является обеспечение возможности работы заявленного устройства при высоких рабочих давлениях (до 45 МПа) и температурах (до 500°C).

Решение указанных задач достигнуто в устройстве для разобщения отдельных участков ствола скважины, содержащем опорный элемент, уплотнительный элемент, установленный концентрично НКТ между нею и обсадной трубой, подвижный элемент сжатия уплотнительного элемента, установленный концентрично НКТ под элементом сжатия, тем, что оно содержит два отрезка НКТ, выполненных из титана, по обе стороны от опорного элемента, опорную сопло-муфту в нижней части НКТ, а уплотнительный элемент выполнен из базальтового волокна, имеющего диаметр от 0,5 до 3,5 мкм, при этом базальтовое волокно насыщено частицами металла. В качестве металла для насыщения использован алюминий, например в виде алюминиевой пудры. В качестве металла для насыщения может быть использован цинк. В качестве металла для насыщения может быть использован цирконий. В качестве металла для насыщения может быть использован вольфрам. Уплотнительный элемент из базальтового волокна может быть предварительно спрессован. Опорный элемент и элемент сжатия уплотнительного элемента может быть выполнены из титана. Опорное сопло-муфта может быть выполнено из карбида вольфрама. Опорный элемент и элемент сжатия могут быть выполнены с коническими поверхностями со стороны уплотнительного элемента. Устройство для разобщения отдельных участков ствола скважины может быть выполнено с возможностью работы при давлении до 70 МПа и температуре до 600°С. На НКТ может быть нанесено теплозащитное покрытие.

Сущность изобретения поясняется чертежами, где;

- на фиг. 1 приведен вид устройства в исходном положении,

- на фиг. 2 приведена схема установки опорного элемента с состав НКТ,

- на фиг. 3 приведен вид устройства в рабочем положении.

Устройство (фиг. 1…3) содержит сверху вниз: НКТ 1 (насоснокомпрессорную трубу), соединительную муфту 2, верхний отрезок усиленной НКТ 3, которая изготовлена из титана, опорный элемент 4, изготовленный из титана, под ним расположен концентрично НКТ 1 внутри обсадной колонны 5 уплотнительный элемент 6.

Уплотнительный элемент 6 выполнен из базальтового волокна.

Базальтовое волокно может иметь диаметр от 0,5 мкм до 3 мкм.

Согласно ГОСТ 8680-93 минеральную вату в зависимости от диаметра волокна подразделяют на три вида:

ВМСТ - вата минеральная из супертонкого волокна диаметром от 0,5 до 3 мкм;

ВМТ - вата минеральная из тонкого волокна диаметром от 3 до 6 мкм;

ВМ - вата минеральная диаметром волокна от 6 до 12 мкм.

Для производства непрерывных базальтовых волокон используют базальтовые породы следующего диапазона химического состава, представленные в таблице 1.

Базальтовое волокно может быть насыщено частицами металла. В качестве металла для насыщения может быть использован алюминий, например в виде алюминиевой пудры, или цинк или цирконий или вольфрам.

Уплотнительный элемент 6 может быть предварительно спрессован.

Далее (ниже) идет нижний отрезок НКТ 7, изготовленный из титана, концентрично которому установлен с возможностью осевого перемещения элемент сжатия 8, содержащий направляющий цилиндр 9, установленный с возможностью осевого перемещения вдоль нижнего отрезка НКТ 7, и силовую часть 10. Между направляющим цилиндром 9 и обсадной колонной 5 образуется кольцевой зазор 11, служащий для подачи рабочего агента.

Опорный элемент 4 и элемент сжатия 8 могут быть выполнены с коническими поверхностями 12 и 13 со стороны уплотнительного элемента 6 для его сжатия (фиг. 1 и 2).

В нижней части нижнего отрезка НКТ 7 установлено сопло-муфта 14, выходное отверстие 15 которой сообщает полость 16 внутри нижнего отрезка НКТ 7 с продуктивным пластом 17.

На НКТ 1 может быть нанесено теплоизоляционное покрытие 18 (фиг. 2).

На фиг. 3 приведена схема устройства в рабочем положении, когда обжимной элемент 9 находится в верхнем положении, а уплотнительный элемент 7 спрессован.

РАБОТА УСТРОЙСТВА

Работает устройство следующим образом (фиг. 1…3)…

Бурят скважину и устанавливают обсадную колонну 5, собирают компоновку согласно фиг. 1.

Подают рабочий агент в кольцевой зазор 11. Элемент сжатия 8 поднимается вверх и спрессовывает уплотнительный элемент 6.

Одной из основных отличительных функциональных особенностей заявленного изобретения является то, что заявленное устройство является саморегулируемым устройством. Это выражается в том, что, чем выше давление рабочего агента на забое скважины - в подпакерной зоне, тем более плотным и менее проницаемым становится уплотнительный элемент 5 и тем плотнее фрикционная поверхность уплотнительного элемента 5 прижимается к внутренней поверхности обсадной трубы/стенкам скважины 9.

Уплотнительный элемент выполнен из предварительно спрессованного базальтового волокна, имеющего средний диаметр 0,002 мм (или в диапазоне от 0,5 до 3 мкм). Именно диаметр волокна в основе определяет проницаемость уплотнительного элемента. Чем он меньше, тем эффективность уплотнительного элемента выше. Так, например, если диаметр какого-либо используемого волокна относительно большой, например 0,1 мм, то изготовленный из такого материала уплотнительный элемент будет обладать высокой проницаемостью, сопоставимой с проницаемостью мелкозернистого песчаника, имеет размер зерен от 0,1 до 0,25 мм. Используемое базальтовое волокно имеет малый диаметр и изготовленный из него и окончательно спрессованный в скважине под действием давления рабочего агента уплотнительный элемент обладает сверхнизкой проницаемостью, сопоставимой с проницаемостью тонкозернистых известково-доломитовых пород, имеющей размер зерен от 0,001 до 0,01 мм. Менее проницаемой для флюидов может быть только колоидозернистая известково-доломитовая порода, имеющая размер зерен менее 0,001 мм.

Уплотнительный элемент в процессе его изготовления и до начала его предварительного спрессовывания насыщается частицами различных металлов, таких как: алюминий, цинк, цирконий, вольфрам и т.д. В предпочтительном варианте изобретения используется алюминиевая пудра ПАП-2, имеющая средний линейный размер частиц от 0,02 до 0,03 мм. При подаче высокотемпературного рабочего агента на забой скважины уплотнительный элемент нагревается и за счет теплового расширения сверхтонкого базальтового волокна и частиц алюминия плотность его увеличивается, а проницаемость, напротив, еще более уменьшается. Степень прижатия уплотнительного элемента к стенкам скважины также возрастает. В этом процессе более значимую роль играют частицы алюминия, так как коэффициент температурного расширения (КТР) алюминия (КТР=0,000024 м/(м·°С)) в 3,69 раза выше коэффициента температурного расширения базальта (КТР=0,0000065 м/(м·°С)). Примечание: Размерность КТР, -м/(м·°С) или 1/°С - показывает на сколько (в метрах) удлинится материал при увеличении его температуры на 1°С. Также следует отметить и то, что сверхтонкое базальтовое волокно начинает спекаться только при температуре, превышающей 1100°С. В результате названного выше процесса теплового воздействия на уплотнительный элемент его проницаемость на микроуровне заметно снижается.

При установке заявленного устройства на забое скважины и после подачи на забой скважины высокотемпературного рабочего агента высокого давления, представляющего собой воду, находящуюся в сверхкритическом состоянии, инициируется химическая реакция окисления некоторой части частиц алюминия в сверхкритической воде. В процессе реакции из некоторой части частиц алюминия, имеющих размер от 0,02 до 0,03 мм, синтезируются наночастицы оксида алюминия, которые имеют размер от 0,00002 до 0,0004 мм (от 20 до 400 нм). Результатом, названного выше химического процесса синтеза наночастиц алюминия в СК-воде, является уменьшение проницаемости уплотнительного элемента на наноуровне.

Таким образом, максимально возможная низкая проницаемость уплотнительного элемента достигается за счет осуществления следующих трех основных процессов:

- предварительного механического сжатия уплотнительного элемента в процессе его изготовления и окончательного его сжатия на забое скважины под действием давления рабочего агента;

- теплового расширения сверхтонкого базальтового волокна и частиц металлов, которыми насыщен уплотнительный элемент; и

- синтеза наноразмерных частиц оксидов металлов из некоторой части частиц металлов, которыми насыщен уплотнительный элемент.

Для обеспечения еще более плотного прижатия уплотнительного элемента к стенкам скважины воспринимающая уплотнительный элемент часть опорного элемента и поджимающая уплотнительный элемент часть подвижного элемента сжатия выполнены в форме конуса, что при сжатии уплотнительного элемента создает дополнительный эффект расклинивания уплотнительного элемента.

В силу значительных силовых нагрузок в присутствии высоких температур все элементы заявленного устройства, в предпочтительном варианте, выполнены из титана.

Результатом использования заявленного устройства является надежное разобщение отдельных участков ствола скважины в процессе использования тепловых МУН при давлении до 70 МПа и температуре до 700°С.

Несмотря на то, что настоящее изобретение описывается на представленном примере, возможны различные модификации, не противоречащие основным принципам изобретения. Поэтому настоящее изобретение следует рассматривать как относящееся к любым подобным модификациям в пределах существа изобретения.

1. Устройство для разобщения отдельных участков ствола скважины, содержащее опорный элемент, уплотнительный элемент, установленный концентрично НКТ между нею и обсадной трубой, подвижный элемент сжатия уплотнительного элемента, установленный концентрично НКТ под элементом сжатия, отличающееся тем, что оно содержит два отрезка НКТ, выполненных из титана, по обе стороны от опорного элемента, опорную сопло-муфту в нижней части НКТ, а уплотнительный элемент выполнен из базальтового волокна, имеющего диаметр от 0,5 до 3,5 мкм, при этом базальтовое волокно насыщено частицами металла.

2. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что в качестве металла для насыщения использован алюминий, например, в виде алюминиевой пудры.

3. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что в качестве металла для насыщения использован цинк.

4. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что в качестве металла для насыщения использован цирконий.

5. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что в качестве металла для насыщения использован вольфрам.

6. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что уплотнительный элемент из базальтового волокна предварительно спрессован.

7. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что опорный элемент и элемент сжатия уплотнительного элемента выполнены из титана.

8. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что опорное сопло-муфта выполнено из карбида вольфрама.

9. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что опорный элемент и элемент сжатия выполнены с коническими поверхностями со стороны уплотнительного элемента.

10. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что оно выполнено с возможностью работы при давлении до 70 МПа и температуре до 600°С.

11. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что на НКТ нанесено теплозащитное покрытие.



 

Похожие патенты:

Группа изобретений относится к уплотнительным устройствам и способам для герметизации зоны нарушения в стволе скважины. Техническим результатом является изоляция участков ствола скважины.

Изобретение относится к оборудованию для проведения работ по изоляции межтрубного пространства скважины. Техническим результатом является повышение надежности установки пакера за счет исключения воздействия на него колонны НКТ.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для изоляции пласта, по меньшей мере одного, в скважине как при ее креплении с применением операции цементирования обсадной колонны, так и в виде отдельной независимой изоляционной операции.

Изобретение относится к устройствам для изоляции пласта в скважине. Технический результат заключается в повышении надежности работы устройства, улучшении эксплуатационных характеристик.

Изобретение относится к области строительства нефтяных и газовых скважин и, в частности, к устройствам для разобщения пластов с применением пакеров. Технический результат - повышение надежности работы устройства.

Группа изобретений относится к трубным исполнительным системам и способам приведения в действие множества трубных исполнительных механизмов. Техническим результатом является уменьшение негативного воздействия на поток в стволе скважины.

Группа изобретений относится к затрубным барьерам, скважинным системам и способам сохранения уплотнения. Технический результат заключается в увеличении уплотнительной способности затрубного барьера.

Группа изобретений относится к кольцевым барьерам, расширяемым в кольцевом пространстве между трубчатой конструкцией скважины и внутренней стенкой ствола скважины, а также к кольцевым барьерным системам и системам ствола скважины, содержащим указанный кольцевой барьер.

Пакер // 2590171
Изобретение относится к пакерам. Техническим результатом является обеспечение возможности эффективной работы заявленного устройства при высоких рабочих давлении и температуре.

Изобретение относится к механическим пакерам. Техническим результатом является повышение надежности герметизации трубного и затрубного пространств за счет достижения и проверки полной герметизации в месте кабельного ввода, обеспечение защиты кабеля от повреждения, регулирование усилия срабатывания пакера при его посадке, ориентирование и предотвращение от свободного вращения на внешнем стволе пакера заякоривающего узла.

Изобретение относится к нефтегазодобывающей промышленности, а именно к разработке пластовых залежей нефти, осложненных вертикальными разломами, вытеснением рабочим агентом. Технический результат - повышение эффективности разработки за счет экономии рабочего агента и энергии для его закачки в нефтеносный участок пласта от использования жидкости и энергии близлежащих участков. По способу определяют гипсометрические отметки пласта. Размещают вертикальные и горизонтальные добывающие, нагнетательные скважины за исключением зон максимального падения гипсометрических отметок пласта в непосредственной близости от разломов. Вдоль них размещают вертикальные добывающие скважины. Осуществляют закачку вытесняющего агента в нагнетательные скважины и отбор продукции из добывающих скважин. Переводят вертикальные добывающие скважины в нагнетательные при снижении в них дебита ниже уровня рентабельности. Осуществляют бурение дополнительных горизонтальных стволов, направленных в сторону линии разлома. При этом определяют непроницаемые границы разломов в залежи, разбивающие пласт на участки с различным пластовым давлением. Перед переводом обводнившихся добывающих скважин под нагнетание рабочего агента для поддержания пластового давления дополнительные горизонтальные стволы бурят со вскрытием непроницаемой границы разломов из обводнившегося участка пласта с более высоким пластовым давлением в нефтеносный участок пласта выше уровня водонефтяного контакта. Осуществляют переток жидкости из одного участка пласта в другой участок с пониженным пластовым давлением по дополнительным горизонтальным стволам. Объем закачиваемого с поверхности вытесняющего агента через нагнетательные скважины в участок с пониженным давлением снижают. 1 з.п. ф-лы, 1 табл., 1 пр., 1 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к разработке и эксплуатации нефтяных пластов с зонами различной проницаемости в горизонтальных скважинах. Техническим результатом является исключение аварийности при установке устройства в горизонтальной скважине и разобщении открытого ствола горизонтальной скважины на отдельные участки. Устройство для разобщения открытого ствола горизонтальной скважины на отдельные участки включает соединенные продольно-гофрированные трубы с замкнутыми по периметру герметизирующими элементами, верхний и нижний цилиндрические участки, верхний из которых снабжен уплотненным поршнем с фиксатором, а нижний - снизу нерасширяемой втулкой, во внутреннюю полость которой герметично вставлен с возможностью перемещения ниппель, снабженный клапаном и соединенный сверху полой тягой с поршнем. Между верхними и нижними продольно-гофрированными трубами, расширяемыми до рабочего размера внутренним давлением, герметично размещена втулка с внутренним продольным отверстием, состоящим из большего верхнего и нижнего цилиндрических участков. При этом верхний поршень установлен в верхний цилиндрический участок с упором в сужение верхней продольно-гофрированной трубы с возможностью перемещения вниз с тягой после расширения этой трубы до рабочего диаметра. Нижняя втулка ниже ниппеля оснащена боковыми отверстиями и нижним полым упором, выполненным с возможностью взаимодействия с ниппелем при перемещении его вниз вместе с тягой и поршнем и открытием боковых отверстий. Тяга снабжена плунжером, установленным в больший цилиндрический участок отверстия втулки и выполненным с возможностью герметичного входа в меньший цилиндрический участок отверстия втулки при перемещении вниз вместе с тягой и поршнем. В тяге между плунжером и ниппелем выполнены боковые каналы. 3 ил.

Группа изобретений относится к скважинным закачивающим инструментам, скважинным системам с указанным инструментом и к способам для формования в скважине цементной пробки. Техническим результатом является заполнение и полное перекрытие ствола скважины при закачивании текучей среды. Скважинный закачивающий инструмент содержит закачивающий модуль, содержащий первую разжимную манжету, выполненную с возможностью обеспечения первого уплотнения с указанной внутренней стенкой; вторую разжимную манжету, выполненную с возможностью обеспечения второго уплотнения с указанной внутренней стенкой; причем две указанные манжеты в разжатом состоянии совместно ограничивают изолированную зону затрубного пространства; по меньшей мере один трубный элемент, вытянутый в продольном направлении между двумя манжетами, причем указанный трубный элемент обеспечивает проход для текучей среды между впускным отверстием, расположенным в одном конце трубного элемента, и выпускным отверстием, расположенным в трубном элементе между манжетами; причем вторая разжимная манжета соединена с возможностью скольжения с трубным элементом и смещения в продольном направлении от первой разжимной манжеты под действием закачиваемой текучей среды, закачиваемой в изолированную зону, с увеличением тем самым расстояния между двумя манжетами; причем закачивающий модуль дополнительно содержит удерживающую муфту, расположенную с возможностью скольжения вокруг разжимных манжет для предотвращения непредусмотренного разжимания разжимных манжет во время введения скважинного закачивающего инструмента, при этом удерживающая муфта выполнена с возможностью скольжения в продольном направлении, а разжимные манжеты освобождаются путем перемещения удерживающей муфты в продольном направлении. 3 н. и 12 з.п. ф-лы, 8 ил.

Изобретение относится к разобщениию отдельных участков ствола скважины. Техническим результатом является обеспечение возможности эффективной работы устройства при высоких рабочих давлении и температуре. Устройство для разобщения отдельных участков ствола скважины содержит трубы НКТ, уплотнительный элемент цилиндрической формы, установленный концентрично трубе НКТ между нею и обсадной трубой. Уплотнительный элемент выполнен из кольцевых уплотнительных элементов, между которыми установлены прижимные кольца из материала с памятью формы. Кольцевые уплотнительные элементы изготовлены из базальтового волокна, имеющего диаметр от 0,5 до 3,5 мкм. Базальтовое волокно насыщено частицами металла, при этом в качестве металла для насыщения применена алюминиевая пудра. На конце нижней трубы НКТ установлено опорное сопло-муфта, выполненное из карбида вольфрама, а кольцевые уплотнительные элементы установлены по обе стороны от упорного кольца. 5 з.п. ф-лы, 5 ил.

Группа изобретений относится к кольцевым перегородкам, системам с использованием кольцевых перегородок, способам размещения и использования кольцевых перегородок. Техническим результатом является создание кольцевой перегородки, расширяемой без повреждения других компонентов в скважине. Кольцевая перегородка, расширяемая в затрубном пространстве между трубчатой скважинной конструкцией и внутренней стенкой ствола скважины для обеспечения изоляции зоны между первой зоной и второй зоной ствола скважины, содержащая: трубчатую часть, предназначенную для установки в качестве части трубчатой конструкции скважинной конструкции и имеющую отверстие расширения; расширяемую манжету, окружающую указанную трубчатую часть, причем каждый конец расширяемой манжеты соединен с трубчатой частью; и пространство кольцевой перегородки между трубчатой частью и расширяемой манжетой, причем кольцевая перегородка дополнительно содержит средство усиления давления, снабженное входом на первом конце, имеющим жидкостное соединение с отверстием расширения, и выходом на втором конце, имеющим жидкостное соединение с пространством кольцевой перегородки, причем средство усиления давления содержит поршень, имеющий первый конец и второй конец и установленный с возможностью скольжения в корпусе поршня, причем корпус поршня содержит первый цилиндр, имеющий первый внутренний диаметр, который соответствует наружному диаметру первого конца поршня и имеет площадь поверхности первого конца, и второй цилиндр, имеющий второй диаметр, который соответствует наружному диаметру второго конца поршня и имеет площадь поверхности второго конца, причем площадь поверхности первого конца больше площади поверхности второго конца. Средство усиления давления дополнительно содержит канал подачи текучей среды, имеющий жидкостное соединение с указанным входом и отверстием расширения для пропускания текучей среды во второй цилиндр, причем средство усиления давления дополнительно содержит первый односторонний обратный клапан, размещенный в канале подачи текучей среды для предотвращения выхода текучей среды из второго цилиндра при сжатии текучей среды поршнем и для пропускания текучей среды во второй цилиндр при уменьшении сжатия текучей среды посредством поршня. 4 н. и 11 з.п. ф-лы, 8 ил.

Группа изобретений относится к затрубным барьерам, предназначенным для обеспечения изоляции, скважинным системам и способам разжимания затрубных барьеров. Техническим результатом является исключение вероятности нежелательного утончения разжимной муфты. Затрубный барьер содержит: трубчатую часть, вытянутую в продольном направлении для установки в качестве части трубчатой конструкции скважины; разжимную муфту, окружающую трубчатую часть и ограничивающую пространство, соединенное с возможностью передачи текучей среды с внутренним пространством трубчатой части; первый проход для текучей среды, предназначенный для впуска текучей среды в пространство для разжимания муфты; и соединительный модуль, содержащий соединительную часть, соединенную с возможностью скольжения с трубчатой частью, причем первый конец разжимной муфты соединен с соединительной частью; неподвижную часть, жестко соединенную с трубчатой частью; и приводной механизм, выполненный с возможностью приложения осевого усилия к первому концу разжимной муфты, в результате чего соединительная часть смещается в продольном направлении ко второму концу разжимной муфты, соединенному с трубчатой частью; причем приводной механизм дополнительно содержит камеру давления, образованную по меньшей мере частично между поверхностью соединительной части и поверхностью неподвижной части, и второй проход для текучей среды, предназначенный для впуска текучей среды в камеру давления для обеспечения толкания соединительной части в продольном направлении; причем в соединительной части предусмотрен первый проход для текучей среды, соединяющий с возможностью передачи текучей среды пространство, ограниченное разжимной муфтой, и камеру давления. 8 н. и 9 з.п. ф-лы, 13 ил.

Группа изобретений относится к системам герметизирующего элемента для скважинного инструмента и способу уплотнения ствола скважины. Техническим результатом является улучшение поддержки уплотнительного элемента. Система герметизирующего элемента для скважинного инструмента содержит: шпиндель, верхний и нижний опорные элементы, уплотнительный элемент, первое, второе, третье верхние разделительные кольца, верхнее ячеистое кольцо, первое верхнее лепестковое кольцо, причем боковая поверхность стенки первого верхнего лепесткового кольца имеет по меньшей мере один паз стенки первого верхнего лепесткового кольца, расположенный в ней. 3 н. и 18 з.п. ф-лы, 9 ил.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для изоляции пластов при креплении скважин. Техническим результатом является повышение надежности пакерования скважины. Устройство включает корпус, выполненный с возможностью соединения с колонной труб скважины и имеющий радиальное отверстие, по меньшей мере одно, перекрытое срезным полым штифтом, и продольные пазы на его наружной поверхности ниже радиального отверстия. Снаружи корпуса помещен составной кожух. Он образует с корпусом кольцевую полость. В кольцевой полости и между торцами составного кожуха помещен распределительный клапан с радиальным отверстием. Этот клапан жестко связан с составным кожухом. Распределительный клапан выполнен в виде гильзы с радиальными отверстиями, внутренней кольцевой проточкой и оппозитно установленных на ее концах перепускных уплотнительных элементов одностороннего действия - верхнего и нижнего. Имеется втулка, помещенная в кольцевой полости против распределительного клапана, жестко связанная с корпусом. На верхнем торце втулки помещена проставочная втулка. С ней жестко связан дифференциальный поршень. Его надпоршневое пространство заполнено маслом и имеет возможность увеличения его объема в процессе работы устройства. Одна часть подпоршневого пространства имеет возможность гидравлической связи с пространством за составным кожухом через радиальные отверстия распределительного клапана и его внутреннюю кольцевую проточку. Другая часть подпоршневого пространства имеет возможность гидравлической связи с полостью пакера. 1 ил.

Изобретение относится к нефтяной промышленности и может найти применение при доразработке нефтяной залежи преимущественно с повышенной и высокой вязкостью нефти. Технический результат - повышение нефтеотдачи залежи. По способу осуществляют бурение проектного числа нагнетательных и добывающих скважин. Обеспечивают заводнение залежи и извлечение нефти на поверхность с последующим бурением дополнительных добывающих горизонтальных скважин или горизонтальных стволов со старых скважин в область застойных зон нефти. При этом бурение горизонтальных скважин производят в зоны остаточных запасов нефти, которые определяют по данным исследований, после обводнения добываемой продукции ниже предела рентабельной эксплуатации и определения соответствующих нагнетательных скважин - источников обводнения. Бурение дополнительных скважин или стволов производят в направлении ближайших добывающих скважин так, чтобы источник обводнения оставался между дополнительными скважинами или стволами. При этом продуктивная часть дополнительной скважины или ствола должна быть расположена на примерно равном расстоянии от добывающих скважин и занимать 30-70% от этого расстояния. Отбор нефти из дополнительных горизонтальных скважин осуществляют при небольшой депрессии. При обводнении дополнительных горизонтальных скважин длину их продуктивной части изменяют в ходе эксплуатации, изолируя интервалы поступления воды. 1 з.п. ф-лы, 1 пр., 2 ил.

Группа изобретений относится к способам заканчивания скважин. Техническим результатом является повышение надежности работы уплотнительного элемента. Способ заканчивания скважины, согласно которому закрепляют существующее трубное изделие в стволе скважины, образованном стенкой буровой скважины; подают дополнительное трубное изделие, имеющее начальный проходной диаметр, через существующее трубное изделие в положение с таким перекрыванием с существующим трубным изделием, что участок дополнительного трубного изделия проходит за нижний конец существующего трубного изделия; устанавливают, по меньшей мере, одно наружное уплотнение в выемке стенки дополнительного трубного изделия; продлевают, по меньшей мере, одно наружное уплотнение за указанную выемку перед расширением; расширяют существенный отрезок длины трубного изделия в направлении стенки буровой скважины; вводят во взаимодействие уплотнение с окружающим необсаженным стволом скважины для уплотнения с ним. 3 н. и 17 з.п. ф-лы, 4 ил.
Наверх