Способ идентификации соевого лецитина

Использование: для идентификации соевого лецитина. Сущность изобретения заключается в том, что отбирают пробу лецитина массой (10±0,02) г, подготовку пробы проводят путем ее термостатирования при температуре 60°C в течение 1 ч, после чего пробу лецитина помещают в датчик импульсного ЯМР-анализатора и измеряют время спин-спиновой релаксации первой компоненты лецитина (T21) в миллисекундах, при этом лецитин относят к соевому, если время спин-спиновой релаксации первой компоненты лецитина (T21) находится в диапазоне от 169 до 188 мс. Технический результат: сокращение времени осуществления способа и исключение применения органических растворителей и токсичных химических реактивов. 1 табл.

 

Изобретение относится к масложировой промышленности и может быть использовано для идентификации соевого лецитина.

Известен способ идентификации растительного лецитина на основе метода газожидкостной хроматографии масла, выделенного из лецитина (ГОСТ 30418-96), включающий отбор пробы масла, выделенного из лецитина, получение метиловых эфиров жирных кислот, их разделение методом газожидкостной хроматографии в хроматографической колонке с получением пиков на хроматограмме и расчет содержания жирных кислот по отношению площади пика метилового эфира каждой жирной кислоты к суммарной площади пиков метиловых эфиров всех жирных кислот.

Недостатками известного способа является длительная и сложная подготовка пробы для анализа, а также длительное время осуществления анализа, применение больших объемов органических растворителей и токсичных химических реактивов.

Задачей изобретения является создание высокоэффективного и экологически безопасного способа идентификации соевого лецитина, позволяющего значительно сократить время осуществления идентификации, исключить сложную подготовку пробы и исключить применение органических растворителей и токсичных химических реактивов.

Задача решается тем, что в способе идентификации соевого лецитина, включающем отбор пробы и ее подготовку, отбирают пробу лецитина массой (10±0,02) г, подготовку пробы проводят путем ее термостатирования при температуре 60°C в течение 1 ч , после чего пробу лецитина помещают в датчик импульсного ЯМР-анализатора и измеряют время спин-спиновой релаксации первой компоненты лецитина (T21) в мс, при этом лецитин относят к соевому, если время спин-спиновой релаксации первой компоненты лецитина (T21) находится в диапазоне от 169 до 188 мс.

Техническим результатом является значительное сокращение времени осуществления способа и исключение применения органических растворителей и токсичных химических реактивов.

Специальными экспериментами установлено, что время спин-спиновой релаксации протонов первой компоненты сложной четырехкомпонентной системы, которую представляет соевый лецитин, может служить аналитическим параметром его идентификации.

Заявляемый способ поясняется следующим примером.

Пример. Отбирают три пробы лецитина массой (10±0,02)г, темперируют пробы при температуре 60°С в течение 1 ч. Каждую пробу помещают в датчик импульсного ЯМР-анализатора, измеряют время спин-спиновой релаксации (T21) первой компоненты лецитина в мс: для первой пробы - 160 мс; для второй пробы - 186 мс; для третьей пробы -175 мс.

Учитывая, что если значения T21 для второй и третьей пробы лецитинов находятся в диапазоне от 169 до 188 мс, то указанные пробы лецитинов являются соевыми, а первая проба не является соевым лецитином.

В таблице приведены сравнительные характеристики известного и заявляемого способов идентификации соевого лецитина.

Из данных таблицы видно, что время реализации заявляемого способа идентификации соевого лецитина по сравнению с известным сокращается на 10 ч, а также исключается применение органических растворителей, вспомогательных материалов и химических реактивов, в том числе токсичных - метанола.

Таким образом, заявляемый способ идентификации соевого лецитина является более эффективным, а также экологически безопасным по сравнению с известным способом.

Способ идентификации соевого лецитина, включающий отбор пробы и ее подготовку, отличающийся тем, что отбирают пробу лецитина массой (10±0,02) г, подготовку пробы проводят путем ее термостатирования при температуре 60°C в течение 1 ч, после чего пробу лецитина помещают в датчик импульсного ЯМР-анализатора и измеряют время спин-спиновой релаксации первой компоненты лецитина (T21) в миллисекундах, при этом лецитин относят к соевому, если время спин-спиновой релаксации первой компоненты лецитина (T21) находится в диапазоне от 169 до 188 мс.



 

Похожие патенты:

Использование: для измерения содержания воды в твердых веществах и суспензиях посредством ядерного магнитного резонанса. Сущность изобретения заключается в том, что устройство содержит средство для создания постоянного магнитного поля, емкость для вмещения образца в пределах упомянутого постоянного магнитного поля, средство для возбуждения измеряемой радиочастотной намагниченности в образце, помещенном в упомянутую емкость для вмещения образца, при рабочей частоте, определяемой упомянутым постоянным магнитным полем, средство для измерения радиочастотного сигнала, производимого возбужденным образцом, и средство для определения содержания воды в образце на основании радиочастотного сигнала.

Использование: для измерения содержания воды на основе ядерного магнитного резонанса. Сущность изобретения заключается в том, что подвергают образец действию магнитного поля постоянного тока, образец под действием магнитного поля постоянного тока подвергают действию последовательности импульсов возбуждения на радиочастоте с интервалом между импульсами для возбуждения ядер водорода, и измеряют ЯМР-сигнал возбужденных ядер водорода, при этом оценивают время спин-решеточной релаксации для каждого образца на основе отклика на последовательность импульсов возбуждения, и регулируют интервал между импульсами как минимальный при поддержании интервала между импульсами, превышающим оцененное время спин-решеточной релаксации.

Изобретение относится к анализам количественного определения содержания изотопа дейтерия в жидкостях различной природы с использованием методов ядерного магнитного резонанса.

Использование: для осуществления динамической контрастной улучшенной магнитно-резонансной визуализации объекта. Сущность изобретения заключается в том, что способ содержит получение наборов данных магнитного резонанса в k-пространстве с использованием сбора Диксона в пространстве кодирования химического сдвига и динамического временного разрешения в динамическом временном пространстве, причем сбор набора данных осуществляют с использованием субдискретизации, причем способ дополнительно содержит применение способа реконструкции сжатого измерения в k-пространстве, пространстве кодирования химического сдвига и динамическом временном пространстве, указанная реконструкция сжатого измерения дает в результате реконструированные наборы данных, осуществление реконструкции Диксона в отношении реконструированных наборов данных и анализ динамического контраста в отношении реконструированных наборов данных Диксона.

Использование: для обработки импульсных сигналов на основе ядерного спинового эха. Сущность изобретения заключается в том, что возбуждают ядерное спиновое эхо в магнитоупорядоченном рабочем веществе радиочастотными информационными и управляющими импульсами, при этом к рабочему веществу прикладывают импульсное магнитное поле, действующее на протяжении интервала времени, в течение которого на вещество поступают возбуждающие радиочастотные импульсы и возникают отклики рабочего вещества в виде полезных эхо-сигналов, при этом амплитуду импульсного магнитного поля задают из условия смещения доменных границ, при котором происходит подавление паразитных откликов.

Изобретение относится к медицине, травматологии и ортопедии и может быть использовано для диагностики контрактуры Дюпюитрена (КД) пальцев кисти. Методом МРТ со спектроскопией высокого разрешения в зоне интереса ладонного апоневроза кисти регистрируют время ядерной магнитной релаксации Т2 * на ядрах водорода изотропной составляющей сигнала СН2 группы липидов.

Использование: для визуализации химических соединений. Сущность изобретения заключается в том, что собирают первые и вторые данные эхо-сигналов с разными временами появления эхо-сигнала, приводящими к первому и второму собранным комплексным наборам данных, моделируют первый и второй собранные наборы данных с использованием спектральной модели сигнала, по меньшей мере, одного из химических соединений, причем упомянутое моделирование приводит к первому и второму смоделированным комплексным наборам данных, причем упомянутые первый и второй смоделированные наборы данных содержат первую и вторую фазовые погрешности и раздельные наборы данных сигналов для двух химических соединений, определяют по первому и второму собранным наборам данных и первому и второму смоделированным наборам данных разделенные наборы данных сигналов для двух химических соединений.

Использование: для определения газохроматографичеких индексов удерживания соединений ряда О-алкилметилфторфосфонатов (ОАМФФ) по данным ЯМР 13С. Сущность изобретения заключается в том, что выполняют построение корреляционных уравнений для известной выборки изомеров и последующее определение значения индексов удерживания неизвестных изомеров по установленной зависимости, при этом в качестве спектральной характеристики используется суммарное значение химических сдвигов ядер 13C атомов углерода, находящихся в разветвлении углеродного скелета О-алкильного радикала рассчитанных по спектрам ЯМР 13C.

Использование: для разделения изображений воды и жира в магнитно-резонансной томографии. Сущность изобретения заключается в том, что осуществляют получение двух комплексных изображений I1 и I2 с различными временами эха, в которых сигналы от воды и жира находятся соответственно в фазе и в противофазе, вычисление значений фазы 2φ комплексного вектора I 2 = ( I 2 I 1 * / | I 1 | ) 2 для каждого пиксела матриц изображений, построение матрицы "развернутой" фазы 2φ и в диапазоне главных значений -180°…180° определение знака комплексного вектора Ie-iφu в каждом пикселе матрицы, формирование изображения по воде как полусуммы абсолютного значения изображения в фазе и изображения в противофазе, умноженного на знак Ie-iφu, изображения жира как полуразности абсолютного значения изображения в фазе и изображения в противофазе, умноженного на знак Ie-iφu, при этом оценивают усредненные градиенты изменения фазы полученных изображений жира и воды по формулам: GF=(|I1|-|I2|)2/NF при Ie-iφu<0 GW=(|I1|-|I2|)2/NW при Ie-iφu<0, сравнивают значения GF и GW и, в случае, если GF<GW, пиксели изображений жира и воды обменивают местами.

Использование: для измерения состава и расхода многокомпонентных жидкостей методом ядерного магнитного резонанса. Сущность изобретения заключается в том, что устройство для измерения состава и расхода многокомпонентных жидкостей с использованием метода ядерного магнитного резонанса (ЯМР) включает релаксометр ЯМР с датчиком, имеющим трубку, для облучения потока жидкости и получения сигналов спин-эхо ЯМР, по которым определяются параметры жидкости, систему пробоотбора, содержащую измерительную трубу, соединенную трубкой пробоотбора с релаксометром ЯМР, при этом измерительная труба имеет конический расширитель, а в трубке пробоотбора установлен патрубок, имеющий возможность перемещения по сечению конического расширителя, при этом конический расширитель расположен вертикально, в измерительной трубе, перед входом потока жидкости в конический расширитель, установлена защитная сетка, в коническом расширителе установлены тензометрические датчики давления, а в полости нижней части конического расширителя по периметру размещены зубчатые кольца, на трубке пробоотбора размещены электромагнитные катушки управления перемещением патрубка, при этом контроль перемещения патрубка по сечению конического расширителя осуществляется введенным контроллером, соединенным с электромагнитными катушками.

Использование: для идентификации подсолнечного лецитина. Сущность изобретения заключается в том, что отбирают пробу лецитина массой (10±0,02) г, подготовку пробы проводят путем ее термостатирования при температуре 60°C в течение 1 часа, после чего пробу лецитина помещают в датчик импульсного ЯМР-анализатора и измеряют время спин-спиновой релаксации первой компоненты лецитина (T21) в миллисекундах, при этом лецитин относят к подсолнечному, если время спин-спиновой релаксации первой компоненты лецитина (T21) находится в диапазоне от 189 до 205 миллисекунд. Технический результат: сокращение времени осуществления способа и исключение применения органических растворителей и токсичных химических реактивов. 1 табл.

Изобретение относится к способам анализа качества рапсовых лецитинов и может быть использовано в масложировой промышленности. Способ определения содержания ацетоннерастворимых веществ (фосфолипидов) в рапсовом лецитине включает отбор пробы лецитина, подготовку пробы путем термостатирования, помещение пробы в датчик импульсного ЯМР-анализатора, измерение амплитуд сигналов ядерно-магнитной релаксации протонов третьей (А3) и четвертой (А4) компонент лецитинов в условных единицах и расчет содержания ацетоннерастворимых веществ (фосфолипидов) в лецитине. При этом измеряют амплитуды сигналов ядерно-магнитной релаксации протонов первой (A1) и второй (А2) компонент лецитинов в условных единицах, определяют сумму амплитуд (Асис) сигналов первой (A1), второй (А2), третьей (А3) и четвертой (А4) компонент в условных единицах. Затем рассчитывают долю амплитуд сигналов третьей (А3) и четвертой (А4) компонент в процентах как отношение значения А3 к значению Асис, умноженное на 100, и отношение значения А4 к значению Асис, умноженное на 100, а содержание ацетоннерастворимых веществ (фосфолипидов) в рапсовом лецитине (Фр) рассчитывают в процентах по формуле Фр=0,6992(А3+А4)+17,09. Техническим результатом является создание эффективного способа определения содержания ацетоннерастворимых веществ (фосфолипидов) в рапсовом лецитине, обеспечивающего высокую точность и воспроизводимость результатов определения.

Использование: для идентификации рапсового лецитина. Сущность изобретения заключается в том, что выполняют отбор пробы и ее подготовку, при этом отбирают пробу лецитина массой (10±0,02) г, подготовку пробы проводят путем ее термостатирования при температуре 60°C в течение 1 ч, после чего пробу лецитина помещают в датчик импульсного ЯМР-анализатора и измеряют время спин-спиновой релаксации первой компоненты лецитина (T21) в миллисекундах, при этом лецитин относят к рапсовому, если время спин-спиновой релаксации первой компоненты лецитина (T21) находится в диапазоне от 158 до 168 мс. Технический результат: сокращение времени осуществления идентификации, исключение сложной подготовки пробы и исключение применения органических растворителей и токсичных химических реактивов. 1 табл.

Изобретение относится к способам анализа качества подсолнечных лецитинов и может быть использовано в масложировой промышленности. Способ определения содержания ацетоннерастворимых веществ (фосфолипидов) в подсолнечном лецитине включает отбор пробы лецитина, подготовку пробы путем термостатирования, помещение пробы в датчик импульсного ЯМР-анализатора, измерение амплитуд сигналов ядерно-магнитной релаксации протонов третьей (А3) и четвертой (А4) компонент лецитинов в условных единицах и расчет содержания ацетоннерастворимых веществ (фосфолипидов) в лецитине. При этом измеряют амплитуды сигналов ядерно-магнитной релаксации протонов первой (A1) и второй (А2) компонент лецитинов в условных единицах. Затем определяют сумму амплитуд (Асис.) сигналов первой (A1), второй (А2), третьей (А3) и четвертой (А4) компонент в условных единицах. Затем рассчитывают долю амплитуд сигналов третьей (A3) и четвертой (А4) компонент в процентах как отношение значения А3 к значению Асис., умноженное на 100, и отношение значения А4 к значению Aсис., умноженное на 100, а содержание ацетоннерастворимых веществ (фосфолипидов) в подсолнечном лецитине (Фп.) рассчитывают в процентах по формуле: Фп.=0,8484(А3+А4)+7,35. Техническим результатом является повышение точности и воспроизводимости результатов определения содержания ацетоннерастворимых веществ (фосфолипидов) в подсолнечном лецитине. 2 пр.

Изобретение относится к способам анализа качества соевых лецитинов и может быть использовано в масложировой промышленности. Способ определения содержания ацетоннерастворимых веществ (фосфолипидов) в соевом лецитине включает отбор пробы лецитина, подготовку пробы путем термостатирования, помещение пробы в датчик импульсного ЯМР-анализатора, измерение амплитуд сигналов ядерно-магнитной релаксации протонов третьей (A3) и четвертой (А4) компонент лецитинов в условных единицах и расчет содержания ацетоннерастворимых веществ (фосфолипидов) в лецитине. При этом измеряют амплитуды сигналов ядерно-магнитной релаксации протонов первой (A1) и второй (А2) компонент лецитинов в условных единицах. Далее определяют сумму амплитуд (Асис.) сигналов первой (A1), второй (А2), третьей (A3) и четвертой (А4) компонент в условных единицах. Затем рассчитывают долю амплитуд сигналов третьей (A3) и четвертой (А4) компонент в процентах, как отношение значения А3 к значению Асис., умноженное на 100, и отношение значения А4 к значению Асис., умноженное на 100, а содержание ацетоннерастворимых веществ (фосфолипидов) в соевом лецитине (Фс.) рассчитывают в процентах по формуле: Фс.=0,8177(А3+А4)+2,52. Техническим результатом является повышение точности и воспроизводимость результатов определения содержания ацетоннерастворимых веществ (фосфолипидов) в соевом лецитине. 2 пр.
Использование: для мониторинга загрязнений морского нефтегазового промысла. Сущность изобретения заключается в том, что система обнаружения и мониторинга загрязнений морского нефтегазового промысла включает в себя сеть дистанционных детекторов загрязнений, программируемый контроллер с системами сбора, предварительной обработки и передачи данных, а также единую автоматизированную информационную систему (ИС) с функциями сбора, обработки и хранения данных, передаваемых на интерфейсы ИС дистанционными детекторами загрязнений, при этом система обнаружения и мониторинга загрязнений морского нефтегазового промысла дополнительно содержит биосенсор для непрерывного контроля тяжелых металлов в воде, датчик ядерно-магнитного резонанса, датчик электронного парамагнитного резонанса, реактор на тепловых нейтронах ИР-100 с откатным коробом в активной зоне (нейтронный поток 2×1012 н/(см2·с)) и стационарной установкой гамма-излучения с мощностью дозы до 1000 Р/ч, спектрометрическую установку с системой поддержания пластового давления (ППД), радиометрическую низкофоновую установку, генераторы СВЧ-излучений различных частот от 0,1-60 ТГц, образцовые голографические матрицы с записанными спектрами ЯМР атомов веществ (металлов и органических веществ) и идентифицируемых веществ, информационный блок морских карт и цветных космических фотоснимков районов поиска, электромагнитную камеру (Кирлиан-камеру) для визуализации затопленных объектов на аэрокосмических снимках и переноса их на морскую карту района поиска с помощью видеокамеры, совмещенных с ПЭВМ, приемно-фазовые антенны широкого обзора, приемник GPS map-60, программный комплекс ПЭВМ для определения координат затопленных объектов и отображения их на морской карте района, атомно-абсорбционный спектрофотометр, а также другие конструкционные элементы. Технический результат: обеспечение возможности создания надежной системы раннего обнаружения и мониторинга аварийного разлива нефти на объектах морского нефтегазового промысла.
Наверх