Подрывной заряд



Подрывной заряд
Подрывной заряд
Подрывной заряд
Подрывной заряд

 


Владельцы патента RU 2570148:

Общество с ограниченной ответственностью "Газпром трансгаз Самара" (RU)

Изобретение относится к подрывным зарядам для разрушения крепких пород. Подрывной заряд содержит электродетонатор, дополнительный детонатор и размещенный по длине заряд взрывчатого вещества с осевым каналом, выполненный с возможностью взрывного разложения упомянутого взрывчатого вещества в режиме пересжатой детонации от электродетонатора и дополнительного детонатора. Осевой канал в заряде взрывчатого вещества выполнен из четного количества зеркально расположенных относительно друг друга кумулятивных выемок с образованием взаимоперекрещивающихся осесимметричных эллипсных форм, высота которых в 1,1-2 раза больше ширины и составляет два фокусных расстояния зеркально расположенных кумулятивных выемок. Дополнительный детонатор размещен у торца заряда взрывчатого вещества, имеет форму, повторяющую форму торца заряда взрывчатого вещества, и выполнен с возможностью точечного инициирования в его центре. В осевом канале заряда взрывчатого вещества с противоположного от дополнительного детонатора конца заряда взрывчатого вещества размещена вставка из взрывчатого вещества, имеющая форму, повторяющую форму сечения осевого канала заряда взрывчатого вещества с выступающей частью, обеспечивающей возможность его соединения с аналогичным подрывным зарядом. Обеспечивается высокая степень взрывного дробления. 2 ил., 1 табл.

 

Изобретение относится к подрывным зарядам высокой мощности и предназначено для проведения взрывных работ при разрушении крепких пород шпуровыми и скважинными зарядами, а также для повышения эффективности осколочно-фугасного действия боеприпасов.

Кроме того, на многих объектах газотранспортных предприятий проводится замена газоперекачивающих агрегатов (ГПА) на более мощные. Оставшиеся после них железобетонные фундаменты 30…40-летней давности имеют высокую прочность и железную арматуру. Выполнение частичного или полного демонтажа таких фундаментов требует использования высокодетонационных шпуровых зарядов.

Бурение шпуров с такой арматурой представляет тяжелую технологическую операцию. Расстояние между шпурами, как правило, составляет (0,4…0,5) м. В качестве шпурового заряда используют мощное взрывчатое вещество (ВВ) - аммонал скальный №3 (Перечень взрывчатых материалов, оборудования и приборов взрывного дела, допущенных к применению в Российской Федерации. Сер. 13. Вып. 2 / Колл. авт. - М.: ФГУП «Научно-технический центр по безопасности в промышленности Госгортехнадзора России», 2004, с. 6). Однако его использование не всегда решает поставленную задачу, что делает работу трудоемкой и дорогостоящей, а иногда невыполнимой.

Известен заряд (патент №2235965 РФ «Заряд», МПК F42B 3/00, авторы Калашников В.В., Вологин М.Ф., Лаптев Н.И. и др.; заявитель и патентообладатель НИИ проблем конверсии и высоких технологий СамГТУ). Заряд состоит из сегментов, комбинация которых представляет цилиндрическую поверхность, и корпуса. Каждый сегмент имеет тонкостенную оболочку с постоянным поперечным сечением по всей длине и изготовлен путем прокатки трубной заготовки, которая заполняется порошкообразным взрывчатым веществом. Сегменты содержат мощное ВВ гексоген.

Данному техническому решению характерны следующие недостатки. Прокатка сегментов не позволяет получить высокую и равномерную плотность гексогена по длине сегмента. Резка концов сегментов для обеспечения необходимой длины заряда опасна и может привести к взрыву гексогена при защемлении его кристаллов в металлической трубной заготовке. Технология изготовления данного заряда сложна, что обуславливает его высокую стоимость.

В качестве прототипа выбран линейный подрывной заряд-транслятор, взрывное разложение которого протекает в режиме пересжатой детонации (Физика взрыва./Под ред. Л.П. Орленко. - Изд. 3-е, перераб. В 2 т. Т. 1. - М.: ФИЗМАТЛИТ, 2002, с. 468-469).

Режимы пересжатой детонации, значительно повышающие взрывные показатели, возникают в любом ВВ, когда на него воздействуют тело, например метаемая металлическая пластина или продукты взрыва (ПВ) более мощного ВВ со скоростью большей, чем скорость нормального режима самого ВВ. Было отмечено, что ударом стальной пластины пересжатая детонация возбуждается в литом тротиле. При этом пересжатый режим распространяется только на один радиус заряда (Воскобойников И.М., Афанасенков А.Н. О пересжатой детонации. // Взрывное дело, №75/32. - М.: Недра, 1975, с. 21-35).

Линейный подрывной заряд-транслятор состоит из взрывчатой сердцевины, заключенной между внешней и внутренней оболочками, и центрального канала, выполненного в виде окружности. Он содержит внешнюю алюминиевую оболочку и внутреннюю медную. После их центрации в зазор засыпают мелкодисперсное взрывчатое вещество, например гексоген или октоген, которые уплотняют путем развальцовки медной оболочки. Центральный канал линейного подрывного заряда-транслятора заполняют водой. Подрывной заряд-транслятор инициируют миниатюрными электродетонатором и переходным составом - дополнительным детонатором. При этом скорость детонации возрастает до (10…12) км/с, т.е. на (20…40) %. Устойчивое распространение детонации обеспечивается при выполнении условия для толщины слоя ВВ (0,1…0,2) мм.

Это устройство представляет собой миниатюрный подрывной заряд-транслятор для разведения детонационных команд в бортовых системах пироавтоматики ракетно-космических объектов.

Однако данное техническое решение, представляющее собой подрывной заряд-транслятор, не может быть использовано для создания подрывного заряда необходимой длины и диаметров. Кроме того, он сложен в изготовлении, дорог и в силу конструктивных решений не может быть использован даже для инициирования зарядов промышленного применения.

Техническим результатом предлагаемого изобретения является высокая степень взрывного дробления окружающей среды, значительное упрощение технологии изготовления подрывного заряда, снижение его стоимости, увеличение его габаритных характеристик, позволяющих использовать подрывной заряд в скважинах и боеприпасах на основе высокомощного бризантного ВВ, а также для повышения его работоспособности.

Технический результат достигается тем, что подрывной заряд, содержащий электродетонатор, дополнительный детонатор и размещенный по длине заряд взрывчатого вещества с осевым каналом, выполненный с возможностью взрывного разложения упомянутого взрывчатого вещества в режиме пересжатой детонации от электродетонатора и дополнительного детонатора, причем осевой канал в заряде взрывчатого вещества выполнен из четного количества зеркально расположенных относительно друг друга кумулятивных выемок с образованием взаимоперекрещивающихся осесимметричных эллипсных форм, высота которых в 1,1-2 раза больше ширины и составляет два фокусных расстояния зеркально расположенных кумулятивных выемок, при этом дополнительный детонатор размещен у торца заряда взрывчатого вещества и имеет форму, повторяющую форму торца заряда взрывчатого вещества, и выполнен с возможностью точечного инициирования в его центре, а в осевом канале заряда взрывчатого вещества с противоположного от дополнительного детонатора конца заряда взрывчатого вещества размещена вставка из взрывчатого вещества, имеющая форму, повторяющую форму сечения осевого канала заряда взрывчатого вещества с выступающей частью, обеспечивающей возможность его соединения с аналогичным подрывным зарядом.

Применение дополнительного детонатора из мощного ВВ, повторяющего форму торца заряда взрывчатого вещества и имеющего вес 164-240 г в зависимости от габаритов заряда, приводит к возрастанию скорости детонации 300 мм заряда до 10,3-13,5 км/с.

На Фиг. 1 представлен пример выполнения сборки подрывного заряда, а также технология выполнения экспериментальных работ с целью оптимизации конструкции подрывного заряда. На Фиг. 2 изображено сечение конструкции подрывного заряда, состоящего из 4-х отрезков ШКЗ, сложенных кумулятивными выемками вовнутрь, при этом 1 - отрезки ВВ, 2 - осевой канал заряда, 3 - липкая лента, 4 - электродетонатор, 5 - соединительные провода, 6 - дополнительный детонатор, 7 - вставка из взрывчатого вещества для соединения зарядов, повторяющая сечение осевого канала заряда взрывчатого вещества, 8, 9 - ионизационные датчики, 10, 11 - разъемы, 12, 13 - коаксиальные кабели, 14 - прибор для измерения скорости детонации.

Для изготовления подрывного заряда используют шнуровой кумулятивный заряд ШКЗ. От бухты ВВ отрезают четыре отрезка 1 длиной, например, 300 мм, при этом от отрезков отделяют приклеенную кумулятивную облицовку. Далее отрезки 1 складывают и фиксируют по бокам, например, липкой лентой 3, с образованием осевого канала 2, выполненного из четного количества зеркально расположенных относительно друг друга кумулятивных выемок с образованием взаимоперекрещивающихся осесимметричных эллипсных форм. Дополнительный детонатор 6 изготавливают из пластин, полученных из отрезков ШКЗ, таким образом, чтобы они полностью повторяли конфигурацию торца заряда, а также частично входили в канал. Вес дополнительного детонатора для получения максимальной скорости пересжатой детонации заряда подбирают экспериментально путем сложения скрепленных пластин. Точечное инициирование дополнительного детонатора осуществляют электродетонатором 4 (ЭД-8Ж), как показано на Фиг. 1.

Скорость детонации измеряют с помощью прибора 14 OSCILLOSCOPE HEWLETT PACKARD марки 54600А. Точность прибора - 10 наносекунд. Измерение осуществляют при помощи ионизационных датчиков 8, 9. Толщина провода датчиков - 0,25 мм. Ионизационные датчики 8, 9 на пуск и остановку прибора должны находиться под напряжением 1,5 В, а провода в ВВ размещают друг от друга на расстоянии не более 1 мм, при этом база измерения составляла 100 мм и находилась в средней части заряда. Для этого от начала 300 мм заряда отмеряют штангенциркулем 100 мм и устанавливают ионизационные датчики 8, запускающие при детонации подрывного заряда прибор. Затем тщательно отмеряют еще 100 мм и аналогично устанавливают ионизационные датчики 9, останавливающие отсчет прибора при пробеге базового расстояния детонационной волной. Длина коаксиального кабеля 12, 13 марки RG-58 составляет 20 м. Для подсоединения ионизационных датчиков 8, 9 применяют разъемы 10, 11 марки RG-58. На каждый вид эксперимента выполняют не менее 3-х измерений.

Результаты исследований зависимости скорости детонации подрывных зарядов от конфигурации канала и способа инициирования приведены в Таблице 1.

Анализ результатов п. 1, представленных в Таблице 1, показал, что скорости детонации отрезков ШКЗ с облицовками соответствуют техническим условиям ТУ 84-988-99 - 7,9-8,0 км/с. Незначительное повышение скорости детонации ШКЗ по п. 2 Таблицы 1 связано с инициированием подрывного заряда с использованием дополнительного детонатора 6. Согласно п. 2 соударение кумулятивных струй, образованных при синхронном инициировании зарядов ШКЗ, не приводит к получению пересжатой детонации. («Перечень взрывчатых материалов, оборудования и приборов взрывного дела, допущенных к применению в Российской Федерации. Сер. 13. Вып. 2 / Колл. авт. - М: ФГУП «Научно-технический центр по безопасности в промышленности Госгортехнадзора России», 2004, с. 33).

Получение высоких параметров скользящей ударной волны (до 35 ГПа и выше) в осесимметричном осевом канале ШКЗ возможно с использованием «обратной» кумуляции, которая происходит в данной конструкции подрывного заряда. При взрыве дополнительного детонатора происходит инициирование зеркально расположенных кумулятивных выемок по всей внутренней поверхности подрывного заряда. В результате, благодаря процессу обратной кумуляции, происходит резкий скачок давления, обусловленный соударением четырех кумулятивных струй, что приводит к пересжатой детонации рассматриваемого подрывного заряда.

Подтверждением данного механизма являются пп. 3-6 Таблицы 1, в которых приведены зависимости скоростей пересжатой детонации от веса дополнительного детонатора. Наилучший эффект наблюдается при большем весе дополнительного детонатора. Наибольшая скорость пересжатой детонации наблюдается в случае, если происходит инициирование всей поверхности зеркально расположенных кумулятивных выемок, отстоящих друг от друга на двух фокусных расстояниях.

Предлагаемый подрывной заряд высокой мощности был изготовлен из промышленного взрывчатого материала ШКЗ, нашедшего широкое применение для разрушения сверхпрочных фундаментов.

Для придания округлой формы кумулятивным выемкам в осесимметричном осевом канале подрывного заряда высокой мощности следует использовать традиционные технологии: экструзию, прессование (включая проходное) и литье. В этом случае мощность и дробящее действие подрывного заряда ощутимо возрастет за счет увеличения детонационного давления, образующегося сходящимися сильными ударными волнами и продуктами детонации от «обратной» кумуляции, вследствие увеличения массы ВВ на боковых поверхностях подрывного заряда.

Таким образом, предложен подрывной заряд, обладающий высокой степенью взрывного дробления, при этом мощность взрыва можно регулировать на месте работ.

Подрывной заряд, содержащий электродетонатор, дополнительный детонатор и размещенный по длине заряд взрывчатого вещества с осевым каналом, выполненный с возможностью взрывного разложения упомянутого взрывчатого вещества в режиме пересжатой детонации от электродетонатора и дополнительного детонатора, отличающийся тем, что осевой канал в заряде взрывчатого вещества выполнен из четного количества зеркально расположенных относительно друг друга кумулятивных выемок с образованием взаимоперекрещивающихся осесимметричных эллипсных форм, высота которых в 1,1-2 раза больше ширины и составляет два фокусных расстояния зеркально расположенных кумулятивных выемок, при этом дополнительный детонатор размещен у торца заряда взрывчатого вещества, имеет форму, повторяющую форму торца заряда взрывчатого вещества, и выполнен с возможностью точечного инициирования в его центре, а в осевом канале заряда взрывчатого вещества с противоположного от дополнительного детонатора конца заряда взрывчатого вещества размещена вставка из взрывчатого вещества, имеющая форму, повторяющую форму сечения осевого канала заряда взрывчатого вещества с выступающей частью, обеспечивающей возможность его соединения с аналогичным подрывным зарядом.



 

Похожие патенты:

Изобретение относится к области военной техники, а именно к устройствам удлиненных зарядов разминирования большой длины, состоящих из набора отдельных секций. Секции удлиненного заряда разминирования выполнены из звеньев, корпуса которых заполнены взрывчатым веществом методом заливки.

Изобретение относится к взрывным патронам и способам заполнения взрывного патрона взрывчатым веществом. Взрывной патрон содержит загрузочную часть, имеющую загрузочный канал, позволяющий подавать взрывчатое вещество извне скважины, и гибкую трубу, надетую на наружную поверхность загрузочной части в сложенном в продольном направлении состоянии.

Изобретение относится к области военной техники, в частности к устройству кумулятивных зарядов. Удлиненный кумулятивный заряд взрывчатого вещества с облицованной металлом продольной выемкой снабжен двумя промежуточными детонаторами и двумя слоями взрывчатого вещества с высокой скоростью детонации.

Способ и устройство относятся к перфорированию обсадных труб скважин для добычи нефти, газа, воды и могут быть использованы в кумулятивных скважинных перфораторах, улучшающих гидродинамическую связь пласта со скважиной и обеспечивающих повышение дебита скважины.

Изобретение относится к области взрывного дела. .

Изобретение относится к области взрывного дела. .

Изобретение относится к области буровзрывных работ и может быть использовано в различных областях, применяющих взрывные работы в скальных массивах горных пород, в частности при открытом способе разработки месторождений полезных ископаемых.

Изобретение относится к удлиненным кумулятивным зарядам для системы коллективного спасения. .

Изобретение относится к взрывным работам, а конкретно к взрывным режущим устройствам, применяемым в тральных резаках, и может применяться в различных отраслях промышленности, использующих взрывные технологии по перерезанию стержневых элементов (канатов, цепей, кабель-тросов, жестких опор и т.д.) и преград (пластин, профильных материалов и т.д.).

Изобретение относится к кумулятивным боеприпасам. Кумулятивный заряд состоит из шашки взрывчатого вещества с конусной выемкой и, возможно, с внутренней облицовкой выемки, при этом в качестве взрывчатого вещества содержит вещество, выделяющее при взрыве из газов водород.

Изобретение относится к области стрелкового вооружения и может быть использовано в стрелковом огнестрельном оружии сверх малого калибра. Способ создания метательной силы для убойно-разрушающего элемента стрелкового огнестрельного оружия заключается в том, что заранее формируют порцию термоядерного топлива, дозируют мощность энергии экзотермической реакции прогнозируемого термоядерного синтеза выбором объема порции термоядерного топлива внутри неразрушающейся гильзы миниатюрного размера, размещают неразрушающую миниатюрную гильзу с заранее сформированной порцией термоядерного топлива в затворную часть ствола стрелкового огнестрельного оружия сверх малого калибра, инициируют реакцию термоядерного синтеза в неразрушающейся миниатюрной гильзе электрическим разрядом и высвобождают продукты реакции термоядерного синтеза из неразрушающейся миниатюрной гильзы с возможностью выталкивания убойно-разрушающего элемента из миниатюрной гильзы и раскручивания его относительно продольной оси при выходе из ствола стрелкового огнестрельного оружия сверх малого калибра.
Изобретение относится к боеприпасам, в частности к кумулятивным зарядам. Кумулятивный заряд состоит из шашки взрывчатого вещества с конусной выемкой и, возможно, с внутренней облицовкой.

Изобретение относится к области ракетно-космической и оборонной техники и может быть использовано в различных кумулятивных устройствах (КУ), предназначенных для формирования высокоскоростных компактных элементов (ВКЭ) при моделировании воздействия метеоритных частиц или космического мусора искусственного происхождения на корпус космических объектов и при экспериментальном исследовании материалов в условиях высокоскоростного ударного нагружения.

Изобретение относится к технологии конверсионных производств и может быть использовано для изготовления кумулятивных зарядов для дробления негабаритов горных пород, пробития металлических преград.

Изобретение относится к механике и может быть использовано для придания ускорения телу. Газодинамически ускоряют тело, ускоряют тело взрывной волной, перемещаемой в пространстве со скоростью в зависимости от скорости детонации, радиуса и шага намотки спирали, обеспечивают устойчивость процесса ускорения тела условием автофазировки, синхронизируют газодинамическое ускорение и ускорение взрывной волной в зависимости от удаления тела от области взрыва.

Изобретение относится к технологии конверсионных производств и может быть использовано для изготовления кумулятивных зарядов для дробления негабаритов горных пород.

Изобретение относится к технике взрыва площадных зарядов из листовых взрывчатых веществ (ВВ) и может быть использовано в практике динамических испытаний преград (материалов и конструкций), а также в ряде импульсных технологических операций (штамповка и сварка взрывом).

Изобретение относится к вооружению и может быть использовано в кумулятивных боеприпасах. Устройство управления формой фронта детонационной волны содержит осесимметричные промежуточный заряд взрывчатого вещества с детонатором и основной заряд взрывчатого вещества с кумулятивной выемкой, инертную линзу в форме полого цилиндра с дном.

Изобретение относится к области экспериментальной физики, в частности к способу формирования металлического компактного элемента. Способ формирования металлического компактного элемента заключается в инициировании осесимметричного основного заряда взрывчатого вещества, разгоне металлической облицовки кумулятивной выемки под действием продуктов взрыва основного заряда, выполнении каждого металлического вкладыша в форме, аналогичной форме металлической облицовки, покрытии вкладыша со стороны облицовки слоем дополнительного заряда взрывчатого вещества, производстве ударного инициирования разогнанной металлической облицовкой примыкающего к ней дополнительного заряда взрывчатого вещества, размещенного на первом по направлению метания металлическом вкладыше.

Изобретение относится к взрывным устройствам для вскрытия продуктивных пластов в нефтяных скважинах и может использоваться в кумулятивных боевых частях. Кумулятивный заряд содержит корпус с размещенной в нем шашкой взрывчатого вещества, имеющей кумулятивную выемку, покрытую облицовкой, состоящей из двух слоев, выполненных из различных материалов, внешний слой прилегает к кумулятивной выемке, а внутренний струеобразующий слой выполнен из меди, причем внешний и внутренний слои облицовки размещены относительно друг друга с зазором, составляющим не более двух толщин стенки внешнего слоя облицовки, а внешний слой облицовки выполнен из материала плотностью 2-3 г/см3, например хлористого натрия NaCl. Техническим результатом изобретения является увеличение пробивной способности и стабильности работы кумулятивного заряда при отсутствии пестообразования. 1 з.п. ф-лы, 2 ил.
Наверх