Способ движения боевого поражающего элемента

Изобретение относится к боеприпасам, в частности к способам движения боевого поражающего элемента. Поражающий элемент имеет процессор. Способ движения боевого поражающего элемента заключается в том, что движение поражающего элемента осуществляется по объемной спирали, оканчивающейся на цели. Процессор поражающего элемента строит спираль, начиная от цели, используя 80-99% маневренных возможностей поражающего элемента. Достигается уменьшение вероятности поражения боевого поражающего элемента. 1 з.п. ф-лы.

 

Изобретение относится к различным типам боеголовок - противокорабельным, противотанковым, ядерным баллистическим, а также к авиации (для уклонения от поражения средствами ПВО).

Известно, что в современной военной технике все большее распространение получает активная оборона от поражения различными средствами противника, см. например, систему активной защиты танков «Арена», интернет-ресурс, википедия. Такие системы вычисляют курс и скорость поражающего объекта и направляют в точку упреждения ракету, снаряд, шрапнель или взрывающиеся в заданной точке гранаты.

Задача и технический результат изобретения - уменьшение вероятности поражения боевого поражающего элемента.

В настоящее время в связи с дешевизной и массовым распространением процессоров почти все боевые средства, кроме малокалиберных снарядов и гранат ручных гранатометов, имеют процессоры. Поэтому данный способ осуществляет движение поражающего элемента по объемной спирали, оканчивающейся на цели, причем процессор поражающего элемента строит спираль, начиная от цели, используя 80-99% (оптимально - 90-95%) маневренных возможностей поражающего элемента.

Этот запас примерно в 90-95% по маневренности нужен для того, чтобы нивелировать возможные погрешности, например, в определении направления и скорости ветра в районе цели или скорости самой цели.

Разумеется, следует использовать разведданные о температуре, влажности, плотности воздуха в районе цели, а также о направлении и скорости ветра, которые предварительно или в процессе полета вводятся в процессор поражающего элемента.

Разумеется, если цель движется, учитывается и ее направление движения, и ее скорость.

Если поражающий элемент в полете переходит от горизонтального полета к пикированию или наоборот, то ось объемной спирали может изгибаться в пространстве.

ПРИМЕР 1. На подлете к цели, на дистанции, зависящей от досягаемости активных средств защиты противника (для противокорабельных ракет - примерно 15 км, для противотанковых - примерно 100 м, для ядерных боеголовок - после входа в атмосферу) боевой поражающий элемент начинает заранее спрограммированный процессором маневр в виде объемной спирали, причем процессор поражающего элемента строит спираль в обратном направлении, начиная от цели, чтобы обеспечить гарантированное попадание в нее.

Именно движение по спирали поражающего элемента максимально затрудняет наведение на него вражеских средств поражения и их попадание в боевой поражающий элемент.

ПРИМЕР 2. Самолет, выполняющий атаку наземного или надводного объекта, по команде летчика выполняет маневр, аналогичный примеру 1. В любой момент, выбрав нужную дистанцию, летчик берет управление на себя и производит применение бортового оружия, а затем выходит из атаки. В крайнем случае, при поражении самолета и гибели летчика, система превращает самолет в поражающий элемент и самолет врезается в объект противника.

1. Способ движения боевого поражающего элемента, имеющего процессор, состоящий в том, что боевой поражающий элемент осуществляет движение по объемной спирали, оканчивающейся на цели, причем процессор поражающего элемента строит спираль, начиная от цели, используя 80-99% маневренных возможностей поражающего элемента.

2. Способ по п. 1, отличающийся тем, что используются разведданные о температуре, влажности, плотности воздуха в районе цели, а также о направлении и скорости ветра, которые предварительно или в процессе полета вводятся в процессор поражающего элемента, а также учитывается направление движения цели и ее скорость.



 

Похожие патенты:

Изобретение относится к области ракетно-космической и оборонной техники и может быть использовано в различных кумулятивных устройствах, предназначенных для формирования высокоскоростных компактных элементов, используемых при экспериментальном исследовании поведения материалов в условиях высокоинтенсивного кинетического воздействия.

Изобретение относится к области пиротехники и взрывного дела, в частности к способам изготовления детонирующих удлиненных зарядов. Способ изготовления детонирующего удлиненного заряда в не разрушаемой при взрыве металлической оболочке заключается в вибрационном заполнении металлической трубы-заготовки кристаллическим бризантным взрывчатым веществом с последующим волочением ее через ряд волок с последовательно уменьшающимся диаметром очка.

Изобретение относится к разрывным зарядам для боеприпасов. Заряд включает выполненную с глухим осевым цилиндрическим каналом шашку индивидуального и/или смесевого бризантного взрывчатого вещества, линзу, заглубленную во взрывчатое вещество шашки и закрывающую вход в канал с одной стороны, и размещенный со стороны линзы вплотную к шашке генератор плоской ударной волны со средством инициирования детонации.

Изобретение относится к области средств взрывания и может быть использовано в нефтедобывающей промышленности при ведении прострелочно-взрывных работ в скважинах для инициирования зарядов кумулятивных перфораторов.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении облицовок кумулятивных зарядов для калибра 100 мм с переменной толщиной стенки.

Изобретение относится к взрывным метающим устройствам, которые могут быть использованы при испытаниях военной техники. Способ задержки прорыва продуктов взрыва по краям метаемой пластины-ударника во взрывном метающем устройстве включает заглубление краев пластины-ударника в пазы, выполненные в примыкающих к ней элементах взрывного метающего устройства.

Группа изобретений относится к боеприпасам, в частности к метательным телам. Метательное тело состоит из трубы с внутренней поверхностью.

Изобретение относится к взрывным устройствам для вскрытия продуктивных пластов в нефтяных скважинах и может использоваться в кумулятивных боевых частях. Кумулятивный заряд содержит корпус с размещенной в нем шашкой взрывчатого вещества, имеющей кумулятивную выемку, покрытую облицовкой, состоящей из двух слоев, выполненных из различных материалов, внешний слой прилегает к кумулятивной выемке, а внутренний струеобразующий слой выполнен из меди, причем внешний и внутренний слои облицовки размещены относительно друг друга с зазором, составляющим не более двух толщин стенки внешнего слоя облицовки, а внешний слой облицовки выполнен из материала плотностью 2-3 г/см3, например хлористого натрия NaCl.

Изобретение относится к подрывным зарядам для разрушения крепких пород. Подрывной заряд содержит электродетонатор, дополнительный детонатор и размещенный по длине заряд взрывчатого вещества с осевым каналом, выполненный с возможностью взрывного разложения упомянутого взрывчатого вещества в режиме пересжатой детонации от электродетонатора и дополнительного детонатора.

Изобретение относится к кумулятивным боеприпасам. Кумулятивный заряд состоит из шашки взрывчатого вещества с конусной выемкой и, возможно, с внутренней облицовкой выемки, при этом в качестве взрывчатого вещества содержит вещество, выделяющее при взрыве из газов водород.

Изобретение относится к средствам инициирования и может быть использовано в разработке боеприпасов военного назначения, взрывных устройств для применения в хозяйственной деятельности, научно-исследовательской деятельности. Детонирующий шнур (ДШ) состоит из сердцевины из взрывчатого вещества (ВВ), внутренней металлической оболочки, прилегающей непосредственно к сердцевине и внешней оболочке. Сердцевина содержит вторичное взрывчатое вещество ТЭН в количестве не более 1 г/погонный метр. Диаметр сердцевины не меньше критического диаметра детонации вторичного ВВ, толщина стенки внутренней металлической оболочки составляет 0,2-0,5 мм. Между наружной поверхностью внутренней металлической оболочки и внутренней поверхностью внешней металлической оболочки имеется зазор не более 0,25 мм. Внешняя металлическая оболочка выполнена из пластичного металла или сплава. На концах детонирующего шнура на внутренней металлической оболочке намотан бандаж из нити, пропитанный клеем, обеспечивающий фиксацию с внешней металлической оболочкой. При детонации ДШ отсутствует воздействие поражающих факторов на окружающие объекты. ДШ обладает сохранностью и стойкостью к внешним воздействиям, имеет простой и безопасный монтаж на месте использования, а при монтаже возможность использования простейшего инструмента и усилий, прилагаемых от руки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к взрывчатым веществам, более конкретно к узлам инициирования осесимметричным с кумулятивной воронкой боевой части. Узел инициирования осесимметричный с кумулятивной воронкой боевой части включает донную часть основного разрывного заряда, передаточный заряд цилиндроконической формы, взрыватель и канал, расположенный соосно с кумулятивной воронкой. Передаточный заряд установлен в донной части основного разрывного заряда соосно с кумулятивной воронкой. Передаточный заряд изготовлен с применением взрывчатого материала с высокой детонационной способностью на основе взрывчатого вещества с малым критическим диаметром детонации. Передаточный заряд состоит из двух частей. Одна часть выполнена в форме линзы, распрессованной совместно с кумулятивной воронкой в основном разрывном заряде. Вторая часть представляет собой генератор детонационной волны, сопряженный с взрывчатым веществом основного разрывного заряда. Генератор выполнен из двух пластин, между которыми размещен заряд взрывчатого вещества. Достигается повышение бронебойности боевой части. 1 ил.

Изобретение относится к технологии изготовления кумулятивных облицовок, которые могут быть использованы в перфорационной технике при прострелочно-взрывных работах в нефтедобыче или боевых частях снарядов или ракет. Способ включает изготовление заготовки оболочечной детали кумулятивной облицовки и тонкое точение полученной детали, закрепленной в токарном станке. Заготовка оболочечной детали кумулятивной облицовки изготавливается методом направленного намораживания металла на кристаллизатор, при этом изготавливается кристаллизатор-пуассон с внешней формой поверхности, совпадающей с внутренней формой поверхности кумулятивной облицовки. Заливают расплавленный металл в форму-матрицу, погружают кристаллизатор-пуассон в расплав и осуществляют наращивание полой оболочечной заготовки из расплава металла на охлаждаемый кристаллизатор-пуассон с одновременным прессованием. Выдерживают кристаллизатор-пуассон в расплаве на время, достаточное для формирования на нем столбчатых кристаллов перпендикулярно к внешней поверхности кристаллизатора-пуассона на заданную толщину стенки с учетом припуска на механическую обработку. В качестве пуассона, формирующего внутренний контур, используется водоохлаждаемый кристаллизатор, а в качестве матрицы, формирующей внешний контур облицовки, используется нагреваемая форма, температура которой поддерживается не менее чем на 5-10 градусов выше ликвидуса. Вынимают кристаллизатор с заготовкой кумулятивной облицовки из расплава, снимают заготовку кумулятивной облицовки с кристаллизатора-пуассона и охлаждают ее, например, на воздухе или в воде, удаляют припуск с внешней поверхности кумулятивной облицовки. В качестве материала кумулятивной облицовки используется преимущественно медь или сплавы на основе меди, алюминий или сплавы на основе алюминия, железо или сплавы на основе железа. На поверхность кристаллизатора предварительно методом гальванического осаждения наращивается слой электролитической меди толщиной 200-300 мкм. Изобретение позволяет повысить пробивную способность заряда и стабильность результатов пробиваемости. 2 з.п. ф-лы, 2 ил., 1 табл.

Группа изобретений относится к области экспериментальном физики. Способ гиперскоростного метания металлического элемента, закрепленного со стороны свободного торца осесимметричного трубчатого заряда взрывчатого вещества (ВВ), противоположного устройству инициирования заряда, включает инициирование заряда ВВ, формирование маховской ударной волны. При формировании маховской ударной волны создают две поверхности ударной волны (УВ), движущиеся под разными углами относительно оси заряда с утлом наклона поверхности УВ у оси заряда большим, чем на его периферии. Кумулятивное метающее устройство содержит осесимметричный трубчатый заряд взрывчатого вещества (ВВ) с установленным соосно внутри него вкладышем, устройство инициирования с точками инициирования, расположенными по кольцу на наружной боковой поверхности заряда ВВ со стороны одного из его торцов. Вкладыш выполнен в виде сплошного цилиндра с осевой конической выемкой со стороны устройства инициирования и осевым выступом в виде усеченного конуса с противоположной стороны, внутри выемки размещена коническая вставка, имеющая акустическую жесткость выше акустической жесткости вкладыша, направленная вершиной в направлении метания. На торцевой поверхности заряда ВВ, противоположной устройству инициирования, размешена металлическая шайба, в центральном отверстии которой закреплен метаемый металлический элемент. Метаемый металлический элемент может быть выполнен компактным, в виде пластины, пластина может быть выполнена разнотолщинной. Технический результат - проведение экспериментальных исследований высокоскоростного метания тел различной формы с использованием зарядов ВВ меньшей массы. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к области экспериментальной физики и может использоваться совместно с метающими устройствами кумулятивного типа (КМУ) при исследовании высокоскоростного взаимодействия тел, например, при моделировании воздействия метеоритно-техногенных частиц на защиту космических аппаратов. Способ отсечки фрагментов кумулятивной струи, следующей за сформированным с помощью кумулятивного метающего устройства (КМУ) компактным элементом (КЭ), включает генерирование на выходе из КМУ асимметричной ударной волны, уводящей в сторону фрагменты кумулятивной струи. Асимметричную ударную волну формируют при помощи закрепленного снаружи КМУ соосно кумулятивной выемке с заданным зазором относительно его торца отсекающего устройства в виде снабженного асимметричным выступом со стороны КМУ сплошного металлического цилиндра с продольным сквозным каналом с выполненным внутри канала уступом, при этом диаметр канала со стороны ближнего к КМУ торца выполняют больше диаметра канала со стороны дальнего торца. Способ позволяет выделить стабильный по форме одиночный металлический КЭ. 2 ил.

Изобретения относятся к области экспериментальной физики и могут быть использованы при исследовании высокоскоростного взаимодействия тел. Способ включает инициирование осесимметричного трубчатого заряда взрывчатого вещества (ВВ), формирование под воздействием маховской ударной волны кумулятивной струи с последующим выделением из нее компактного элемента. При формировании маховской ударной волны создают две поверхности ударной волны (УВ), движущиеся под разными углами относительно оси заряда, при этом, угол наклона поверхности УВ у оси заряда больше, чем на его периферии. Кумулятивное метающее устройство по первому варианту содержит осесимметричный трубчатый заряд взрывчатого вещества с установленным соосно внутри него вкладышем, устройство инициирования с точками инициирования, расположенными по кольцу на наружной боковой поверхности заряда ВВ, осевую кумулятивную выемку в форме полусфера-цилиндр. Вкладыш выполнен в виде сплошного цилиндра с осевой конической выемкой со стороны устройства инициирования, внутри выемки размещена коническая вставка, имеющая акустическую жесткость выше акустической жесткости вкладыша, направленная вершиной в направлении метания, а осевая кумулятивная выемка в форме полусфера-цилиндр выполнена на наружном торце металлического диска, закрепленного на свободной торцовой поверхности заряда ВВ. Во втором варианте заявляемого устройства кумулятивная выемка выполнена во вкладыше со стороны свободной торцовой поверхности заряда ВВ и облицована металлом. Изобретение позволяет обеспечить проведение исследований высокоскоростного взаимодействия кумулятивного элемента с преградами в расширенном диапазоне скоростей. 3 н.п. ф-лы, 3 ил.

Изобретение относится к обработке металлов давлением, в частности к взрывной резке, и может быть использовано для резки корпусных конструкций сложной конфигурации с толщиной стенки до 23 мм на фрагменты, удобные для транспортировки и переплавки. Устройство содержит детонационно соединенный со средством инициирования шнуровой кумулятивный заряд взрывчатого вещества (ШКЗ) с направленной на разрезаемую конструкцию металлопластовой облицовкой. ШКЗ выполнен эластичным с возможностью размещения на поверхности разрезаемой конструкции с воспроизведением ее обводов. Устройство снабжено подпором, закрывающим ШКЗ и установленным заподлицо с поверхностью ШКЗ, контактирующей с поверхностью разрезаемой конструкции. Подпор представляет собой эластичную оболочку с насыпным веществом плотностью 1,5-1,8 г/см3. Габариты подпора выбраны таким образом, что в поперечном сечении его толщина над ШКЗ и ширина с каждой из сторон ШКЗ по крайней мере не менее ширины ШКЗ. Техническим результатом заявляемого изобретения является повышение безопасности проводимых работ и обеспечение эффективности резки металлических конструкций. 1 ил.
Изобретение относится к области производства взрывчатых веществ и может быть использовано для получения пластичных ВВ с уменьшенными критическими размерами детонации, применяющихся для изготовления малогабаритных взрывных устройств различного назначения. Описан способ получения смесевого пластичного взрывчатого вещества (ВВ) на основе гексогена и полимерного связующего, включающий смешение компонентов смесевого ВВ и формирование заряда ВВ, в котором предварительно порошкообразный гексоген подвергают возгонке (сублимации) в вакууме при остаточном давлении (2-5)×10-3 Па и при температуре 140-160°С, затем полученный слой сублимированного гексогена механически отделяют от подложки и механически измельчают до частиц дисперсности 250-500 мкм, после чего полученный продукт вводят в раствор связующего в растворителе, выбранном из группы инертных по отношению к гексогену - или в хлороформе, или в петролейном эфире, в качестве связующего используют полиизобутилен, затем удаляют растворитель выпариванием до достижения постоянной массы продукта, после чего окончательно формируют заряд ВВ. Технический результат: получен пластифицированный гексоген со сниженным критическим диаметром. 3 пр.
Изобретение относится к бортовой и наземной пироавтоматике изделий ракетно-космической, авиационной, военно-морской и специальной техники, в частности к исполнительным устройствам систем разделения - детонирующим удлиненным зарядам, а также к областям защиты металлоконструкций и изделий от коррозии и нанесения различных покрытий на узлы и детали в машиностроении. Способ нанесения антикоррозийного покрытия на металлическую оболочку детонирующего удлиненного заряда включает термостатирование размещенного в рабочей камере детонирующего удлиненного заряда и осаждение на его поверхности металла путем разложения паров исходного металлсодержащего соединения карбонильной группы в потоке газа-носителя. Термостатирование осуществляют при температуре 80-85°C в течение 3-5 минут. В качестве исходного металлсодержащего соединения карбонильной группы используют карбонил металла, акустическая жесткость которого больше или не меньше жесткости металла оболочки детонирующего удлиненного заряда, а в качестве газа-носителя используют сероводород, при этом пары карбонила металла и сероводород подают одновременно со скоростью, равной 1,0-1,5 г/час и 0,1-0,2 г/час соответственно, при остаточном давлении в рабочей камере 10-1-10 Па. Обеспечивается повышение газо-, паро-, водонепроницаемости защитного покрытия, адгезионное сцепление его с металлической оболочкой детонирующего удлиненного заряда, повышение производительности работ, расширение функциональных возможностей и области применения нанесения антикоррозийного, защитного покрытия.

Изобретение относится к взрывным работам и может быть использовано для резки корпусных конструкций сложной конфигурации. Способ включает резку в два этапа. Первый этап - выполнение на разрезаемой конструкции ослабленного сечения в виде надреза, глубина которого составляет не менее 1/6 толщины разрезаемой конструкции, путем одноточечного инициирования удлиненного кумулятивного заряда (УКЗ), который устанавливают на ее поверхность на определенном фокусном расстоянии, которое вместе с площадью поперечного сечения УКЗ выбирают в зависимости от толщины разрезаемой конструкции. Второй этап включает размещение над надрезом заряда эластичного ВВ, который закрывают подпором, представляющим собой оболочку с насыпным веществом плотностью 1,7-1,8 г/см3, поперечное сечение которого превышает не менее чем в 10 раз поперечное сечение заряда эластичного ВВ. Осуществляют подрыв заряда эластичного ВВ при одновременном инициировании с одного из торцов встречно направленными импульсами, перпендикулярными разрезу. Технический результат заключается в повышении эффективности резки толстых металлических конструкций (до 60 мм), в том числе из легированных сталей. 2 ил.

Изобретение относится к боеприпасам, в частности к способам движения боевого поражающего элемента. Поражающий элемент имеет процессор. Способ движения боевого поражающего элемента заключается в том, что движение поражающего элемента осуществляется по объемной спирали, оканчивающейся на цели. Процессор поражающего элемента строит спираль, начиная от цели, используя 80-99 маневренных возможностей поражающего элемента. Достигается уменьшение вероятности поражения боевого поражающего элемента. 1 з.п. ф-лы.

Наверх