Способ подготовки кристаллической или поликристаллической подложки под металлизацию


 


Владельцы патента RU 2617461:

Акционерное общество "Концерн радиостроения "Вега" (RU)

Изобретение относится к радиоэлектронике, а точнее к технологии производства печатных плат. Сущность способа подготовки кристаллической или поликристаллической подложки под металлизацию заключается в том, что кристаллическую или поликристаллическую подложку стандартным образом шлифуют, на подложку наносят фоторезист, который затем засвечивают и травят, фоторезист покрывают маской и активным металлом для снятия заряда, создают внедренные дислокации, для чего выбранный металл обрабатывают потоком ионов от ионного ускорителя и после активации подложки маску и активный металл смывают жидким веществом, не реагирующим с активирующим металлом. Техническим результатом изобретения является расширение арсенала технических средств для подготовки кристаллических или поликристаллических подложек под металлизацию. 1 ил.

 

Изобретение относится к радиоэлектронике, а точнее к технологии производства печатных плат.

"В производстве приборов, средств вычислительной техники, различных видов электронных устройств и бытовой радиотехнической аппаратуры, как средство автоматизации монтажно-сборочных операций, широко применяются печатные платы (ПП).

Они обеспечивают снижение металлоемкости, габаритных размеров, а также повышение эксплуатационных свойств изделий. При изготовлении ПП в зависимости от их конструктивных особенностей и масштабов производства применяются различные варианты технологических процессов, в которых используются химические и гальванические операции [1].

В настоящее время почти все схемы радиоаппаратуры, будь это простейший радиоприемник или блок ЭВМ, обычно изготовляются в виде металлического рисунка на диэлектрической основе путем химического избирательного вытравливания отдельных участков медной фольги, приклеенной на основу из диэлектрика. Участки фольги, которые не должны вытравливаться и которые составляют нужный электропроводящий рисунок радиотехнической схемы, защищаются от воздействия травильного раствора стойким в нем покрытием (резистом). Последний может иметь органическую природу или выполняться из неразрушающегося металла или сплава [2].

Химическим путем производится покрытие медью отверстий ПП (сначала химическим, а затем электрохимическим методами) и нанесение металлических резистов на нужные участки медной фольги на платах (методом гальванопокрытий).

Принципиально новым шагом в производстве радиоэлектронных схем является замена технологии изготовления изделий с применением радиотехнического рисунка из вытравленной медной фольги на процесс получения радиосхем непосредственно на диэлектрических основах, используя физико-термические и химические методы локального нанесения покрытий различными металлами - медью, никелем, серебром и др. Это позволяет значительно снизить расход металлов, а также уменьшить габариты и массу изделий [3].

Широкое распространение в производстве радиоэлектронных изделий получили процессы химической металлизации, особенно химическое меднение и никелирование [4]. Металлизация поверхности деталей производится для получения желаемых поверхностных характеристик: электропроводности, коррозионной стойкости, декоративных качеств, магнитных свойств, паяемости. Качество нанесенного на поверхность диэлектрика металлического покрытия (адгезия, пластичность, электропроводность, разрешающая способность и др.) во многом определяется подготовкой поверхности диэлектрика перед металлизацией, к которой предъявляются два вида требований: оптимальные структурные характеристики поверхности диэлектрика (однородность, шероховатость); достаточно высокая поверхностная концентрация активных центров, обеспечивающая локализацию процесса восстановления металла на поверхности диэлектрика, а не в объеме раствора меднения" [5].

Известны химические и плазмохимические методы подготовки поверхности кристаллических или поликристаллических подложек к металлизации (иногда называются активацией) [6, 7]. Методы основаны на предположении, что причина плохой адгезии - загрязнения на поверхности или свойства поверхности кристалла.

Предлагаемый способ предполагает, что плохая адгезия - свойство самого кристалла и потому поверхность под контакт с напылением надо изменить. Меняем ее мы при помощи ионной имплантации.

"Ионная имплантация (ионное внедрение, ионное легирование) - введение примесных атомов в твердое тело бомбардировкой его поверхности ускоренными ионами. При ионной бомбардировке мишени наряду с процессами распыления поверхности, ионно-ионной эмиссии, образования радиационных эффектов и др. происходит проникновение ионов в глубь мишени. Внедрение ионов становится существенным при энергии ионов Е>1 кэВ" [8].

В отличие от обычного применения ионной имплантации, наша цель - создать дислокации в поверхностном слое кристалла или кристаллов в поликристаллической массе. Побочным и тоже небесполезным явлением будет наличие некоторого количества металла в поверхностном слое, что тоже улучшит адгезию.

С этой целью используется поток ионов с энергией порядка 10…100 эВ. Это позволяет создать дислокации около поверхности (что обычно травлением простых кристаллов не достигается - не та энергия), но при этом не создается легирование в глубине материала. Так как напряжение маленькое, для стекания зарядов применяется металлизация маски.

Предлагаемый способ реализуют следующим образом (см. чертеж).

1. Кристаллическую или поликристаллическую подложку 1 стандартным образом шлифуют.

2. На подложку наносят фоторезист, который затем засвечивают и травят.

3. Фоторезист покрывают маской 2 и активным металлом 3, например Zn или Ca, для снятия заряда.

4. Создают внедренные дислокации 4, для чего выбранный металл обрабатывают потоком ионов от ионного ускорителя 5. Используют, например, ионы Cu или Ag, или Au, или Al.

5. После активации подложки слои 2 и 3 смывают жидким веществом, например соляной кислотой, не реагирующим с активирующим металлом.

Подготовленную поверхность покрывают металлом каким-нибудь стандартным способом.

Техническим результатом изобретения является расширение арсенала технических средств для подготовки кристаллических или поликристаллических подложек под металлизацию.

Список использованных источников

1. Инженерная гальванотехника в приборостроении / Под редакцией A.M. Гинберга. М.: Машиностроение, 1977. 512 с.

2. Федулова А.А., Котов Е.А., Явич Э.Р. Многослойные печатные платы. М.: Советское радио, 1977. 248 с.

3. Мазур А.И., Алехин В.П., Шоршоров М.Х. Процессы сварки и пайки в производстве полупроводниковых приборов. М.: Радио и связь, 1981. 224 с.

4. Вишепков С.А. Химические и электрохимические способы осаждения металлопокрытий. М.: Машиностроение, 1975. 312 с.

5. http://www.dissercat.com/content/fiziko-khimicheskie-zakonomernosti-aktivirovaniya-poverkhnosti-dielektricheskikh-materialov-?_openstat=cmVmZXJ1bi5jb207bm9kZTthZDE7.

6. Там же.

7. Патент RU 2039848.

8. Физическая энциклопедия. В 5-ти томах. М.: Советская энциклопедия. Главный редактор А.М. Прохоров. 1988. / Цит. по: http://dic.academic.ru/dic.nsf/enc_physics/3387.

Способ подготовки кристаллической или поликристаллической подложки под металлизацию, заключающийся в том, что кристаллическую или поликристаллическую подложку стандартным образом шлифуют, на подложку наносят фоторезист, который затем засвечивают и травят, фоторезист покрывают маской и активным металлом для снятия заряда, создают внедренные дислокации, для чего выбранный металл обрабатывают потоком ионов от ионного ускорителя и после активации подложки маску и активный металл смывают жидким веществом, не реагирующим с активирующим металлом.



 

Похожие патенты:

Изобретение относится к составам селективных полирующих травителей, используемых в процессах химического утонения эпитаксиальных кремниевых пластин при производстве полупроводниковых приборов и интегральных микросхем.

Изобретение используется в технологии химического утонения кремния при производстве формирователей видеосигналов для приборов с зарядовой связью, освещаемых с обратной стороны.

Изобретение относится к области измерений температуры тонких поверхностных слоев, в частности пористого диэлектрического слоя в химической промышленности (катализ), при изготовлении оптических и химических сенсоров, а так же в процессе криогенного травления диэлектриков в технологии микроэлектроники.

Изобретение относится к изготовлению средств выявления примесей газов и определения концентрации газов в воздушной среде. Способ изготовления чувствительных элементов датчиков концентрации газа согласно изобретению включает нанесение диэлектрической пленки на лицевую сторону кремниевой подложки, формирование на пленке структуры чувствительных элементов и создание тонких диэлектрических мембран методом анизотропного травления кремниевой подложки с обратной стороны, проводимого в два этапа, первый до нанесения диэлектрической пленки, а второй после завершения всех операций формирования структуры чувствительных элементов с предварительной защитой от травителя лицевой стороны подложки, при этом первый этап травления проводят сначала в водном растворе смеси этилендиамина с пирокатехином, а затем в водном растворе гидроокиси калия, а второй этап проводят только в водном растворе смеси этилендиамина с пирокатехином.

Изобретение относится к области электрического оборудования, в частности к устройствам химико-динамического травления. Технический результат, достигаемый в предлагаемом устройстве химико-динамического травления германиевых подложек, заключается в упрощении конструкции и улучшении однородности травления.

Изобретение направлено на новую полирующую композицию, которая особенно хорошо подходит для полирования подложек, имеющих структурированные или неструктурированные диэлектрические слои с низкой или ультранизкой диэлектрической постоянной.

Изобретение относится к технологии обработки поверхности полупроводниковых пластин, в частности к процессам очистки поверхности пластин между технологическими операциями, для изготовления солнечных элементов.

Изобретение относится к электронной технике СВЧ. Способ селективного реактивного ионного травления полупроводниковой гетероструктуры, имеющей, по меньшей мере, последовательность слоев GaAs/AlGaAs с заданными характеристиками, включает расположение полупроводниковой гетероструктуры на подложкодержателе в реакторе системы реактивного ионного травления с обеспечением контактирования слоя арсенида галлия с плазмой технологических газов, подачу в реактор технологических газов и последующее селективное реактивное ионное травление при заданных параметрах технологического режима. В способе используют полупроводниковую гетероструктуру, имеющую слой AlGaAs толщиной не менее 10 нм, с содержанием химических элементов AlxGa1-xAs при x, равном либо большем 0,22, в качестве технологических газов используют смесь трихлорида бора и гексафторида серы при соотношении (2:1)-(9:1) соответственно, селективное реактивное ионное травление осуществляют при давлении в реакторе 2-7 Па, мощности, подаваемой в разряд 15-50 Вт, температуре подложкодержателя 21-23°С, общем расходе технологических газов 15-25 мл/мин. Технический результат - повышение выхода годных путем повышения селективности, контролируемости, воспроизводимости, анизотропии и снижения неравномерности, плотности дефектов и загрязнений на поверхности полупроводниковой гетероструктуры.

Изобретение относится к электрохимии полупроводников и технологии полупроводниковых приборов. Сущность изобретения заключается в том, что поверхность полупроводникового электрода - арсенида галлия n-типа - перед электрохимическим нанесением металла подвергают дополнительной к стандартной химической обработке в растворах халькогенсодержащих соединений с последующей промывкой поверхности в прокипяченной дистиллированной воде.
Изобретение относится к технологии изготовления силовых кремниевых транзисторов, в частности к обработке поверхности эпитаксиальных кремниевых пластин от различных видов загрязнений для формирования активных областей.

Изобретение относится к оборудованию для производства полупроводниковых приборов и может быть использовано для операции обезжиривания и отмывки пластин. Технический результат выражается в снижении себестоимости и трудоемкости процесса отмывки за счет того, что установка для отмывки пластин выполнена в виде камеры, состоящей из верхнего и нижнего отсеков, соединенных патрубком, нижний отсек камеры предназначен для растворителя, а в верхнем отсеке установлена кассета с обрабатываемыми пластинами, при этом дно верхнего отсека выполнено наклонным, в нижней точке наклонного дна расположен вход в сливной патрубок, выход которого размещен в нижнем отсеке камеры, а верхняя часть сливного патрубка расположена на уровне верхнего края пластин в кассете, камера снабжена патрубком-холодильником, расположенным в верхнем отсеке, и нагревательным элементом, расположенным под нижним отсеком. Установка позволяет проводить отмывку пластин поочередно в парах органического растворителя и в жидкости, обеспечивая замкнутый циклический процесс, отличающийся высокой технологичностью, поскольку не требует участия оператора, и высокой экономичностью, т.к. одной загрузки растворителя хватает на обезжиривание большого количества пластин. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области обработки поверхности теллурида кадмия-ртути ориентации (310) химическим селективным травлением. Cостав для селективного травления теллурида кадмия-ртути содержит ингредиенты при следующем соотношении, в объемных долях: 25%-ный водный раствор оксида хрома (VI) (CrO3) – 24, концентрированная соляная кислота (HCl) – 1, 5%-ный раствор лимонной кислоты – 8. Предложенный состав обеспечивает селективное травление теллурида кадмия-ртути с образованием треугольных ямок травления. 2 ил.

Изобретение относится к технологии микроэлектроники и может быть использовано для изготовления функциональных элементов наноэлектроники. Техническим результатом является возможность совмещения острия зонда с выполняемой на нем наноструктурой на предопределенных расстояниях 0-50 нм от оконечности острия. Способ изготовления элементов с наноструктурами для локальных зондовых систем включает нанесение на подложку из монокристаллического кремния с ориентацией {100}, по меньшей мере, одного слоя маскирующего покрытия, в котором формируют рисунок шаблона с выделением, по меньшей мере, трех областей, размещенных по взаимно перпендикулярным осям, совпадающим с двумя перпендикулярными кристаллографическими осями <110> подложки, задающих направление разлома подложки на соответствующее количество элементов и образующих на поверхности маскирующего покрытия каждого элемента вблизи точки пересечения указанных осей площадки для размещения наноструктуры, проведение жидкостного травления подложки через сформированный в маскирующем покрытии рисунок шаблона до проявления фигур травления в теле подложки в форме треугольных канавок, образованных пересечением плоскостей {111} подложки, формирование наноструктур на упомянутых площадках литографическими методами и разделение подложки на указанные элементы по линиям, образованным канавками. 8 з.п. ф-лы, 6 ил.
Наверх