Оксидно-цинковая варисторная керамика

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения (ОПН). Оксидно-цинковая варисторная керамика содержит оксиды цинка, висмута, сурьмы, алюминия и кобальта в количественном соотношении, мас.%: ZnO 85-95, Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3. Оксиды висмута, сурьмы, алюминия и кобальта соотносятся как 1,0:0,7:1,2:0,72. Получаемая варисторная керамика имеет напряжение пробоя 4,3-4,6 кВ/мм, коэффициент нелинейности 47-53 и плотность тока утечки 0,6-7 мкА/см2. Технический результат изобретения – снижение плотности тока утечки. При обеспечении высоких электрических характеристик получаемая высоковольтная варисторная керамика является более дешевой. 1 табл., 4 пр.

 

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения (ОПН).

В настоящее время производят варисторы на основе оксида цинка ZnO с добавками оксидов легирующих элементов, стоимость которых превышает стоимость оксида цинка. Основными свойствами варисторной керамики являются напряжение пробоя (Ub), коэффициент нелинейности (α) и плотность тока утечки (Iут). Для работы ОПН в высоковольтных электрических сетях необходима варисторная керамика с напряжением пробоя более 3 кВ/мм, коэффициентом нелинейности α не менее 40 и плотностью тока утечки Iут не более 10 мкА/см2. Однако при этом возникает проблема выбора оптимального состава компонентов с точки зрения обеспечения требуемых характеристик керамики при одновременном снижении ее стоимости.

Известна оксидно-цинковая варисторная керамика (см. пат. 8217751 США, МПК H01C 7/10 (2006.1), 2012) состава, мас.%: ZnO 94,69, Bi2O3 3,0, Sb2O3 1,5, Al2O3 0,01, Co3O4 0,5, NiO 0,2, Mn2O3 или Li2CO3 0,1, которую получают путем прокалки смеси исходных нанодисперсных оксидов при 550°C, таблетирования образующегося порошка и спекания таблеток горячим прессованием при 800-850°C. Полученная керамика имеет напряжение пробоя Ub=1,71-1,85 кВ/мм, коэффициент нелинейности α=75-77, плотность тока утечки Iут<10 мкА/см2.

Данная варисторная керамика имеет относительно невысокое содержание оксидов легирующих элементов при обеспечении высоких значений коэффициента нелинейности и невысокой величины плотности тока утечки. Однако напряжение пробоя керамики является относительно низким (1,85 кВ/мм). Кроме того, исходные оксиды берут в виде нанодисперсных порошков, а спекание керамических таблеток осуществляют путем горячего прессования, что существенно затрудняет и удорожает производство керамики.

Известна также принятая в качестве прототипа оксидно-цинковая варисторная керамика (см. пат. 2568444 РФ, МПК C04B 35/453, H01C 7/112 (2006.01), 2015), имеющая состав, мас.%: ZnO 60,0-85,0, Bi2O3 3,42-9,11, Sb2O3 4,79-12,76, Al2O3 3,18-8,47, Co2O3 2,53-6,74, NiO 1,08-2,92, при этом оксиды висмута, сурьмы, алюминия, кобальта и никеля соотносятся как 1,0:1,4:0,93:0,74:0,32. Для получения керамики в качестве исходных компонентов используют порошкообразные гидратированные нитраты цинка, висмута, алюминия, кобальта и виннокислый раствор сурьмы. Исходные компоненты смешивают в стехиометрическом количестве с коммерческим сахаром, нагревают смесь при 145°C и затем прокаливают при 700°C. Из полученного керамического порошка со средним размером частиц 30 нм прессуют таблетки, которые подвергают двухступенчатому спеканию при температуре 700°C и 935°C. Полученная высоковольтная варисторная керамика имеет напряжение пробоя Ub=3,5-4,4 кВ/мм, коэффициент нелинейности α=40-55.

Известная варисторная керамика имеет довольно высокие значения напряжения пробоя и коэффициента нелинейности, но, как показывают экспериментальные данные, плотность тока утечки керамики относительно высока. Содержание легирующих оксидов (до 40 мас.%) является высоким, что удорожает керамику.

Настоящее изобретение направлено на достижение технического результата, заключающегося в удешевлении получаемой высоковольтной варисторной керамики при обеспечении высоких значений напряжения пробоя и коэффициента нелинейности и пониженной плотности тока утечки.

Технический результат достигается тем, что оксидно-цинковая варисторная керамика, включающая оксиды цинка, висмута, сурьмы, алюминия и кобальта, согласно изобретению, содержит оксидные компоненты в следующем количественном соотношении, мас.%: ZnO 85-95, Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3, при этом оксиды висмута, сурьмы, алюминия и кобальта соотносятся как 1,0:0,7:1,2:0,72.

Существенные признаки заявляемого изобретения, определяющие объем правовой защиты и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Оксид цинка является основным компонентом заявляемой керамики. Содержание его в количестве 85-95 мас.% обеспечивает получение керамики с высокими величинами напряжения пробоя и коэффициента нелинейности и низким значением плотности тока утечки. При содержании ZnO более 95 мас.% увеличивается плотность тока утечки, а при содержании ZnO менее 85 мас.% при сохранении высоких варисторных свойств возрастает стоимость керамики.

Количественное содержание добавок в виде оксидов висмута, сурьмы, алюминия и кобальта зависит от содержания оксида цинка и должно отвечать соотношению, мас.%: Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3. При этом необходимо, чтобы оксиды висмута, сурьмы, алюминия и кобальта соотносились как 1,0:0,7:1,2:0,72. Это обеспечивает стабильно высокие величины напряжения пробоя и коэффициента нелинейности и низкое значение плотности тока утечки при пониженной стоимости керамики.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающего в удешевлении получаемой высоковольтной варисторной керамики при обеспечении высоких значений напряжения пробоя и коэффициента нелинейности и пониженной плотности тока утечки.

Особенности и преимущества заявляемого изобретения могут быть пояснены нижеследующими Примерами.

Керамику согласно изобретению получают следующим образом. Вначале осуществляют синтез нанодисперсного керамического порошка методом сжигания с использованием в качестве топлива коммерческого сахара. В качестве исходных компонентов берут порошкообразные гидратированные нитраты металлов: Zn(NO3)2⋅6H2O, Bi(NO3)3⋅5H2O, Al(NO3)3⋅9H2O, Co(NO3)2⋅6H2O и виннокислый раствор сурьмы. Исходные компоненты засыпают в заданном соотношении во фторопластовую емкость, помещают в предварительно нагретый до 200°C сушильный шкаф, выдерживают в течение 50 минут и охлаждают на воздухе. Продукт сжигания измельчают с помощью стержневого миксера и прокаливают в муфельной печи при температуре 700°C в течение 1 часа. Синтезированный керамический порошок со средним размером частиц 26 нм таблетируют. Таблетки спекают при 975°C с изотермической выдержкой в течение 2 часов. Полученная варисторная керамика имеет состав, мас.%: ZnO 85-95, Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3. При этом оксиды висмута, сурьмы, алюминия и кобальта соотносятся как 1,0:0,7:1,2:0,72.

Для определения варисторных свойств керамики на торцевые поверхности керамических таблеток наносят пленочные электроды с использованием серебряной пасты.

Состав и свойства варисторной керамики, полученной согласно Примерам 1-4 осуществления изобретения и согласно Примерам 5 и 6 по прототипу, представлены в Таблице.

Из представленных в Таблице данных следует, что в диапазоне заявляемого содержания оксидных компонентов получаемая варисторная керамика на основе оксида цинка имеет напряжение пробоя 4,3-4,6 кВ/мм, коэффициент нелинейности 47-53, плотность тока утечки 0,6-7 мкА/см2. По сравнению с прототипом предлагаемая керамика имеет пониженную (0,6 мкА/см2) плотность тока утечки при одинаковом (85 мас.%) содержании оксида цинка. При более высоком (до 95 мас.%) содержании оксида цинка и, соответственно, меньшем содержании легирующих оксидов, предлагаемое изобретение позволяет получить более дешевую высоковольтную варисторную керамику при обеспечении ее высоких электрических характеристик.

Оксидно-цинковая варисторная керамика, включающая оксиды цинка, висмута, сурьмы, алюминия и кобальта, отличающаяся тем, что керамика содержит оксидные компоненты в следующем количественном соотношении, мас.%: ZnO 85-95, Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3, при этом оксиды висмута, сурьмы, алюминия и кобальта соотносятся как 1,0:0,7:1,2:0,72.



 

Похожие патенты:

Изобретение относится к получению оксидно-цинковой варисторной керамики и может быть использовано в электроэнергетике при изготовлении варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения.

Изобретение относится к области электроники и может быть использовано при изготовлении варисторов на основе цинка. .

Изобретение относится к электронной технике. .

Варистор // 983761

Изобретение относится к сегнетоэлектрическим керамическим материалам на основе феррита висмута и может быть использовано при создании емкостных магнитоэлектрических элементов головок записи и считывания информации.

Изобретение относится к технологии производства сегнетоэлектрических керамических материалов на основе феррита висмута и может быть использовано для создания новых материалов, применяемых в устройствах записи, хранения и обработки информации.

Мишень для ионно-плазменного распыления выполнена на основе оксида металла и содержит углерод. Концентрация углерода в мишени выбрана из условия обеспечения при температуре распыления теплового эффекта от экзотермической реакции при окислении углерода кислородом оксида металла и свободным кислородом в зоне распыления, меньшего интегрального теплоотвода в упомянутой зоне, и составляет 0,1-20 ат.% .

Изобретение относится к получению оксидно-цинковой варисторной керамики и может быть использовано в электроэнергетике при изготовлении варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения.
Изобретение относится к способу получения варисторной керамики. Технический результат изобретения заключается в повышении напряжения пробоя и коэффициента нелинейности при использовании холодного прессования.

Изобретение относится к электронной технике, в частности к полупроводниковым керамическим материалам, и может быть использовано при производстве варисторов на основе оксида цинка.

Изобретение относится к сцинтилляционной технике, прежде всего к эффективным, быстродействующим сцинтилляционным детекторам. Описан способ получения прозрачной керамики, заключающийся в том, что предварительно в металлический порошкообразный цинк добавляют металлический порошкообразный магний, далее газофазным методом проводят синтез порошка для получения гранул в форме тетраподов и имеющих трехмерную наноструктуру, содержащую оксид магния в количестве 0,5-2,3 мас.%, затем полученную смесь подвергают горячему прессованию при температуре 1100-1200°C и давлении 100-200 МПа.

Изобретение относится к области производства керамических материалов и предназначено для использования при изготовлении мишеней на основе оксида цинка, являющихся источником материала для магнетронного, электронно-лучевого, ионно-лучевого и других методов нанесения пленок в микро-, опто-, наноэлектронике.
Изобретение относится к области производства керамических материалов и предназначено для использования при изготовлении керамических мишеней, являющихся источником материала для магнетронного, электронно-лучевого, ионно-лучевого и других методов нанесения прозрачных проводящих пленок в микро-, опто-, наноэлектронике.
Наверх