Способ определения намагниченности вещества



Способ определения намагниченности вещества
Способ определения намагниченности вещества

 


Владельцы патента RU 2617723:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" (RU)

Изобретение относится к способам измерения магнитных характеристик образца, в частности к способам измерения намагниченности. При реализации способа определения намагниченности вещества образец правильной геометрической формы помещают в магнитное поле, измеряют индукцию В образца в точке, где линии индукции нормальны поверхности образца, напряженность Н в точке, где линии напряженности параллельны поверхности образца, и определяют намагниченность образца по формуле M=B/μo-H. При этом значения намагниченности M1 и М2 измеряют для двух отличающихся на 180 градусов относительно направления индукции внешнего магнитного поля ориентаций образца. Далее вычисляют намагниченность Зеемана по формуле Мз=(М1+М2)/2 и намагниченность Нееля по формуле Мн=(М1-М2)/2. Техническим результатом изобретения является возможность контроля намагниченностей Зеемана и Нееля ферромагнитных наночастиц в порошках, применяемых для производства магнитных жидкостей. 1 ил.

 

Изобретение предназначается для отдельного измерения неелевской намагниченности вещества, направление которой совпадает с направлением оси легкого намагничивания вещества, и зеемановской намагниченности, направление которой совпадает с направлением внешнего магнитного поля. Оно может быть использовано при изготовлении магнитных жидкостей с наночастицами, имеющими преобладание или зеемановской или неелевской намагниченности. А также для оценки неелевских времен релаксации, для нахождения распределения направлений осей легкого намагничивания, для экспериментальной оценки энергии связи магнитного момента с веществом.

Известен способ определения намагниченности вещества без изменения индукции внешнего магнитного поля путем помещения в магнитное поле спектрометра ЯМР образцов исследуемого вещества цилиндрической и сферической формы. Намагниченность М находят по формуле М=3(А-В), где А и В – напряженности магнитного поля, при которых регистрируются максимумы сигналов ЯМР в вышеупомянутых цилиндрическом и сферическом образцах. Способ описан в Патенте РФ №2361195, "Способ измерения намагниченности", автор А.И. Жерновой, опубликован в бюл. №19 от 10 июля 2009 г. Недостаток способа в том, что для его осуществления исследуемое вещество должно давать сигнал ЯМР, кроме того, этим способом нельзя отличить намагниченность Зеемана от намагниченности Нееля.

Известен способ измерения намагниченности вещества без изменения индукции внешнего магнитного поля путем помещения в это магнитное поле образца вещества правильной геометрической формы, измерения снаружи образца индукции В в точке, где линии индукции направлены нормально поверхности образца, и напряженности Н в точке, где линии напряженности направлены параллельно поверхности образца, и нахождения намагниченности по формуле М=В/μо-Н. Недостаток способа в том, что им нельзя отличить намагниченность Зеемана, параллельную индукции магнитного поля В, от намагниченности Нееля, параллельную оси легкого намагничивания в каждой точке исследуемого ферромагнитного вещества. Способ можно принять за прототип. Он описан в журнале «Научное приборостроение», 2009, том 19, №3, с. 57-61, авторы А.И. Жерновой, В.Н. Наумов, Ю.Р. Рудаков.

В предлагаемом способе для измерения намагниченности вещества без изменения индукции внешнего магнитного поля из исследуемого вещества изготавливается образец правильной геометрической формы, например параллелепипед или цилиндр. Образец помещается во внешнее магнитное поле с индукцией, направленной параллельно или нормально оси образца. Около поверхности образца, ориентированной нормально линиям индукции внешнего магнитного поля, устанавливается датчик 1 для измерения индукции В магнитного поля, а у поверхности образца, ориентированной параллельно линиям напряженности внешнего магнитного поля, устанавливается датчик 2 для измерения напряженности Н магнитного поля. Измерив при первом положении образца датчиком 1 магнитную индукцию В1 и датчиком 2 напряженность магнитного поля H1, находим намагниченность в первом положении М1=В1/μo-Н1. После этого образец поворачивается вокруг его оси симметрии на 180 градусов относительно направления индукции внешнего магнитного поля, измеряются индукция В2 и напряженность Н2 при втором положении образца и определяется намагниченность М2=В2/μо-Н2. Если в положении 1 намагниченность Зеемана Мз и Нееля Мн были параллельны друг другу, то М1=Мз+Мн. При повороте образца относительно направления индукции внешнего поля намагниченность Зеемана остается параллельной индукции внешнего поля, а намагниченность Нееля поворачивается вместе с образцом и становится антипараллельной индукции внешнего поля, поэтому измеряемая после поворота образца намагниченность:

М2=Мз-Мн.

В результате Мз и Мн можно найти по формулам:

Мз=(М1+М2)/2,

Мн=(М1-М2)/2.

Пример осуществления способа

Для осуществления способа использована установка, описанная там же, где прототип («Научное приборостроение», 2009, том 19, №3, с. 57-61). Ее схема приведена на рис. 1.

Исследуемый магнетик помещается в два цилиндрических контейнера 10 диаметром 20 и высотой 45 мм, расположенных на расстоянии 3 мм друг от друга в магнитном поле, создаваемом магнитами 1. На боковой поверхности одного из контейнеров расположена катушка 2 датчика ЯМР для измерения магнитной индукции В, а в щели между контейнерами катушка 3 датчика ЯМР для измерения напряженности магнитного поля Н внутри магнетика. Катушка 2 расположена в точке, где линии магнитной индукции нормальны поверхности магнетика, а катушка 3 расположена в точке, где линии напряженности магнитного поля параллельны поверхности магнетика, поэтому, как следует, например, из учебника (С.Г. Калашников. «Электричество». М.: Наука, 1985. 576 с.), измеряемые значения В и Н равны индукции и напряженности магнитного поля внутри образца. Для измерения В и Н применен метод нутации, описанный в монографии (А.И. Жерновой. «Измерение магнитных полей методом нутации». Л.: Энергия, 1979. 103 с.). Для этого через катушки 2, 3 по хлорвиниловой трубке протекает вода, предварительно поляризованная в магните 4, которая поступает в катушку датчика ЯМР, расположенного в магните 5 и присоединенного к прибору 6, где дает сигнал, полярность которого меняется, когда частота, измеряемая частотомером 9, присоединенным к выходу прибора 8, совпадает частотой ЯМР в катушке 2 или 3, присоединенной к генератору 8 переключателем 7. Измеряя частоты ЯМР f2 в катушке 2 и f3 в катушке 3, можно определять намагниченности образца по формуле:

M=(f2-f3)/β,

где β - гиромагнитное отношение протонов, равное в системе единиц СИ 53,4 Гцм/А. Определив намагниченность M1, а затем повернув оба цилиндра 10 вокруг их осей на 180 градусов, определив М2, находим намагниченность Зеемана

Мз=(М1+М2)/2

и намагниченность Нееля:

Мн=(М1-М2)/2.

Практическая значимость предлагаемого способа

Многие практические применения магнитных жидкостей основаны на том, что в магнитном поле ферромагнитные наночастицы ориентируются параллельно индукции внешнего магнитного поля. Это свойство ферромагнитных наночастиц приводит к увеличению вязкости магнитной жидкости при наложении магнитного поля, что используется, например, для создания управляемых магнитным полем гидравлических сцеплений и тормозов. При добавлении магнитных жидкостей в жидкие кристаллы появляется возможность управлять жидкими кристаллами при помощи магнитных полей. Для подобных применений магнитная жидкость должна иметь ферромагнитные наночастицы с большой неелевской намагниченностью. Предлагаемый способ позволяет контролировать это свойство наночастиц при изготовлении порошков, из которых эти жидкости производятся.

Способ измерения намагниченности вещества без изменения индукции внешнего магнитного поля путем помещения в это магнитное поле образца вещества правильной геометрической формы, измерения снаружи образца индукции B в точке, где линии индукции нормальны поверхности образца, и напряженности H в точке, где линии напряженности параллельны поверхности образца, и нахождения намагниченности по формуле Μ=Β/μo-Н, отличающийся тем, что находят значения намагниченностей M1 и М2 при двух отличающихся на 180 градусов ориентациях образца исследуемого вещества относительно направления индукции внешнего магнитного поля и определяют намагниченность Зеемана Мз=(М1+М2)/2 и намагниченность Нееля Мн=(М1-М2)/2.



 

Похожие патенты:
Использование: для мониторинга загрязнений морского нефтегазового промысла. Сущность изобретения заключается в том, что система обнаружения и мониторинга загрязнений морского нефтегазового промысла включает в себя сеть дистанционных детекторов загрязнений, программируемый контроллер с системами сбора, предварительной обработки и передачи данных, а также единую автоматизированную информационную систему (ИС) с функциями сбора, обработки и хранения данных, передаваемых на интерфейсы ИС дистанционными детекторами загрязнений, при этом система обнаружения и мониторинга загрязнений морского нефтегазового промысла дополнительно содержит биосенсор для непрерывного контроля тяжелых металлов в воде, датчик ядерно-магнитного резонанса, датчик электронного парамагнитного резонанса, реактор на тепловых нейтронах ИР-100 с откатным коробом в активной зоне (нейтронный поток 2×1012 н/(см2·с)) и стационарной установкой гамма-излучения с мощностью дозы до 1000 Р/ч, спектрометрическую установку с системой поддержания пластового давления (ППД), радиометрическую низкофоновую установку, генераторы СВЧ-излучений различных частот от 0,1-60 ТГц, образцовые голографические матрицы с записанными спектрами ЯМР атомов веществ (металлов и органических веществ) и идентифицируемых веществ, информационный блок морских карт и цветных космических фотоснимков районов поиска, электромагнитную камеру (Кирлиан-камеру) для визуализации затопленных объектов на аэрокосмических снимках и переноса их на морскую карту района поиска с помощью видеокамеры, совмещенных с ПЭВМ, приемно-фазовые антенны широкого обзора, приемник GPS map-60, программный комплекс ПЭВМ для определения координат затопленных объектов и отображения их на морской карте района, атомно-абсорбционный спектрофотометр, а также другие конструкционные элементы.

Изобретение относится к способам анализа качества соевых лецитинов и может быть использовано в масложировой промышленности. Способ определения содержания ацетоннерастворимых веществ (фосфолипидов) в соевом лецитине включает отбор пробы лецитина, подготовку пробы путем термостатирования, помещение пробы в датчик импульсного ЯМР-анализатора, измерение амплитуд сигналов ядерно-магнитной релаксации протонов третьей (A3) и четвертой (А4) компонент лецитинов в условных единицах и расчет содержания ацетоннерастворимых веществ (фосфолипидов) в лецитине.

Изобретение относится к способам анализа качества подсолнечных лецитинов и может быть использовано в масложировой промышленности. Способ определения содержания ацетоннерастворимых веществ (фосфолипидов) в подсолнечном лецитине включает отбор пробы лецитина, подготовку пробы путем термостатирования, помещение пробы в датчик импульсного ЯМР-анализатора, измерение амплитуд сигналов ядерно-магнитной релаксации протонов третьей (А3) и четвертой (А4) компонент лецитинов в условных единицах и расчет содержания ацетоннерастворимых веществ (фосфолипидов) в лецитине.

Использование: для идентификации рапсового лецитина. Сущность изобретения заключается в том, что выполняют отбор пробы и ее подготовку, при этом отбирают пробу лецитина массой (10±0,02) г, подготовку пробы проводят путем ее термостатирования при температуре 60°C в течение 1 ч, после чего пробу лецитина помещают в датчик импульсного ЯМР-анализатора и измеряют время спин-спиновой релаксации первой компоненты лецитина (T21) в миллисекундах, при этом лецитин относят к рапсовому, если время спин-спиновой релаксации первой компоненты лецитина (T21) находится в диапазоне от 158 до 168 мс.

Изобретение относится к способам анализа качества рапсовых лецитинов и может быть использовано в масложировой промышленности. Способ определения содержания ацетоннерастворимых веществ (фосфолипидов) в рапсовом лецитине включает отбор пробы лецитина, подготовку пробы путем термостатирования, помещение пробы в датчик импульсного ЯМР-анализатора, измерение амплитуд сигналов ядерно-магнитной релаксации протонов третьей (А3) и четвертой (А4) компонент лецитинов в условных единицах и расчет содержания ацетоннерастворимых веществ (фосфолипидов) в лецитине.

Использование: для идентификации подсолнечного лецитина. Сущность изобретения заключается в том, что отбирают пробу лецитина массой (10±0,02) г, подготовку пробы проводят путем ее термостатирования при температуре 60°C в течение 1 часа, после чего пробу лецитина помещают в датчик импульсного ЯМР-анализатора и измеряют время спин-спиновой релаксации первой компоненты лецитина (T21) в миллисекундах, при этом лецитин относят к подсолнечному, если время спин-спиновой релаксации первой компоненты лецитина (T21) находится в диапазоне от 189 до 205 миллисекунд.

Использование: для идентификации соевого лецитина. Сущность изобретения заключается в том, что отбирают пробу лецитина массой (10±0,02) г, подготовку пробы проводят путем ее термостатирования при температуре 60°C в течение 1 ч, после чего пробу лецитина помещают в датчик импульсного ЯМР-анализатора и измеряют время спин-спиновой релаксации первой компоненты лецитина (T21) в миллисекундах, при этом лецитин относят к соевому, если время спин-спиновой релаксации первой компоненты лецитина (T21) находится в диапазоне от 169 до 188 мс.

Использование: для измерения содержания воды в твердых веществах и суспензиях посредством ядерного магнитного резонанса. Сущность изобретения заключается в том, что устройство содержит средство для создания постоянного магнитного поля, емкость для вмещения образца в пределах упомянутого постоянного магнитного поля, средство для возбуждения измеряемой радиочастотной намагниченности в образце, помещенном в упомянутую емкость для вмещения образца, при рабочей частоте, определяемой упомянутым постоянным магнитным полем, средство для измерения радиочастотного сигнала, производимого возбужденным образцом, и средство для определения содержания воды в образце на основании радиочастотного сигнала.

Использование: для измерения содержания воды на основе ядерного магнитного резонанса. Сущность изобретения заключается в том, что подвергают образец действию магнитного поля постоянного тока, образец под действием магнитного поля постоянного тока подвергают действию последовательности импульсов возбуждения на радиочастоте с интервалом между импульсами для возбуждения ядер водорода, и измеряют ЯМР-сигнал возбужденных ядер водорода, при этом оценивают время спин-решеточной релаксации для каждого образца на основе отклика на последовательность импульсов возбуждения, и регулируют интервал между импульсами как минимальный при поддержании интервала между импульсами, превышающим оцененное время спин-решеточной релаксации.

Изобретение относится к анализам количественного определения содержания изотопа дейтерия в жидкостях различной природы с использованием методов ядерного магнитного резонанса.
Наверх