Быстродействующее устройство измерения температуры газового потока

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих высокотемпературных процессов в газодинамике и построения систем автоматического регулирования температуры. Быстродействующее устройство измерения температуры газового потока состоит из двух каналов измерения для реализации дифференциальной схемы и блока обработки информации. Каждый канал измерения содержит струйный генератор, пьезоэлектрический преобразователь для преобразования акустического сигнала в электрический, электронно-перестраиваемый фильтр, компаратор фаз, ключ, генератор пилообразного напряжения, одновибратор, преобразователь напряжение-код. Блок обработки информации содержит вычитатель кодов, один элемент «ИЛИ», три схемы «И», первый и второй инвертор, два делителя кодов. В устройстве реализуется принцип фазовой автоподстройки первой гармоники частоты полигармонического сигнала с применением электронно-перестраиваемого фильтра, управляемого генератором пилообразного напряжения, и цифровой обработки измерительной информации, реализующей дифференциальный способ измерения. Технический результат - повышение быстродействия и точности, а также упрощение схемы устройства для измерения температуры газового потока, с сохранением работоспособности при выходе из строя одного из каналов измерения. 1 табл., 2 ил.

 

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих высокотемпературных процессов в газодинамике и построения систем автоматического регулирования температуры.

Известно устройство для измерения температуры газового потока (А.с. 909590 СССР, МКИ G01K 13/02. Опубл. 28.02.1982. Бюл. №8), содержащее два струйных генератора, выходы которых через преобразователи акустического сигнала в электрический сигнал соединены с входами схемы выделения разностной частоты, выход которой соединен с измерительным блоком, два делителя частоты, схему вычитания частот, входы которой соответственно через делители частоты соединены с входами схемы выделения разностной частоты, а выход соединен с входом измерительного блока.

Недостатками аналога являются низкая точность измерения температуры и неполное использование широкого диапазона работы струйного генератора. Это обусловлено тем, что гармоники основной частоты полигармонического сигнала струйного генератора попадают в рабочий диапазон устройства, причем некоторые из них значительно усиливаются пьезоэлектрическим преобразователем из-за совпадения его собственной частоты резонанса с частотой гармоники.

Наиболее близким по технической сущности является устройство для измерения температуры газового потока (А.с. 1093911 СССР, МКИ G01K 13/02. Опубл. 23.05.1984. Бюл. №19), содержащее два блока фильтров, при этом выходы каждого преобразователя акустического сигнала в электрический подключены к входу схемы выделения разностной частоты через соответствующий блок фильтров, каждый из которых содержит группу полосовых фильтров, выходы которых подключены соответственно к входам ключей и входам формирователей, выходы которых, за исключением последнего формирователя, подключены через инверторы соответственно к первым входам схем совпадения, выходы которых соединены соответственно с управляющими входами ключей со второго по последний, причем управляющий вход первого ключа соединен с выходом первого формирователя, выход второго формирователя соединен с вторым входом первой схемы совпадения, а каждый второй, с второго по k-й, вход k-й схемы совпадения, начиная с второй, подключен соответственно к выходам инверторов с первого по k-й, при этом выход последнего формирователя соединен с дополнительным входом последней схемы совпадения.

Основными существенными недостатками прототипа являются сложная система выделения информативного параметра из полигармонического выходного сигнала с использованием множества полосовых фильтров, недостаточные быстродействие, точность и надежность.

Задачей заявляемого изобретения является повышение быстродействия и точности, а также упрощение схемы устройства для измерения температуры газового потока, с сохранением работоспособности при выходе из строя одного из каналов измерения.

Поставленная задача решается использованием быстродействующего устройства измерения температуры газового потока, состоящего из двух каналов измерения и блока обработки информации, при этом каждый из двух каналов измерения содержит струйный генератор, пьезоэлектрический преобразователь, электронно-перестраиваемый фильтр, соединенный с первым входом компаратора фаз, осуществляющий фазовую подстройку частоты фильтра до равенства фаз с первой гармоники полигармонического сигнала, поступающего непосредственно с выхода пьезоэлектрического преобразователя на второй вход компаратора, выход которого через ключ соединен с первым управляющим входом генератора пилообразного напряжения, второй вход которого соединен с одновибратором, а выход соединен с управляющим входом электронно-перестраиваемого фильтра, при этом выход генератора пилообразного напряжения первого канала измерения соединен со вторым входом первой схемы «И», первым инвертором блока обработки информации и с преобразователем напряжение-код; выход генератора пилообразного напряжения второго канала измерения соединен с первым входом первой схемы «И», вторым инвертором блока обработки информации и с преобразователем напряжение-код; при этом выход преобразователя напряжение-код первого канала измерения соединен с первым делителем кода блока обработки информации и с первым входом вычитателя кодов, а выход преобразователя напряжение-код второго канала измерения соединен со вторым делителем кода и со вторым входом вычитателя кодов; разница кодов, реализующая дифференциальную схему измерения температуры, через третий вход первой схемы «И» и элемент «ИЛИ» поступает на выход.

При выходе из строя первого канала измерения в блоке обработки информации устанавливается соединение преобразователя напряжение-код второго канала измерения через второй делитель кодов, второй вход второй схемы «И», первый вход которого соединен с выходом генератора пилообразного напряжения первого канала измерения через первый инвертор, и элемент «ИЛИ» на выход.

В случае выхода из строя второго канала измерения в блоке обработки информации устанавливается соединение преобразователя напряжение-код первого канала измерения через первый делитель кодов, второй вход третьей схемы «И», первый вход которого соединен с выходом генератора пилообразного напряжения второго канала измерения через второй инвертор, и элемент «ИЛИ» на выход.

Технический результат достигается использованием электронно-перестраиваемого фильтра, управляемого генератором пилообразного напряжения для фазовой автоподстройки первой гармоники частоты полигармонического сигнала с выхода пьезоэлектрического преобразователя, и цифровой обработкой измерительной информации.

Кроме того, сущность технического решения поясняется чертежами, где:

- на фиг. 1 - принципиальная схема электронно-перестраиваемого фильтра;

- на фиг. 2 представлена блок-схема быстродействующего устройства измерения температуры газового потока.

Сущность: в устройстве реализуется принцип фазовой автоподстройки первой гармоники частоты полигармонического сигнала с применением электронно-перестраиваемого фильтра, управляемого генератором пилообразного напряжения, и цифровой обработки измерительной информации, реализующей дифференциальный способ измерения.

Применение фазовой автоподстройки частоты для электронно-перестраиваемого фильтра (ЭПФ) повышает точность, т.к. отсутствует методическая погрешность в момент измерения частоты (см. Радиоприемные устройства / Под ред. А.П. Жуковского. - М.: Высшая школа, 1989. С. 195), и быстродействие, т.к. роль перестраиваемых емкостей в ЭПФ выполняют варикапы, практически безынерционные элементы до субмиллиметрового диапазона (см. Берман Л.С. Введение в физику варикапов. - Л.: Наука, 1968. С. 38), а измерение номинальной частоты без промежуточных преобразований значительно упрощает схему, что повышает надежность устройства.

Для расширения диапазона частоты перестройки ЭПФ применяется цепная трехполюсная структура (ЦТС), состоящая из n/2 RC-звеньев, где роль емкостей C выполняют варикапы (Фиг. 1).

Известные традиционные методы исследования не позволили получить аналитические выражения, связывающие диапазон измерения и частоту настройки (квазирезонанса) ω0 с числом n/2 RC-звеньев ЭПФ, тем более состоящих из нелинейных элементов (варикапов) и тем самым решить актуальную проблему.

Использование метода функций преобразования (ФП) позволило устранить этот пробел (см. Гулин А.И. Диагностика измерительных преобразователей и устройств связи с неоднородной цепной структурой // Контроль. Диагностика. 2010. №11. С. 69-72). Оказалось, что вычисление частот квазирезонансов при произвольном количестве звеньев n/2, где n число плеч структуры, сводится к определению коэффициента kn (см. Гулин А.И. Проектирование многозвенных RC-генераторов // Изв. вузов Приборостроение. - 2012. - Т. 56. - №3. - С. 14-18) из выражения

В результате аналитического анализа впервые получена формула определения коэффициента kn однородных ЦТС с произвольным количеством RC-звеньев

где p=0,25n-1.

Из всех вещественных положительных корней уравнения (2) необходимо использовать наименьший (для шестиплечей ЦТС оно равно ), так как использование других значений, удовлетворяющих условию (2), приведет к сдвигу фаз на 2π радиан и более. В таблице для примера приведены значения коэффициентов kn для числа плеч ЦТС n от 6 до 40.

Для расчета сложных ЦТС можно воспользоваться программой (см. Гулин А.И., Сухинец Ж.А., Мударисов Д.Ф., Хаников И.Р. Расчет частоты квазирезонанса и коэффициента передачи многозвенных RC-структур // Свидетельство об официальной регистрации программы для ЭВМ №2003611147 / 16.05.2003. Роспатент. Москва. 2003).

Рассмотрим рекомендации построения ЭПФ. Емкость варикапа определяется из выражения

,

где CB, UB - емкость и напряжение смещения варикапа, соответствующие верхней частоте перестройки;

Uупр - напряжение управления смещением варикапов;

φk - контактная разность потенциалов p-n перехода, лежащая в пределах 0,4÷0,7 В;

b - коэффициент, зависящий от распределения примесей в переходе, равный 0,5 для варикапов с резким p-n переходом.

Следовательно, выражение (1) при использовании варикапов примет вид

Зная диапазон изменения первой гармоники выходной частоты струйного генератора , равный

,

где Cmax - максимальная емкость варикапа, соответствующая нижней частоте перестройки фильтра, получим выражение для определения коэффициента kn

.

Из таблицы находим соответствующее значение коэффициента kn, по которому определяем число звеньев (варикапов) ЭПФ. В случае несовпадения вычисленного коэффициента с табличным значением выбираем ближайшее меньшее значение kn.

Если поддерживать значение напряжения управления (смещения) на емкости в 4÷5 раз больше амплитуды высокочастотных колебаний, то можно считать, что емкость в основном будет определяться лишь значениями напряжения смещения. А поскольку обратное сопротивление перехода более 1 МОм, то практически напряжение смещения на всех варикапах одинаково в виду ничтожно малого токораспределения по вертикальным плечам - проводимостям. Высокоомное сопротивление RД необходимо для предотвращения шунтирования входного сигнала источником управляющего напряжения.

Быстродействующее устройство измерения температуры газового потока (Фиг. 2) состоит из двух каналов 1 и 2 измерения для реализации дифференциальной схемы и блока 3 обработки информации (БОИ). Дифференциальное включение повышает быстродействие устройства в два с лишним раза из-за сокращения переходного процесса установления измеряемой разницы частот (Гулин А.И. Быстродействующий измеритель температуры газов в газотурбинном двигателе // Авиакосмическое приборостроение. - 2012. - №9 - С. 10-14).

Каждый канал измерения 1 (2) содержит струйный генератор (СГ) 4 (5), пьезоэлектрический преобразователь (ПЭП) 6 (7) для преобразования акустического сигнала в электрический, электронно-перестраиваемый фильтр (ЭПФ) 8 (9), компаратор фаз (КФ) 10 (11), ключ 12 (13), генератор пилообразного напряжения (ГПН) 14 (15), одновибратор (ОВ) 16 (17), преобразователь напряжение-код (ПНК) 18 (19).

Блок обработки информации содержит вычитатель кодов (ВК) 20, один элемент «ИЛИ» 22, три схемы «И» 21, 23 и 25, первый инвертор 24 и второй 26, два делителя кодов (ДК) 27 и 28.

Устройство работает следующим образом. При помещении двух СГ 4 и 5, расположенных в одном корпусе в газовый поток, абсолютную температуру Θ которого измеряют, в них возбуждаются акустические колебания с частотами и , преобразуемые с помощью ПЭП 6 и 7 в соответствующие электрические колебания, которые в свою очередь поступают через первые входы ЭПФ 8 и 9 на первые входы КФ 10 и 11, на вторые входы которых частоты и поступают непосредственно с выходов ПЭП 6 и 7. Выходы КФ через ключи 12 и 13 и первые входы ГПН 14 и 15, запускаемых ОВ 16 и 17 через вторые входы, управляют временем разверток линейно изменяющихся напряжений, поступающих на соответствующие вторые управляющие входы ЭПФ 8 и 9. ЭПФ под воздействием ГПН перестраивают ЭПФ на первые гармоники, начиная с частот и , до совпадения фаз на соответствующих компараторах, реализуя принцип фазовой автоподстройки частоты. При этом компараторы через соответствующие ключи фиксируют напряжения U1 и U2 с выходов ГПН 14 и 15, поступающие на ПНК 18 и 19, которые формируют коды N1 и N2, пропорциональные измеряемой температуре газового потока θ.

В блоке обработки информации с выхода ВК 20, реализующем дифференциальный принцип измерения, разница кодов ΔN=N1-N2, также пропорциональная температуре газового потока, через третий вход схемы «И» 21, на два других которой поступают разрешающие напряжения с выходов ГПН 14 и 15, и элемент «ИЛИ» 22 поступает на выход.

При выходе из строя одного из каналов измерения, например первого, схема «И» 21 запирается нулевым потенциалом с выхода ГПН 14, открывая через инвертор 24 схему «И» 23, а код N2 после деления в k2 раз ДК 28 через второй вход схемы «И» 23 и элемент «ИЛИ» 22 поступает на выход в виде ΔN.

Аналогичным образом работает схема при выходе из строя второго канала измерения.

Коэффициенты деления k1 и k2 делителей кодов 27 и 28 выбирают таким образом, чтобы коды на их выходах были равны разности кодов ΔN, т.е.

.

Итак, заявляемое изобретение позволяет повысить быстродействие и точность, а также упростить схему устройства измерения температуры газового потока, что обеспечивает его высокую надежность.

Быстродействующее устройство измерения температуры газового потока, состоящее из двух каналов измерения и блока обработки информации, при этом каждый из двух каналов измерения содержит струйный генератор, пьезоэлектрический преобразователь, электронно-перестраиваемый фильтр, соединенный с первым входом компаратора фаз, осуществляющий фазовую подстройку частоты фильтра до равенства фаз с первой гармоники полигармонического сигнала, поступающего непосредственно с выхода пьезоэлектрического преобразователя на второй вход компаратора, выход которого через ключ соединен с первым управляющим входом генератора пилообразного напряжения, второй вход которого соединен с одновибратором, а выход соединен с управляющим входом электронно-перестраиваемого фильтра, при этом выход генератора пилообразного напряжения первого канала измерения соединен со вторым входом первой схемы «И», первым инвертором блока обработки информации и с преобразователем напряжение-код; выход генератора пилообразного напряжения второго канала измерения соединен с первым входом первой схемы «И», вторым инвертором блока обработки информации и с преобразователем напряжение-код; при этом выход преобразователя напряжение-код первого канала измерения соединен с первым делителем кода блока обработки информации и с первым входом вычитателя кодов, а выход преобразователя напряжение-код второго канала измерения соединен со вторым делителем кода и со вторым входом вычитателя кодов; разница кодов, реализующая дифференциальную схему измерения температуры, через третий вход первой схемы «И» и элемент «ИЛИ» поступает на выход; при этом, в случае выхода из строя второго канала измерения, в блоке обработки информации устанавливается соединение преобразователя напряжение-код первого канала измерения через первый делитель кодов, второй вход третьей схемы «И», первый вход которого соединен с выходом генератора пилообразного напряжения второго канала измерения через второй инвертор, и элемент «ИЛИ» на выход; при выходе из строя первого канала измерения в блоке обработки информации устанавливается соединение преобразователя напряжение-код второго канала измерения через второй делитель кодов, второй вход второй схемы «И», первый вход которого соединен с выходом генератора пилообразного напряжения первого канала измерения через первый инвертор, и элемент «ИЛИ» на выход.



 

Похожие патенты:

Изобретение относится к области измерения температурных полей газовых потоков, в частности к области измерения температуры плазменного потока. Предложен способ измерения температуры плазменного потока, по которому теплоприемник устанавливают так, что одна из ограничивающих его поверхностей омывается плазмой.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры движущихся газовых сред на выходе из реакторов и теплообменных аппаратов с различной структурой теплообменных поверхностей.

Изобретение относится к области дистанционного измерения температур и касается способа измерения температуры потока газа с поглотителем. Измерение температуры проводят в, по крайней мере, трех слоях заданной толщины.

Изобретение относится к области термографии и может быть использовано при создании технологии тепловизионного определения количественных пульсационных характеристик турбулентности неизотермического потока жидкости.

Изобретение относится к области термометрии и может быть использовано в процессе измерения температуры текучей среды в технологическом процессе. Предложена сенсорная трубка (12) для защиты датчика (13), введенного в движущуюся технологическую текучую среду.

Изобретение относится к области термометрии и может быть использовано для определения температуры газа в рабочей полости роторной машины, например компрессора, вакуум-насоса.

Изобретение относится к измерительной технике и может быть использовано для измерения температуры в первичном потоке двухвального двухконтурного турбореактивного двигателя.

Изобретение относится к области термометрии и предназначено для определения максимальных температур в камерах сгорания авиадвигателей различного назначения. Газодинамический насадок для определения температуры газа включает проточную камеру с входным и выходным патрубками и жиклерами в них.

Изобретение относится к области дистанционного измерения высоких температур газов и может быть применено для экспериментальных исследований рабочего процесса силовых установок.

Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике. Устройство содержит термопару в металлическом корпусе, рабочий спай которой расположен внутри защитного наконечника, выступающего за пределы корпуса.

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения температуры. Чувствительный элемент на поверхностных акустических волнах (ПАВ) для измерения температуры содержит две идентичные линии задержки (ЛЗ) с акустическими путями.

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения температуры. Чувствительный элемент на поверхностных акустических волнах (ПАВ) для измерения температуры включает две линии задержки (ЛЗ), каждая из которых образована пьезоплатой из ниобата лития, на поверхности которой сформированы не менее одного встречно-штыревого преобразователя и не менее двух отражающих структур, состоящих из секций, выполненных в виде системы канавок или штырей с переменным или постоянным периодом.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры. Заявлен чувствительный элемент на поверхностных акустических волнах для измерения температуры, состоящий из пластины из альфа-кварца, на поверхности которой сформированы не менее одного встречно-штыревого преобразователя (ВШП) и не менее двух отражающих элементов (ОЭ).

Изобретение относится к ультразвуковому измерительному преобразователю, который направляет и принимает ультразвуковые волны в жидкий тяжелый металл/из него, и в частности - к ультразвуковому измерительному преобразователю для жидкого металла, выполненному с возможностью эффективного направления ультразвуковых волн в жидкий тяжелый металл и приема ультразвуковых волн, проходящих в жидком тяжелом металле, путем оптимизации материала смачиваемой части преобразователя.

Изобретение относится к геофизике и экологии и может быть использовано для бесконтактного способа измерения температуры жидкосодержащих пористых сред, преимущественно грунтов, почв и донных осадков, а также для измерения температуры в технологических процессах.

Изобретение относится к системам контроля подвижных объектов и может использоваться для дистанционных беспроводных измерений температуры. .

Изобретение относится к системам контроля подвижных объектов и может использоваться для дистанционных беспроводных измерений температуры. .

Изобретение относится к медицинской и ветеринарной технике и может быть использовано для неинвазивного измерения глубинной температуры в теле человека и животных.

Изобретение относится к технике приборостроения и может быть использовано для визуального контроля, поверки, достоверности и исправности электроцепей термоэлектрического преобразователя. Согласно предложенному решению в излучаемый объект, преимущественно термометр световой профильный и входящие в его состав указатель температуры выходящих газов двигателя воздушного судна и колодку переходную компенсирующую, расположенные в газогенераторном контуре двигателя воздушного судна, устанавливают упомянутый термочувствительный элемент, выполненный в виде упомянутых термопар, и определяют при нагревании термопар ключевые точки значений температур. Затем отсоединяют термопары от колодки переходной и на их место посредством клемм соединительного кабеля подсоединяют второй чувствительный элемент, в качестве которого используют прибор имитатор температуры выходных газов двигателя, выполненный в виде пластикового корпуса с размещенными на нем переключателем температуры, эквивалентной ЭДС упомянутой термопары, выключателем питания и светодиодным индикатором наличия питания и включающий в себя батарейный отсек с четырьмя элементами питания суммарным напряжением 6 вольт, печатную плату с радиоэлементами схемы источников напряжения, имитирующих ЭДС термопары. Осуществляют упомянутую операцию, заключающуюся в периодическом сличении показаний температуры и напряжения, а в случае расхождения показаний от упомянутого указателя температуры выходящих газов с показаниями, снятыми с бортовой автоматизированной системы контроля, локализируют причину расхождения показаний и устраняют неисправности электроцепей термометра светового профильного и входящих в его состав вышеупомянутых указателя температуры выходящих газов двигателя воздушного судна и колодки переходной компенсирующей без запуска двигателя воздушного судна. Технический результат - улучшение характеристик точности и качества поверки и контроля электроцепей термоэлектрического преобразователя. 2 н. и 1 з.п. ф-лы, 6 ил.

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих высокотемпературных процессов в газодинамике и построения систем автоматического регулирования температуры. Быстродействующее устройство измерения температуры газового потока состоит из двух каналов измерения для реализации дифференциальной схемы и блока обработки информации. Каждый канал измерения содержит струйный генератор, пьезоэлектрический преобразователь для преобразования акустического сигнала в электрический, электронно-перестраиваемый фильтр, компаратор фаз, ключ, генератор пилообразного напряжения, одновибратор, преобразователь напряжение-код. Блок обработки информации содержит вычитатель кодов, один элемент «ИЛИ», три схемы «И», первый и второй инвертор, два делителя кодов. В устройстве реализуется принцип фазовой автоподстройки первой гармоники частоты полигармонического сигнала с применением электронно-перестраиваемого фильтра, управляемого генератором пилообразного напряжения, и цифровой обработки измерительной информации, реализующей дифференциальный способ измерения. Технический результат - повышение быстродействия и точности, а также упрощение схемы устройства для измерения температуры газового потока, с сохранением работоспособности при выходе из строя одного из каналов измерения. 1 табл., 2 ил.

Наверх