Патенты автора Локшин Эфроим Пинхусович (RU)

Изобретение относится к технологии извлечения редкоземельных элементов (РЗЭ) из монацитового концентрата и может быть использовано в химической и металлургической промышленности. Осуществляют обработку монацитового концентрата фосфорной кислотой концентрацией 35-45 мас. % при температуре 60-80°C с переводом редкоземельных элементов и тория в сульфокатионит. После этого производят отделение сульфокатионита от фосфорнокислого раствора и неразложившегося остатка и десорбцию РЗЭ. Из сульфокатионита РЗЭ и торий десорбируют совместно при температуре 70-90°С раствором нитрата или хлорида натрия концентрацией 5,0-5,3 моль/л с получением элюата. Элюат нейтрализуют гидроксидом или карбонатом натрия сначала до рН 4,0-4,4 с осаждением и отделением ториевого концентрата, а затем до рН 7,35-7,5 с осаждением и отделением концентрата РЗЭ. Обеспечивается извлечение до 89,8% РЗЭ в нерадиоактивный концентрат и получение богатых торием кеков, снижение температуры фосфорнокислотного разложения, решение задачи десорбции радионуклидов из сульфокатионита и исключение использования соляной кислоты для десорбции РЗЭ. 1 з.п. ф-лы, 3 табл., 3 пр.

Изобретение относится к способу извлечения редкоземельного концентрата из раствора, полученного при переработке редкоземельного сырья, и может быть использовано в химической и металлургической промышленности. Осуществляют ступенчатую нейтрализацию раствора, содержащего нитрат или хлорид натрия, редкоземельные элементы и примесные компоненты кальция, алюминия, железа, титана и тория. На первой ступени нейтрализацию раствора ведут сплавом на основе нитрата или хлорида натрия, содержащим 2,5-3,0 мас. % карбоната или гидроксида натрия, до обеспечения рН 4,40-4,45 с осаждением и отделением торийсодержащего концентрата, а на второй ступени - указанным сплавом, содержащим 15-30 мас. % карбоната или гидроксида натрия, до обеспечения рН 7,35-7,50 с осаждением и отделением редкоземельного концентрата. Способ позволяет эффективно извлекать редкоземельный концентрат из раствора, полученного при переработке редкоземельного сырья, с обеспечением высокого до 98,64% извлечения РЗЭ в нерадиоактивный концентрат. 2 з.п. ф-лы, 6 табл., 6 пр.
Изобретение относится к переработке фторсодержащих концентратов редкоземельных элементов (РЗЭ). Бастнезитовый концентрат обрабатывают низкоконцентрированной минеральной кислотой при повышенной температуре в присутствии сульфоксидного катионита с переводом редкоземельных элементов, кальция и тория в сульфоксидный катионит, а фтора в кислый раствор. Обработку концентрата ведут до достижения концентрации оксидов РЗЭ в катионите не менее 40 г/л. Затем катионит отделяют от кислого раствора, который используют в обороте для кислотной обработки концентрата до достижения в нем концентрации фтора 10-15 г/л. Катионит регенерируют с получением десорбата, который подвергают ступенчатой нейтрализации щелочным соединением с последовательным осаждением и отделением тория, редкоземельного концентрата и кальцийсодержащего осадка. Заявляемый способ позволяет эффективно перерабатывать бастнезитовый концентрат с обеспечением высокой (до 96,7%) степени извлечения РЗЭ в нерадиоактивный концентрат и применением более доступных и дешевых минеральных кислот, использование которых в обороте уменьшает количество образующихся отходов. 1 з.п. ф-лы, 9 пр.

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ. Осуществляют обработку фосфатного концентрата РЗЭ, содержащего примеси кальция, тория, алюминия и железа, фосфорной кислотой концентрацией 20-38 мас. % при комнатной температуре в присутствии сульфоксидного катионита. Массовое соотношение концентрата, кислоты и сульфоксидного катионита равно 1:(10-15):(4-6). При необходимости обработку фосфатного концентрата фосфорной кислотой ведут в присутствии пероксида водорода, расход которого составляет 0,25-0,5 г на 1 г церия в фосфатном концентрате. В процессе растворения концентрата сульфоксидный катионит сорбирует РЗЭ и кальций, а фосфор и торий переходят в образовавшуюся пульпу. Пульпу отделяют от катионита и осуществляют десорбцию РЗЭ и кальция из катионита раствором нитрата аммония с получением десорбата. Затем проводят нейтрализацию десорбата аммонийным соединением с получением концентрата РЗЭ. Способ обеспечивает извлечение в нерадиоактивный концентрат 93,7-98,6% РЗЭ при пониженной энергоемкости обработки фосфатного концентрата и может быть реализован при меньшем числе реагентов. 1 з.п. ф-лы, 5 пр.
Изобретение относится к комплексной переработке сложных по составу жидких борсодержащих отходов АЭС. Способ переработки жидких отходов АЭС с борным регулированием, содержащих соли натрия и калия, включает введение нитрата кальция в боратный раствор с осаждением бората кальция и его отделением от маточного раствора, электродиализ с использованием электродиализатора с катионообменной и анионообменной мембранами, получение борной кислоты и раствора гидроксидов натрия и калия. Исходный боратный раствор в качестве солей натрия и калия содержит их нитраты и сульфаты. Нитрат кальция вводят в исходный боратный раствор с получением коллективного осадка бората и сульфата кальция. Борную кислоту получают путем обработки коллективного осадка бората и сульфата кальция раствором азотной кислоты с отделением осадка сульфата кальция от раствора бората кальция. Раствор бората кальция обрабатывают азотной кислотой с образованием осадка борной кислоты и раствора нитрата кальция. Осадок борной кислоты отделяют и сушат. Электродиализу подвергают маточный раствор с получением растворов азотной кислоты и гидроксидов натрия и калия. Изобретение позволяет снизить энергоемкость способа и сократить количество захораниваемых вредных отходов. 8 з.п. ф-лы, 5 пр.
Изобретение может быть использовано в химической промышленности для получения фосфорной кислоты, концентрата редкоземельных элементов (РЗЭ), карбонатов щелочноземельных металлов и соединений фтора. Фторсодержащий апатитовый концентрат обрабатывают фосфорнокислым раствором в присутствии сульфоксидного катионита с переводом фтора в раствор. Катионит используют в натриевой или калиевой форме при расходе 115-120% от стехиометрически необходимого для сорбции катионов металлов. Затем отделяют фосфорную кислоту от катионита, содержащего кальций, стронций и РЗЭ. После отделения фосфорной кислоты из нее выделяют фильтрацией или центрифугированием осадок фторсиликата натрия или калия. Далее из фосфорной кислоты электродиализом извлекают остаточное количество натрия или калия в виде раствора гидроксида. Осуществляют десорбцию кальция, стронция и РЗЭ из катионита раствором хлорида или нитрата натрия или калия и ступенчатую нейтрализацию десорбата раствором карбоната натрия или калия. Нейтрализацию десорбата проводят с осаждением концентрата карбонатов РЗЭ, затем карбоната кальция и концентрата карбоната стронция. Изобретение позволяет повысить чистоту фосфорной кислоты за счет снижения содержания в ней примеси фтора при обеспечении высокой степени извлечения фосфора в фосфорную кислоту, а также получить товарные продукты в виде концентрата карбоната стронция и фторсиликата натрия или калия. 5 з.п. ф-лы, 4 пр.
Изобретение относится к способу переработки фторсодержащих концентратов редкоземельных элементов (РЗЭ) и может быть использовано в гидрометаллургии. Иттрофлюоритовый концентрат, содержащий в мас. %: 40 F, 13,15 ΣТr2О3, 0,16 ТhO2, 66,4 СаО, обрабатывают фтористоводородной кислотой концентрацией 5-10 г/л при температуре 60-80°С в течение 4-8 часов в присутствии сульфоксидного катионита с переводом редкоземельных элементов, кальция и тория в сульфоксидный катионит, а фтора - в кислый раствор. Сульфокатионит берут в количестве 265-300% от стехиометрически необходимого для сорбции содержащихся в концентрате катионов металлов. Затем сульфокатионит отделяют от кислого раствора и регенерируют раствором нитрата аммония с получением десорбата. Последний подвергают ступенчатой нейтрализации аммонийным соединением с последовательным осаждением и отделением тория, редкоземельного концентрата и кальцийсодержащего осадка. Способ обеспечивает расширение сырьевой базы для производства редкоземельных элементов при высокой (до 90,4%) степени извлечения РЗЭ в концентрат, высокой степени очистки от фтора и тория и уменьшении количества образующихся отходов. 1 з.п. ф-лы, 4 пр.

Изобретение относится к способу переработки апатитового концентрата. Способ включает обработку концентрата кислым раствором в присутствии катионита с последующим отделением продукционной фосфорной кислоты от катионита, содержащего кальций и примесные металлы. Далее проводят регенерацию катионита с переводом кальция и примесных металлов в десорбат. При этом в качестве кислого раствора используют раствор фосфорной кислоты концентрацией 5-38 мас.%, а в качестве катионита - сульфоксидный катионит в количестве 100-125% от стехиометрически необходимого для сорбции содержащихся в апатитовом концентрате катионов металлов. Способ позволяет получать за единичный цикл обработки продукционную фосфорную кислоту концентрацией 41,05 мас.% с низким содержанием катионных примесей. Извлечение фосфора из апатитового концентрата в раствор фосфорной кислоты составляет 99,1-99,8%. Извлечение РЗЭ в карбонатный концентрат составляет 82,5-98,1%, а кальция и стронция в сумму их карбонатов 84,4-96,0%. 2 з.п. ф-лы, 4 табл., 4 пр.

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения (ОПН). Оксидно-цинковая варисторная керамика содержит оксиды цинка, висмута, сурьмы, алюминия и кобальта в количественном соотношении, мас.%: ZnO 85-95, Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3. Оксиды висмута, сурьмы, алюминия и кобальта соотносятся как 1,0:0,7:1,2:0,72. Получаемая варисторная керамика имеет напряжение пробоя 4,3-4,6 кВ/мм, коэффициент нелинейности 47-53 и плотность тока утечки 0,6-7 мкА/см2. Технический результат изобретения – снижение плотности тока утечки. При обеспечении высоких электрических характеристик получаемая высоковольтная варисторная керамика является более дешевой. 1 табл., 4 пр.

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в промышленности для получения нерадиоактивного карбонатного или гидроксидного концентрата РЗЭ. Осуществляют обработку фосфатного концентрата РЗЭ, содержащего примеси кальция, тория, алюминия и железа, при нагревании в присутствии сульфоксидного катионита 1-2 мас.% азотной кислотой, в которую вводят фтор-ион в количестве, определяемом согласно зависимости. В процессе обработки концентрата сульфоксидный катионит сорбирует РЗЭ и кальций, а фосфор, фтор и торий переходят в образовавшуюся пульпу. Далее осуществляют десорбцию РЗЭ и кальция из катионита раствором нитрата аммония с получением десорбата. Затем проводят нейтрализацию десорбата аммонийным соединением до рН 7,35-7,5 с получением очищенного концентрата РЗЭ. Техническим результатом является исключение образования радиоактивного сульфоксидного катионита при его многократном использовании и снижение расхода кислотного реагента и катионита. 4 з.п. ф-лы, 5 пр.

Изобретение относится к переработке фосфогипса. После водной обработки фосфогипс выщелачивают серной кислотой с переводом концентрата редкоземельных элементов (РЗЭ) и примесных компонентов в раствор. Промытый фосфогипс нейтрализуют с получением гипсового продукта. Сорбцию РЗЭ осуществляют в две стадии. На первой стадии сорбции часть раствора выщелачивания пропускают через сульфоксидный катионит. После чего проводят десорбцию с получением первичного кальций-торийсодержащего десорбата. На второй стадии сорбции через катионит пропускают другую часть раствора выщелачивания. Полученный вторичный обедненный сернокислый раствор используют для десорбции с получением вторичного кальций- торийсодержащего десорбата. Затем осуществляют десорбцию и осаждение РЗЭ с отделением полученного осадка. Полученные первичный и вторичный десорбаты объединяют, доукрепляют серной кислотой до концентрации исходного сернокислого раствора, вводят фторсодержащее соединение в количестве, обеспечивающем концентрацию фтор-иона 20-50 мг/л, и направляют в оборот на выщелачивание нового слоя фосфогипса. Способ позволяет многократно использовать при выщелачивании образующиеся десорбаты, с получением нерадиоактивного редкоземельного концентрата и качественного гипсового продукта. 1 з.п. ф-лы, 4 пр.
Изобретение относится к способам получения керамических твердых электролитов с высокой проводимостью по иону лития и может быть использовано в электротехнической промышленности, преимущественно при изготовлении твердотельных литий-ионных аккумуляторов. Осуществляют смешивание водных растворов азотнокислого лития, азотнокислого алюминия, фосфорнокислого аммония и оксалатного комплекса германия с образованием коллективного раствора, в котором литий, алюминий, германий и фосфор находятся в стехиометрическом соотношении, соответствующем составу L1,5Al0,5Ge1,5(PO4)3. Оксалатный комплекс германия получают путем растворения оксида германия в 12-15% водном растворе щавелевой кислоты до обеспечения содержания 20-40 г/л GeO2. Коллективный раствор нагревают при температуре 250-400°C с удалением жидкой фазы. После чего осуществляют термическую обработку прекурсора при температуре 650-700°C в течение 1-3 часов. Способ позволяет более технологичным путем синтезировать монофазный порошкообразный твердый электролит состава Li1,5Al0,5Ge1,5(PO4)3 с высокой (до 4,6·10-4 См/см) ионной проводимостью. Способ использует водорастворимые компоненты прекурсора, имеет пониженные энергоемкость и длительность и является более экологичным. 2 з.п. ф-лы, 3 пр.

Изобретение относится к получению оксидно-цинковой варисторной керамики и может быть использовано в электроэнергетике при изготовлении варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения. Оксидно-цинковая варисторная керамика содержит оксиды цинка, висмута, сурьмы, алюминия, кобальта и никеля в количественном соотношении, мас.%: ZnO 60,0-85,0, Bi2O3 3,42-9,11, Sb2O3 4,79-12,76, Al2O3 3,18-8,47, Co2O3 2,53-6,74, NiO 1,08-2,92. Оксиды висмута, сурьмы, алюминия, кобальта и никеля соотносятся как 1,0:1,4:0,93:0,74:0,32. Получаемая варисторная керамика имеет напряжение пробоя 3,5-4,4 кВ/мм и коэффициент нелинейности 40-55, что позволяет использовать ее для изготовления высоковольтных варисторов. 1 табл.
Изобретение относится к способу получения варисторной керамики. Технический результат изобретения заключается в повышении напряжения пробоя и коэффициента нелинейности при использовании холодного прессования. Смешивают исходные компоненты в виде твердофазных гидратированных нитратов цинка, висмута, алюминия, кобальта, хрома, марганца и коммерческого сахара в качестве топлива, при этом расход сахара составляет 0,5-0,6 мас. частей на 1 мас. часть получаемого нанокристаллического порошка. Добавляют виннокислый раствор сурьмы с концентрацией 0,098-0,102 г/мл Sb2O3 и осуществляют химическое сжигание смеси при 140-150°C в течение 40-50 минут. Продукт сжигания прокаливают при 690-710°C в течение 50-70 минут с получением нанокристаллического порошка, который смачивают 5% поливиниловым спиртом и осуществляют холодное прессование порошка при давлении 125-156 МПа с получением сырец-таблетки. Затем производят ее двухступенчатое спекание при температуре 690-710°C в течение 50-60 минут на первой ступени и при 920-930°C в течение 230-250 минут на второй ступени с получением варисторной керамики. 2 з.п. ф-лы, 5 пр.
Изобретение относится к способу переработки фосфогипса. Способ включает водную обработку, выщелачивание фосфогипса раствором серной кислоты с концентрацией 3-6 мас.% с переводом РЗЭ, кальция и тория в раствор выщелачивания и с получением гипсового продукта, извлечение РЗЭ, кальция и тория из раствора выщелачивания сорбцией сульфоксидным катионитом. При этом выщелачивание ведут раствором серной кислоты при Ж:Т не менее 1,4:1. Сорбцию РЗЭ, кальция и тория осуществляют стадийно. На первой стадии раствор выщелачивания пропускают через катионит до начала проскока РЗЭ в образующийся первичный обедненный сернокислый раствор. Затем проводят десорбцию кальция и тория из насыщенного катионита первичным обедненным сернокислым раствором с получением первичного кальций-торийсодержащего десорбата. На второй стадии через катионит пропускают оставшийся раствор выщелачивания до начала проскока РЗЭ во вторичный обедненный сернокислый раствор, который используют для десорбции кальция и тория с получением вторичного кальций-торийсодержащего десорбата. Затем проводят десорбцию РЗЭ раствором нитрата аммония и осаждение из десорбата РЗЭ при pH 7,35-7,5. Техническим результатом является получение нерадиоактивного редкоземельного концентрата с извлечением РЗЭ из фосфогипса в нерадиоактивный концентрат 77,88% и со снижением расхода используемого сорбента в среднем в 1,6 раза. 5 з.п ф-лы, 5 пр.
Изобретение может быть использовано в химической промышленности для комплексной переработки фосфогипса - фосфополугидрата или фосфодигидрата. Способ переработки фосфогипса включает его предварительную водную обработку. Затем фосфогипс выщелачивают путем пропускания раствора серной кислоты с концентрацией 3-6 мас.% через его слой с вытеснением и отделением водного раствора и переводом РЗЭ и примесных компонентов, в том числе тория, в раствор выщелачивания. Далее проводят нейтрализацию промытого фосфогипса с получением гипсового продукта. РЗЭ и торий извлекают из раствора выщелачивания сорбцией с использованием сульфоксидного катионита и образованием обедненного по РЗЭ и торию сернокислого раствора, который используют в обороте. После этого проводят десорбцию РЗЭ и тория из насыщенного катионита с получением десорбата. При этом десорбцию РЗЭ ведут путем обработки катионита раствором соли аммония с последующим осаждением РЗЭ из десорбата аммонийсодержащим осадителем и отделением осадка РЗЭ. Выщелачивание фосфогипса раствором серной кислоты ведут при Ж:Т не менее 1,4:1. Десорбцию РЗЭ и тория из насыщенного катионита осуществляют последовательно: вначале тория путем обработки катионита сернокислым раствором с концентрацией 3-6 мас.% с получением торийсодержащего десорбата, а затем РЗЭ с получением десорбата, содержащего РЗЭ. Изобретение позволяет исключить образование радиоактивного ториевого осадка при обеспечении высокого качества гипсового продукта, повысить степень извлечения РЗЭ в нерадиоактивный редкоземельный концентрат. 4 з.п. ф-лы, 3 пр.
Изобретение может быть использовано при получении электродных материалов для литий-ионных химических источников тока. Для получения титаната лития состава Li4Ti5O12 со структурой шпинели готовят раствор соли титана. В качестве соли титана используют хлорид и/или сульфат. В раствор соли титана вводят гидроксид аммония с получением в твердой фазе гидратированного титаната аммония. Твердую и жидкую фазы разделяют фильтрацией. Гидратированный титанат аммония обрабатывают раствором гидроксида лития при мольном отношении Li:Ti=(1,0-1,04):1,0 и температуре 75-95°С в течение не более 1 часа с получением литийтитансодержащего соединения. Выделение этого соединения проводят фильтрацией, а затем прокаливают его при температуре 650-800°С в течение 0,5-2,0 часов. Полученный титанат лития промывают деионизированной водой. Изобретение позволяет уменьшить расход гидроксида лития, снизить длительность и энергоемкость процесса получения высокочистого титаната лития, обеспечить высокие характеристики электродов литиевых аккумуляторов, стабильных при многократном числе циклов «заряд-разряд». 2 з.п. ф-лы, 5 пр.

Изобретение относится к способу извлечения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты. Экстракционную фосфорную кислоту с концентрацией 27-45 мас.%, содержащую РЗЭ и торий, пропускают через сульфоксидный катионит с образованием обедненного по РЗЭ торийсодержащего фосфорнокислого раствора и катионита, насыщенного РЗЭ. При пропускании фосфорной кислоты через сульфоксидный катионит фиксируют концентрацию тория в обедненном по РЗЭ фосфорнокислом растворе, которая дважды становится равной его концентрации в исходной фосфорной кислоте. Когда концентрация тория в обедненном по РЗЭ растворе второй раз становится равной его концентрации в исходной фосфорной кислоте, катионит считают насыщенным РЗЭ и пропускание через него фосфорной кислоты прекращают. Насыщенный катионит промывают водой. Затем проводят десорбцию РЗЭ раствором сульфата или нитрата аммония с концентрацией 275-300 г/л и из полученного десорбата выделяют нерадиоактивный концентрат РЗЭ. Техническим результатом является извлечение РЗЭ в концентрат 96,7-97,4%. 2 з.п. ф-лы, 1 ил., 2 пр.
Изобретение относится к очистке фосфатно-фторидного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита. Способ очистки фосфатно-фторидного концентрата РЗЭ, содержащего примеси кальция и тория, включает обработку концентрата раствором серной кислоты концентрацией 4-6 мас.% в присутствии сульфоксидного катионита, при этом РЗЭ, примеси тория и кальция сорбируются сульфоксидным катионитом, перевод фтора наряду с фосфором в сернокислый раствор, отделение сернокислотного раствора от сульфоксидного катионита, десорбцию из катионита РЗЭ и примеси тория и кальция раствором соли аммония с получением десорбата и его нейтрализацию аммонийным соединением в три стадии, при этом на первой стадии нейтрализацию ведут до обеспечения pH 4,2-5,0 с образованием и отделением торийсодержащего осадка, на второй стадии - до обеспечения pH 7,0-7,5 с образованием и отделением концентрата РЗЭ, а на третьей стадии - до рН не менее 8,5 с образованием и отделением кальцийсодержащего осадка. Изобретение обеспечивает высокую степень очистки концентрата РЗЭ от фосфора, тория и фтора и увеличение содержания РЗЭ в очищенном концентрате, а также снижение энергоемкости. 6 з.п. ф-лы, 4 пр.

Изобретение относится к способу обработки радиоактивного раствора, содержащего радионуклиды кобальта совместно с органическим комплексообразователем и радионуклиды цезия. Способ включает введение в исходный радиоактивный раствор окисляющего реагента при обеспечении заданной величины рН раствора и содержащего железо(II) восстанавливающего реагента с восстановлением кобальта(III) до кобальта(II) и декомплексацией последнего, введение осадителя с переводом радионуклидов кобальта и цезия в осадок и его отделение от маточного раствора, содержащего органический комплексообразователь и остаточное количество радионуклидов кобальта и цезия. При этом в качестве окисляющего реагента используют азотную кислоту, содержащий железо(II) реагент вводят в количестве 0,5-2,0 г/л Fe(II) при рН 3,0-3,5 с декомплексацией кобальта образующимися в растворе соединениями железа(III), полученный раствор выдерживают в течение 2-6 часов, в качестве осадителя берут сульфид натрия Na2S в количестве, стехиометрически необходимом для образования при величине рН 4-6 основного коллективного осадка сульфида железа FeS, содержащего радионуклиды кобальта и цезия, при этом маточный раствор подвергают циклу доочистки. Способ обеспечивает снижение количества используемых реагентов и минимальную по отношению к очищаемому раствору массу подлежащего захоронению радиоактивного осадка, а также высокую степень очистки раствора от радионуклидов кобальта и цезия. 7 з.п. ф-лы, 4 пр.
Изобретение относится к способам выделения концентрата редкоземельных элементов (PЗЭ) из экстракционной фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической промышленности. В нагретую до 65-80°C экстракционную фосфорную кислоту, содержащую РЗЭ и примеси фтора, алюминия, титана и железа, вводят аммиак в количестве, обеспечивающем мольное отношение NH3:P2O5=(0,2-1,0):1. После этого в кислоту вводят фторид аммония в количестве 20-30 г/л с образованием суспензии и переводом основной части РЗЭ и части примесных компонентов в осадок. Осадок концентрата РЗЭ отделяют от фосфорнокислого раствора. Техническим результатом является извлечение РЗЭ в концентрат 96,8-99,8% при пониженном расходе фторсодержащего реагента-осадителя до 10,3-15,4 г/л в пересчете на фторид-ион, что упрощает дальнейшую переработку фосфорнокислого раствора на минеральные удобрения. 2 з.п. ф-лы, 9 табл., 4 пр.

Изобретение относится к переработке свежеполученного фосфополугидрата и может быть использовано для получения концентрата редкоземельных элементов (РЗЭ) и гипсового продукта для строительных материалов. Фосфополугидрат обрабатывают водным раствором, содержащим фтор-ион. Проводят выщелачивание серной кислотой с вытеснением и отделением содержащего фтор-ион водного раствора, а также с переводом РЗЭ и примесных компонентов в раствор выщелачивания и получением слоя фосфополугидрата, насыщенного сернокислым раствором. Затем проводят вытеснение водой остаточного количества раствора серной кислоты с получением отмытого фосфополугидрата и раствора выщелачивания. Нейтрализуют фосфополугидрат кальцийсодержащим реагентом с получением гипсового продукта. Извлекают РЗЭ и примесные компоненты из раствора выщелачивания сорбцией с использованием сульфоксидного катеонита и образованием обедненного сернокислого раствора, проводят десорбцию РЗЭ и примесных компонентов из насыщенного катеонита путем его обработки раствором сульфата аммония с получением десорбата, осаждают РЗЭ и примесные компоненты из десорбата аммонийсодержащим осадителем в две стадии и отделяют осадок РЗЭ. Способ обеспечивает повышение эффективности извлечения РЗЭ. 5 з.п. ф-лы, 4 пр.
Изобретение относится к способу получения частиц твердого электролита Li1+xAlxTi2-x(PO4)3 (0,1≤x≤0,5), включающему смешивание первого раствора, содержащего азотную кислоту, воду, азотнокислый литий, азотнокислый алюминий, фосфорнокислый аммоний NH4H2PO4 или фосфорную кислоту, и второго раствора, содержащего соединение титана и растворитель, с образованием азотнокислого коллективного раствора, нагревание коллективного раствора с получением прекурсора и его прокалку. При этом в качестве растворителя во втором растворе используют пероксид водорода, а в качестве соединения титана - пероксидный комплекс титана, азотную кислоту дополнительно вводят во второй раствор до обеспечения рН коллективного раствора не более 2, нагревание коллективного раствора ведут при 150-170°С с разложением пероксидного комплекса титана и получением аморфного прекурсора, а прокалку прекурсора осуществляют при 600-800°С. Способ позволяет синтезировать частицы электролита со средним размером 215-280 нм, а полученный на их основе твердый электролит является монофазным и имеет ионную проводимость до 6,3·10-4 См/см при комнатной температуре. Способ имеет пониженную энергоемкость и повышенную экологичность. 2 з.п. ф-лы, 3 пр.
Изобретение относится к технологии комплексной переработки фосфогипса, получаемого в сернокислотном производстве минеральных удобрений из апатитового концентрата, и может быть использовано для производства концентрата редкоземельных элементов (РЗЭ), а также фосфогипса, пригодного для производства гипсовых строительных материалов и цемента

Изобретение относится к технологии очистки растворов от радионуклидов и может быть использовано для дезактивации жидких радиоактивных отходов
Изобретение относится к способам выделения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической и сопутствующих отраслях промышленности
Изобретение относится к технологии комплексной переработки фосфогипса, получаемого в сернокислотном производстве минеральных удобрений из апатитового концентрата, и может быть использовано для производства концентрата редкоземельных элементов (РЗЭ), а также гипсовых строительных материалов и цемента

Изобретение относится к металлургии благородных металлов, в частности к получению металлического серебра из его халькогенида, преимущественно селенида или сульфида
Изобретение относится к способам выделения концентрата лантаноидов из экстракционной фторсодержащей фосфорной кислоты и может быть использовано в химической и сопутствующих отраслях промышленности

Изобретение относится к способам получения нанокомпозитов на основе диоксида титана с повышенной фотокаталитической активностью и расширенной спектральной восприимчивостью и может быть использовано для фотокаталитической очистки воды и воздуха от органических соединений и патогенной флоры, преобразования энергии солнечного света в электрическую энергию, фотокаталитического разложения воды, а также в качестве электродного материала литий-ионных аккумуляторов
Изобретение относится к способу извлечения лантаноидов из апатитового концентрата и может быть использовано в химической промышленности

Изобретение относится к очистке фторсодержащего редкоземельного концентрата, получаемого при комплексной переработке апатита на минеральные удобрения, и может быть использовано на предприятиях, перерабатывающих хибинский апатитовый концентрат

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью при комнатной температуре и может быть использовано в электронной промышленности, в частности, при изготовлении миниатюрных суперконденсаторов высокой емкости - варисторов, которые находят различное применение, в том числе в качестве источника энергии кардиостимуляторов
Изобретение относится к области производства неорганических сорбентов для извлечения катионов различных металлов из нейтральных и слабокислых водных растворов

Изобретение относится к переработке титаномагнетитового концентрата, содержащего ванадий, и может быть использовано для получения титановых продуктов, чистого оксида железа и железованадиевого концентрата, пригодного для легирования чугунов, сталей и сплавов

Изобретение относится к сорбционно-осадительным способам очистки сточных вод от фтора и может быть использовано в горнодобывающей, металлургической, химической и других отраслях промышленности
Изобретение относится к способам выделения концентрата лантаноидов из экстракционной фторсодержащей фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической и сопутствующих отраслях промышленности
Изобретение относится к получению материалов для производства сегнетоэлектрической керамики, используемой в электронной технике
Изобретение относится к технологии очистки бадделеитового концентрата от примесей при его переработке кислотными методами и может быть использовано для получения качественного бадделеитового, а также танталониобиевого концентратов
Изобретение относится к технологии получения бадделеитового концентрата из цирконийсодержащих отходов с одновременным выделением редкометалльного концентрата
Изобретение относится к способам выделения редкоземельных элементов (РЗЭ) из фосфатных концентратов, полученных, например, при азотно-кислотной переработке апатита

Изобретение относится к технологии получения соединений редкоземельных элементов, в частности к получению порошков диоксида церия, используемых в производстве катализаторов, присадок к дизельному топливу и других областях техники
Изобретение относится к осадительным способам выделения концентрата лантаноидов из экстракционной фосфорной кислоты, содержащей кальций и другие примесные компоненты, получаемой в дигидратном процессе сернокислотного разложения апатитового концентрата, и может быть использовано в химической промышленности

Изобретение относится к технологии комплексной переработки фосфогипса, получаемого при сернокислотной переработке апатитового концентрата на минеральные удобрения
Изобретение относится к области охраны окружающей среды, в частности к дезактивации грунтов, почв и техногенных объектов, и предназначено для очистки грунтов от радионуклидов цезия, стронция, кобальта
Изобретение относится к способам получения тонкодисперсных порошков титанатов щелочноземельных элементов или свинца, которые могут быть использованы для производства высоко- и низкочастотных керамических конденсаторов и других изделий радиоэлектронной промышленности
Изобретение относится к способам получения катализаторов на основе диоксида титана, которые могут быть использованы для фотокаталитической очистки воды и воздуха от органических соединений, патогенных флор и т.п
Изобретение относится к гидрометаллургии и может быть использовано при переработке отходов производства монокристаллов соединений тугоплавких металлов, в частности вольфрамата свинца PbW04, с получением высокочистых соединений вольфрама и свинца, пригодных для повторного выращивания монокристаллов

 


Наверх