Способ механизированной сварки плавящимся электродом в среде защитных газов

Изобретение может быть использовано при изготовлении механизированной сваркой металлоконструкций ответственного назначения. С основной сварочной проволокой применяют дополнительную присадочную проволоку, содержащую оболочку, наполненную наноструктурированными порошками вольфрама, или молибдена, или оксида алюминия. Дополнительную присадочную проволоку подают в хвостовую часть сварочной ванны. Наноструктурированные порошки из расплавленной присадочной проволоки попадают без расплавления в поток перегретого жидкого металла, направленного из-под дуги в хвостовую часть, перемешиваются в нем и служат дополнительными центрами кристаллизации металла шва. Способ обеспечивает повышение механических свойств и коррозионной стойкости сварных соединений за счет управления структурой наплавленного металла. 9 ил.

 

Изобретение относится к области дуговой сварки, а именно к способам получения сварных соединений при изготовлении металлоконструкций ответственного назначения.

Известен способ дуговой сварки, в котором дополнительно вводят присадочную проволоку в хвостовую часть расплавленной ванны. В результате происходит меньшее тепловложение, уменьшается термический цикл сварки, уменьшается количество проходов и сварочные деформации (П.Л. Жилин, Б.П. Конищев, С.А. Лебедев. Исследование увеличения производительности и качества процесса сварки в CO2 с дополнительной холодной присадкой. // Труды Нижегородского государственного технического университета им. Р.Е. Алексеева. - 2014. - №5. - С. 381-387).

Недостатком способа является то, что в качестве присадочной проволоки использованы стандартные проволоки, что снижает степень воздействия на формирование структуры наплавленного металла.

Известен способ дуговой сварки (Авторское свидетельство №525511), в котором осуществляют введение дополнительной присадочной проволоки в хвостовую часть сварочной ванны. В результате повышается стойкость металла шва против образования холодных и горячих трещин.

Недостатком способа является то, что в качестве присадочной проволоки использованы стандартные проволоки, что снижает степень воздействия на механические свойства сварных соединений.

Прототипом способа выбран способ механизированной сварки плавящимся электродом в среде защитных газов, в котором осуществляют введение присадочной проволоки в хвостовую часть сварочной ванны. В результате происходит уменьшение перегрева расплава ванны и металла зоны термического влияния. Нагрев и плавление присадочной проволоки происходит за счет теплоты, переносимой потоками жидкого металла (Лащенко Г.И. Способы дуговой сварки стали плавящимся электродом. - К.: «Екотехнология», 2006. - 384 с.).

Недостатки способа - в качестве присадочной проволоки использованы стандартные проволоки, что снижает степень воздействия на формирование структуры наплавленного металла и механические свойства сварных соединений.

Задача изобретения - повышение механических свойств и коррозионной стойкости сварных соединений за счет управления структурой наплавленного металла.

Поставленная задача достигается тем, что в способе механизированной сварки плавящимся электродом в среде защитных газов дополнительно к основной сварочной проволоке, разогретой источником питания, применяют присадочную проволоку, выполненную по технологии изготовления порошковой проволоки, в состав сердечника которой входят наноструктурированные порошки вольфрама, молибдена или оксида алюминия. Присадочную проволоку подают в хвостовую часть сварочной ванны. Присадочная проволока плавится в потоке перегретого жидкого металла сварочной ванны, направленного из-под дуги в хвостовую часть. Наноструктурированные порошки из расплавленной присадочной проволоки попадают в хвостовую часть сварочной ванны, не проходят дуговой промежуток, т.е. практически без потерь переходят в жидкий металл сварочной ванны, перемешиваются в ней и служат дополнительными центрами кристаллизации при образовании зерна микроструктуры наплавленного металла - модифицируют структуру наплавленного металла шва. Они не расплавляются в жидкой сварочной ванне в связи с их высокой температурой плавления. Увеличение количества центров кристаллизации в жидкой сварочной ванне приводит к образованию мелкодисперсной, однородной микроструктуры сварного соединения и позволяет активно управлять структурой наплавленного металла и механическими свойствами сварного соединения.

На фиг. 1 представлена схема способа механизированной сварки плавящимся электродом в среде защитных газов с введением присадочной проволоки в хвостовую часть сварочной ванны 1 - основная сварочная проволока, 2 - источник питания, 3 - присадочная проволока, 4 - хвостовая часть сварочной ванны, 5 - перегретый жидкий металл сварочной ванны.

На фиг. 2 представлена длина дендритов: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 1,5 мкм, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 1 мкм, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 0,9 мкм, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена 1 мкм.

На фиг. 3 представлена ширина дендритов: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 21 мкм, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 11 мкм, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия 7 мкм, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 12 мкм.

На фиг. 4 представлено временное сопротивление сварных соединений при температуре +20°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 5442 МПА, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама (5491 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 5717 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 5687 МПа.

На фиг. 5 представлен предел текучести сварных соединений при температуре +20°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов (2500 МПА); 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 2765 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 2824 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 2736 МПа.

На фиг. 6 представлено относительное удлинение сварных соединений при температуре +20°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 35%, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 39%, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 40%, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 38%.

На фиг. 7 представлено временное сопротивление сварных соединений при температуре +500°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 3579 МПА, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 3912 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 3952 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 3628 МПа.

На фиг. 8 представлен предел текучести сварных соединений при температуре +500°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 2108 МПА, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 2206 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 2392 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 2304 МПа.

На фиг. 9 представлено относительное удлинение сварных соединений при температуре +500°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов 31%, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 33%, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия 34%, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена 32%.

Использование предлагаемого способа обеспечивает по сравнению с известными способами следующие преимущества:

А) Происходит управление структурой наплавленного металла, получение мелкозернистой, однородной структуры.

На фиг. 2 видно, что средний размер дендрита по длине уменьшается: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама в 1,5 раза (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия в 1,7 раза (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена в 1,5 раза (4).

На фиг. 3 видно, что средний размер дендрита по ширине уменьшается: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама в 1,9 раза (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия в 3 раза (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена в 1,7 раза (4).

В) Происходит повышение механических свойств сварных соединений.

На фиг. 4 видно, что происходит повышение временного сопротивления при температуре +20°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 1% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 5% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 4% (4).

На фиг. 5 видно, что происходит повышение предела текучести при температуре +20°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 11% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 13% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 9% (4).

На фиг. 6 видно, что происходит повышение относительного удлинения при температуре +20°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 11% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 14% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 8% (4).

На фиг. 7 видно, что происходит повышение временного сопротивления при температуре +500°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 9% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 10% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 2% (4).

На фиг. 8 видно, что происходит повышение предела текучести при температуре +500°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 5% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 14% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 9% (4).

На фиг. 9 видно, что происходит повышение относительного удлинения при температуре +500°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 6% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 10% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 3% (4).

С) Происходит повышение коррозионной стойкости. В зависимости от ориентации зерен их поверхность стравливалась сильнее или слабее. Таким образом, между зернами образовывались ступеньки. Определили среднюю высоту этих ступенек на разных образцах: традиционный способ - 320 нм, с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 200 нм, с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 270 нм, с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена - 250 нм. Чем больше высота ступеньки, тем менее коррозионно-стойкий металл. Наименьшая высота ступеньки зафиксирована у образца с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама, он меньше всего подвергся растравливанию при коррозионных испытаниях. Наибольшее влияние коррозионная среда оказала на образец, полученный традиционным способом.

Исследования проводились на следующем сварочном оборудовании: источник питания (Lorch S8 SpeedPulse), установка для сварки (Mecome модификация WP 1500). Для проведения исследований произведена сварка образцов, изготовленных из стали 12Х18Н10Т толщиной 10 мм, в среде аргона сварочной проволокой 12Х18Н9Т диаметром 1,2 мм с введением в хвостовую часть сварочной ванны присадочной проволоки диаметром 2 мм, состоящей из стальной оболочки и сердечника (состав сердечника - наноструктурированные порошки). Режимы сварки - сила тока 240-260 А, напряжение - 28-30 В, скорость сварки - 24-25 мм/с.

Способ механизированной сварки плавящимся электродом в среде защитных газов, включающий введение в хвостовую часть сварочной ванны дополнительной присадочной проволоки, отличающийся тем, что в качестве дополнительной присадочной проволоки используют проволоку, состоящую из стальной оболочки, наполненной наноструктурированными порошками вольфрама, или молибдена, или оксида алюминия, при этом ее подачу осуществляют с возможностью расплавления проволоки в перегретом жидком металле сварочной ванны без расплавления упомянутых наноструктурированных порошков, образующих дополнительные центры кристаллизации металла шва.



 

Похожие патенты:

Изобретение относится к способу сварки корпуса измерительного преобразователя с корпусом измерительного устройства для установки и герметизации измерительных преобразователей в ультразвуковых расходомерах.

Изобретение относится к способу изготовлению сварных корпусов сосудов высокого давления из высокопрочных легированных сталей. Вначале получают тонкостенную оболочку путем резки труб из стали типа 28Х3СНМВФА на заготовки, калибровки, рекристаллизационного отжига, механической обработки, ротационной вытяжки за несколько переходов с промежуточными отжигами деформирующими роликами с треугольным профилем со скругленными по радиусу или (и) плоскими вершинами, установленными с различными зазорами относительно оправки.

Изобретение относится к сварочной головке (1) для сварки вручную сварочной дугой (3) в инертном газе (WIG). Головка содержит теплостойкий электрод (2).

Изобретение относится к способу создания тройникового соединения. Очищают поверхность основной трубы в месте приварки усиленного патрубка углового и осуществляют разметку упомянутого места и вырезку.

Изобретение относится к способу сварки роторов для генерации энергии (газовых турбин, паровых турбин, генераторов), которые содержат множество роторных дисков, размещенных вдоль оси ротора.

Техническое решение относится к головке горелки для дуговой сварки неплавящимся электродом в среде защитных газов. Головка содержит корпус с каналом для подачи защитного газа, цангу для крепления неплавящегося электрода, сопло и сопряженную с соплом оправку со сквозными отверстиями.

Изобретение относится к горелкам для сварки в защитных газах и может быть использовано в машиностроении при изготовлении сварных конструкций, ремонтно-восстановительных работах и исправлении дефектов в металле.

Изобретение относится к электродуговой сварке металлов и сплавов плавящимся электродом в аргоне или смеси не менее 80% аргона с углекислым газом. Способ включает формирование последовательности импульсов сварочного тока, в паузах между которыми устанавливают базовый ток дуги Iб, соответствующий крупнокапельному переносу металла с электрода в сварочную ванну, а в импульсе ток дуги повышают до пикового тока с амплитудой Iп=(1,5 - 2,0)Iкр, где Iкр - критический ток, и поддерживают ток импульса в течение времени, обеспечивающего струйный перенос металла.

Способ относится к изготовлению осесимметричных сварных оболочек, работающих под высоким давлением. Трубные заготовки обечайки изготавливают из конструкционных легированных сталей для холодного деформирования.

Изобретение относится к способу дуговой сварки в защитных газах изделий из алюминиевого сплава и может быть использовано при изготовлении сварных конструкций из алюминиевых сплавов в авиационной промышленности, в машиностроении, судостроении, атомной энергетике и других отраслях.

Изобретение может быть использовано для газовой защиты сварочной ванны, сварного шва и околошовной зоны при сварке плавлением в среде защитных газов. Устройство содержит сопло для подачи защитного газа в зону сварки и закрепленную на нем приставку, имеющую ребра, выполненные со стороны, обращенной к поверхности свариваемой детали, и снабженную опорами для перемещения по ней. Высота опор выбрана из условия получения профилированного зазора между приставкой и защищаемой поверхностью. Упомянутые ребра приставки выполнены с образованием по меньшей мере двух прикрытых спереди боковых продольных каналов, профиль которых имеет форму, обеспечивающую вихреобразное закручивание защитного газа из сопла горелки. Приставка имеет открытый спереди вход, а в качестве сопла для подачи защитного газа использовано сопло сварочной горелки. 7 ил.

Изобретение относится к способу получения сварного соединения металлических деталей. Осуществляют дуговую сварку угловыми швами в зоне сопряжения поверхности листа одной металлической детали и одной или обеих поверхностей листа другой металлической детали. Формируют угловой наплавленный валик (53) в упомянутой зоне сопряжения. Указанная зона включает по меньшей мере один поворотный участок. Формируют придающий жесткость (55А, 55В) наплавленный валик в по меньшей мере в одном месте по меньшей мере одного поворотного участка. Дуговую сварку выполняют с режимами, отличающимися от режимов дуговой сварки углового наплавленного валика (53), с перекрытием начальной точки сварки или конечной точки сварки придающего жесткость наплавленного валика (55А, 55В) с угловым наплавленным валиком (53). Придающий жесткость наплавленный валик (55А, 55В) формируют по направлению к той металлической детали, в которой возникает большее растягивающее напряжение от циклической нагрузки, приложенной к сварному соединению, сформированному без придающего жесткость наплавленного валика (55А, 55В). По меньшей мере одна металлическая деталь сформирована из металлического листа, имеющего толщину листа 3,2 мм или менее. 2 н. и 14 з.п. ф-лы, 10 ил., 12 табл.

Изобретение относится к способу аргонодуговой сварки кольцевых стыков трубчатых деталей, одна из которых выполнена в форме стакана с центральным отверстием в донной части, а другая трубчатой формы. Формируют пакет из трубчатых деталей путем установки трубчатой детали на опору и установки на ее торец упомянутой детали в форме стакана дном вверх. На сформированный пакет трубчатых деталей надевают центратор, выполненный в виде стакана с диаметрально выполненными в его стенке отверстиями. Прикладывают осевое сжимающее усилие к донной части центратора и осуществляют фиксацию трубчатых деталей локальной аргонодуговой сваркой стыка по его наружной поверхности через отверстия центратора. После чего снимают осевое сжимающее усилие, удаляют центратор и проводят сварку стыка с внутренней стороны пакета трубчатых деталей в импульсном режиме. В результате устраняется вероятность возникновения несоосности свариваемых трубчатых деталей, а также вероятность возникновения растягивающих напряжений в металле шва, которые значительно снижают его прочность в готовом изделии. 2 ил., 1 пр.

Предлагаемое изобретение относится к машиностроению и может быть применено при дуговой сварке и наплавке металлических деталей в среде защитного газа. Горелка для дуговой сварки в среде защитных газов состоит из корпуса, головки, ручки, накидной гайки, газотокоподвода, электрододержателя, электрода, крепежных винтов, конфузорного сопла и пакета сеток, причем внутренняя поверхность конфузорного сопла выполнена в виде параболической кривой, у которой начало и конец асимптотически стремятся к прямой линии, расположенной параллельно продольной оси сопла, перед входом в который устанавливается пакет сеток, состоящий из корпуса, втулки, уплотнительных колец и стальных сеток. Сетки в пакете имеют размер ячеи 0,15-0,25 мм и коэффициент аэродинамического сопротивления не менее 10, а расстояние между сетками составляет не менее 15 размеров ячеи. Техническим результатом изобретения является улучшение эффективности газовой зашиты зоны сварки при дуговой сварке в среде защитного газа в условиях ветра. 2 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к способу изготовления сварного конструктивного элемента и может найти применение при производстве строительных конструктивных элементов и деталей корпусов автомобиля. Соединение стальных элементов осуществляют дуговой сваркой в атмосфере защитного газа. По меньшей мере один из элементов, подлежащих соединению, является элементом из толстолистовой стали с нанесенным на нее способом погружения в расплав покрытием из сплава на основе Zn-Al-M. Для сварки используют защитный газ на основе газообразного аргона, газообразного гелия или газообразной смеси аргона и гелия с концентрацией углекислого газа CCО2 (об.%), удовлетворяющей следующему выражению (2) в зависимости от погонной энергии Q (Дж/см) при сварке: 0 ≤ CСО2 ≤ 2900Q-0,68 (2). В результате обеспечивают превосходную стойкость к хрупкому растрескиванию без ограничения разновидностей стали для основной стали для производства стального листа с металлическим покрытием. 2 з.п. ф-лы, 8 ил., 5 пр., 9 табл.

Изобретение относится к машиностроению и может быть применено при дуговой сварке и наплавке металлических деталей в среде защитного газа. Газовое сопло сварочной горелки выполнено в форме конфузора, состоящего из криволинейного и двух прямолинейных участков на входе и выходе сопла с внутренней поверхностью в виде параболической кривой, у которой начало и конец асимптотически стремятся к прямой линии параллельно продольной оси сопла. При этом кромка сопла на выходе выполнена с углом скоса 10-45°. Длина прямолинейного участка на входе находится в интервале 0,1-1,2 входного диаметра сопла. Длина прямолинейного участка на выходе находится в интервале 0,2-1,5 выходного диаметра сопла. Кромка сопла на выходе имеет толщину в пределах 0,2-1 мм. Изобретение позволяет повысить эффективность газовой зашиты зоны сварки при дуговой сварке в среде защитного газа в условиях ветра путем увеличения скорости истечения и жесткости защитной газовой струи. 3 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к способу дуговой механизированной двухэлектродной сварки изделия в среде инертного газа. Осуществляют принудительный обрыв сварочной дуги на одном из используемых электродов, который является плавящимся, путем выключения тока в сварочной цепи электрода. В качестве второго электрода используют неплавящийся электрод, при этом периодически изменяют полярность изделия с сохранением полярности каждого из электродов, при подключении изделия к положительному полюсу источника питания неплавящийся электрод подключают к отрицательному полюсу источника питания. А при подключении изделия к отрицательному полюсу источника питания плавящийся электрод подключают к положительному полюсу источника, частоту изменения полярности изделия выбирают из условия устойчивости повторных зажиганий дуги. Отношение длительности подключения неплавящегося электрода к отрицательному полюсу источника питания к периоду цикла выбирают в пределах 0,3-0,5. Изобретение обеспечивает возможность независимого регулирования производительностей расплавления электродного и основного металла. 5 ил., 1 пр.

Изобретение относится к горелке для электросварки в среде защитного газа. Горелка содержит токогазопроводящий шланг, на конце которого закреплен мундштук со сменным токопроводящим наконечником, сопло, на котором установлена подвижная насадка и опорный штифт. Насадка выполнена в виде хомута с червячным винтом и выштампованной полупетлей, в которую введен опорный штифт. Насадка имеет глубину, равную диаметру опорного штифта. Рабочий конец опорного штифта выполнен в виде конуса или клюшки, или шарика. Тыльный конец опорного штифта отогнут на 90° для предотвращения выпадения опорного штифта из хомута. В результате улучшается качество сварного шва. 8 ил., 2 фото.

Группа изобретений относится к способу сварки внутренних швов труб и устройству ля его осуществления. Согласно способу на одной из труб выполняют буртик, который располагают над свариваемым торцом другой трубы. Горелку устанавливают в свариваемые трубы с расположением оси поворота электрода и конца электрода по разные стороны относительно оси вращения горелки и осуществляют поворот электрода на величину эксцентриситета. При этом сварку осуществляют за два прохода электрода, причем при первом проходе выполняют корневой шов, а при втором проходе не него наплавляют металл буртика. Устройство содержит горелку, держатель и эндоскоп, установленный в выполненном в горелке сквозном канале. Горелка установлена с возможностью вращения, а держатель электрода установлен на горелке с возможностью эксцентричного поворота относительно оси вращения горелки. Группа изобретений позволяет осуществлять сварку заглубленных равнопрочных швов изнутри, когда диаметр свариваемого стыка превышает диметр входного канала, через который обеспечивается доступ к месту сварки, 2 н. и 3 з.п. ф-лы, 9 ил.

Изобретение относится к области сварочного производства и может быть использовано при механизированной сварке в среде инертного газа дугами прямого и косвенного действия. Способ включает зажигание дуги прямого действия между неплавящимся электродом и изделием и зажигание дуги косвенного действия между неплавящимся и плавящимся электродами, при этом плавящийся электрод непрерывно подают в дугу прямого действия. При этом питание дуг прямого и косвенного действия осуществляют от разных источников питания с периодической пульсацией величины однонаправленных токов между малым и большим током, причем во время увеличения тока дуги прямого действия ток дуги косвенного действия уменьшают, а во время уменьшения тока дуги прямого действия ток дуги косвенного действия увеличивают. Использование изобретения позволяет повысить стабильность сварочного процесса и тем самым качество сварного соединения. 1 з.п. ф-лы, 5 ил.

Изобретение может быть использовано при изготовлении механизированной сваркой металлоконструкций ответственного назначения. С основной сварочной проволокой применяют дополнительную присадочную проволоку, содержащую оболочку, наполненную наноструктурированными порошками вольфрама, или молибдена, или оксида алюминия. Дополнительную присадочную проволоку подают в хвостовую часть сварочной ванны. Наноструктурированные порошки из расплавленной присадочной проволоки попадают без расплавления в поток перегретого жидкого металла, направленного из-под дуги в хвостовую часть, перемешиваются в нем и служат дополнительными центрами кристаллизации металла шва. Способ обеспечивает повышение механических свойств и коррозионной стойкости сварных соединений за счет управления структурой наплавленного металла. 9 ил.

Наверх