Способ обработки поверхности пластин для формирования солнечных элементов

Изобретение относится к технологии обработки поверхности полупроводниковых пластин, в частности к процессам очистки поверхности пластин между технологическими операциями, для изготовления солнечных элементов. Способ согласно изобретению заключается в том, что с поверхности пластин происходит полное удаление окисла в растворе состоящей из плавиковой кислоты и деионизованной воды, при комнатной температуре раствора. Процесс удаления окисла считается законченным, в том случае, когда раствор скатывается с поверхности обратной стороны кремниевой пластины. Реакция обработки поверхности кремниевой пластины протекает с большой скоростью, длительность процесса составляет не более 20 секунд. При этом не происходит ухудшения качества поверхности кремния. Предлагаемый способ обеспечивает удаление остатков окисла с поверхности обратной стороны перед напылением и способствует улучшению адгезии, благодаря которой увеличивается процент выхода годных кристаллов - 98%. 3 пр.

 

Изобретение относится к технологии обработки поверхности полупроводниковых пластин, в частности к процессам очистки поверхности пластин между технологическими операциями, для изготовления солнечных элементов.

Известны способы обработки кремниевых пластин перед напылительными процессами: в кислотах, щелочных растворах при температуре 90-100°C, и др. [1].

Основными недостатками этих способов являются неполное удаление окисла, высокая температура и длительность процесса.

Целью изобретения является полное удаление остатка окисла с поверхности обратной стороны кремниевых пластин перед напылением и уменьшение температуры и длительности процесса.

Поставленная цель достигается тем, что удаление окисла перед напылением происходит за счет использования раствора, в состав которого входят фтористоводородная кислота HF и деионизованная вода H2O в следующих соотношениях:

Сущность способа заключается в том, что с поверхности пластин происходит полное удаление окисла в растворе, состоящем из плавиковой кислоты и деионизованной воды, при комнатной температуре раствора. Процесс удаления окисла считается законченным, в том случае, когда раствор скатывается с поверхности обратной стороны кремниевой пластины. Реакция обработки поверхности кремниевой пластин протекает с большой скоростью, длительность процесса составляет не более 20 секунд. При этом не происходит ухудшения качества поверхности кремния.

Таким образом, предполагаемый способ по сравнению с прототипом обеспечивает удаление остатков окисла с поверхности обратной стороны перед напылением и способствует улучшению адгезии, благодаря которой увеличивается процент выхода годных кристаллов - 98%.

Сущность изобретения подтверждается следующими примерами:

ПРИМЕР 1. Процесс проводят на установке химической обработки в одной ванне с последующей отмывкой в деионизованной воде при соотношении компонентов:

Температура раствора комнатная. Время обработки 60 секунд. Процент выхода годных кристаллов составляет 92%.

ПРИМЕР 2. Способ осуществляют аналогично примеру 1. Процесс проводят на установке химической обработки в одной ванне с последующей отмывкой в деионизованной воде при соотношении компонентов:

Температура раствора комнатная. Время обработки равно 40 секунд. Процент выхода годных кристаллов составляет 95%.

ПРИМЕР 3. Способ осуществляют аналогично примеру 1. Процесс проводят на установке химической обработки в одной ванне с последующей отмывкой в деионизованной воде при соотношении компонентов:

Температура раствора комнатная. Время обработки равно 20 секунд. Процент выхода годных кристаллов составляет 98%.

Таким образом, предполагаемый способ по сравнению с прототипом обеспечивает полное удаление остатка окисла с поверхности обратной стороны кремниевой пластины перед напылением и способствует улучшению адгезии, благодаря которой увеличивается процент выхода годных кристаллов с 93 до 98%.

Литература

1. Курносов А.И., Юдин В.В. Технология производства полупроводниковых приборов и интегральных микросхем, М: «Высшая школа», 1986, с.177-178.

Способ обработки поверхности пластин для формирования солнечных элементов, включающий травление кремния с полным удалением остатков окисла с поверхности обратной стороны кремниевой пластины, перед напылением обратной стороны, отличающийся тем, что в качестве травителя используется раствор, в состав которого входят фтористоводородная кислота и деионизованная вода, компоненты раствора выбираются в следующем соотношении:



 

Похожие патенты:
Изобретение относится к технологии изготовления солнечных элементов. Способ согласно изобретению заключается в том, что на поверхности подложки формируют тонкий слой пленки диоксида кремния за счет горения водорода и сухого кислорода в среде азота при расходе газов: N2=450 л/ч; H2=75 л/ч; O2=750±50 л/ч.

Изобретение относится к радиографии, в частности к системам цифрового изображения в рентгеновских и гамма-лучах с помощью многоканальных полупроводниковых детекторов на основе полуизолирующего арсенида галлия.

Изобретение относится к конструкции матричных полупроводниковых фотоприемников и может использоваться для создания многоэлементных фотоприемников различного назначения.

Изобретение относится к технологии изготовления трехкаскадных фотопреобразователей со встроенным диодом. Согласно изобретению на трехкаскадной полупроводниковой структуре GaInP/GaAs/Ge, выращенной на германиевой подложке с p-AlGaInP слоем потенциального барьера, p++-AlGaAs и n++-GaInP слоями туннельного перехода верхнего каскада, создают фоторезистивную маску с окнами лицевых контактов фотопреобразователя и диода, удаляют в диодном окне маски полупроводниковые слои, причем вытравливают p-AlGaInP слой потенциального барьера полностью или частично в смеси концентрированных соляной и фтористоводородной кислот в количественном соотношении объемных частей 5÷7 и 3÷5 соответственно, p++-AlGaAs слой туннельного перехода удаляют в смеси концентрированных соляной и лимонной (50%) кислот в количественном соотношении объемных частей 6÷10 и 8÷12 соответственно.

Способ изготовления гетероструктурного солнечного элемента включает выращивание полупроводниковой гетероструктуры на германиевой подложке, создание омических контактов со стороны тыльной поверхности германиевой подложки и со стороны фронтальной поверхности гетероструктуры, нанесение просветляющего покрытия на фронтальную поверхность гетероструктуры, создание разделительной мезы через маску фоторезиста путем травления первой канавки в полупроводниковой гетероструктуре до германиевой подложки.

При изготовлении фотопреобразователя согласно изобретению на тыльной стороне подложки GaSb n-типа проводимости выращивают методом эпитаксии высоколегированный контактный слой n+-GaSb, а на лицевой стороне подложки - буферный слой n-GaSb.
Изобретение относится к солнечной энергетике. Способ формирования активной p+-области солнечных элементов включает процесс диффузии бора с применением жидкого источника - треххлористого бора (BCl3).

Изобретение относится к технологии фотодиодов на основе эпитаксиальных p-i-n структур GaN/AlxGa1-xN, преобразующих излучение ультрафиолетовой области спектра. Изобретение может быть использовано в производстве матричных фоточувствительных элементов приборов гражданского и военного назначения.

Изобретение относится к способу получения структурированного электропроводящего покрытия на подложке. Технический результат - предоставление способа получения структурированного металлического покрытия на подложке, при реализации которого формируют структурированный металлический слой с четко определенными кантами и краями, что позволяет напечатать картину с высоким разрешением и структурами малых размеров, применимую в солнечных батареях.

Изобретение относится к технологии изготовления полупроводниковых фотоприемников и может использоваться для создания многоэлементных фотоприемников различного назначения.

Изобретение относится к электронной технике СВЧ. Способ селективного реактивного ионного травления полупроводниковой гетероструктуры, имеющей, по меньшей мере, последовательность слоев GaAs/AlGaAs с заданными характеристиками, включает расположение полупроводниковой гетероструктуры на подложкодержателе в реакторе системы реактивного ионного травления с обеспечением контактирования слоя арсенида галлия с плазмой технологических газов, подачу в реактор технологических газов и последующее селективное реактивное ионное травление при заданных параметрах технологического режима. В способе используют полупроводниковую гетероструктуру, имеющую слой AlGaAs толщиной не менее 10 нм, с содержанием химических элементов AlxGa1-xAs при x, равном либо большем 0,22, в качестве технологических газов используют смесь трихлорида бора и гексафторида серы при соотношении (2:1)-(9:1) соответственно, селективное реактивное ионное травление осуществляют при давлении в реакторе 2-7 Па, мощности, подаваемой в разряд 15-50 Вт, температуре подложкодержателя 21-23°С, общем расходе технологических газов 15-25 мл/мин. Технический результат - повышение выхода годных путем повышения селективности, контролируемости, воспроизводимости, анизотропии и снижения неравномерности, плотности дефектов и загрязнений на поверхности полупроводниковой гетероструктуры.

Изобретение относится к электрохимии полупроводников и технологии полупроводниковых приборов. Сущность изобретения заключается в том, что поверхность полупроводникового электрода - арсенида галлия n-типа - перед электрохимическим нанесением металла подвергают дополнительной к стандартной химической обработке в растворах халькогенсодержащих соединений с последующей промывкой поверхности в прокипяченной дистиллированной воде.
Изобретение относится к технологии изготовления силовых кремниевых транзисторов, в частности к обработке поверхности эпитаксиальных кремниевых пластин от различных видов загрязнений для формирования активных областей.

Использование: для изготовления иглы кантилевера сканирующего зондового микроскопа. Сущность изобретения заключается в том, что для изготовления иглы кантилевера используют хрупкую прозрачную подложку, которую заполняют оптически прозрачной жидкостью и в горизонтальном положении укладывают в пластическую массу, которую периодически замораживают и размораживают.

Изобретение относится к области обработки полупроводниковых материалов и может быть использовано в технологии изготовления приборов, в том числе матричных большого формата на основе арсенида галлия.

Изобретение относится к композициям, способам и системам, используемым во многих областях, включая в частности системы теплопереноса, например системы охлаждения, пенообразователи, пенные композиции, пены и изделия, включающие пены или изготовленные из пены, способы получения пен, в том числе и однокомпонентных, аэрозоли, пропелленты, очищающие композиции.

Изобретение относится к области обработки поверхности теллурида кадмия-ртути химическим полирующим травлением. Состав полирующего травителя для теллурида кадмия-ртути включает компоненты при следующем соотношении, в объемных долях: метанол (95%) - 5, этиленгликоль - 13, бромистоводородная кислота (47%) - 2, перекись водорода (30%) - 1.

Изобретение относится к области радиоэлектронной техники и микроэлектроники и может быть использовано для плазмохимической обработки подложек из поликора и ситалла.

Изобретение относится к СВЧ плазменным установкам для проведения процессов травления и осаждения слоев - металлов, полупроводников, диэлектриков при пониженном давлении и может быть использовано в технологических процессах создания полупроводниковых приборов с высокой степенью интеграции.

Изобретение относится к СВЧ плазменным устройствам для проведения процессов осаждения и травления слоев - металлов, полупроводников, диэлектриков и может быть использовано в технологических процессах создания полупроводниковых приборов с высокой степенью интеграции, работающих в экстремальных условиях.

Изобретение направлено на новую полирующую композицию, которая особенно хорошо подходит для полирования подложек, имеющих структурированные или неструктурированные диэлектрические слои с низкой или ультранизкой диэлектрической постоянной. Водная полирующая композиция содержит (A) абразивные частицы, выбранные из группы, состоящей из оксида кремния, оксида церия и их смесей, и (B) по меньшей мере одно амфифильное неионогенное поверхностно-активное вещество, выбранное из группы, состоящей из растворимых в воде или диспергируемых в воде поверхностно-активных веществ, имеющих (b1) гидрофобные группы, выбранные из группы, состоящей из разветвленных алкильных групп, имеющих 5-20 атомов углерода; и (b2) гидрофильные группы, выбранные из группы, состоящей из полиоксиалкиленовых групп, содержащих (b21) оксиэтиленовые мономерные звенья и (b22) замещенные оксиалкиленовые мономерные звенья, в которых заместители выбраны из группы, состоящей из алкильных, циклоалкильных или арильных, алкил-циклоалкильных, алкил-арильных, циклоалкил-арильных и алкил-циклоалкил-арильных групп; где указанная полиоксиалкиленовая группа содержит мономерные звенья (b21) и (b22) в статистическом, чередующемся, градиентном и/или блокоподобном распределении. Применяют композицию для производства электрических, механических и оптических устройств. Композиция имеет особенно высокую селективность по отношению к диоксиду кремния по сравнению с материалами с низкой и ультранизкой диэлектрической постоянной. 3 н. и 12 з.п. ф-лы, 2 табл., 2 пр.
Наверх