Способ получения нанокапсул витаминов группы в в каппа-каррагинане

Изобретение относится к способу получения нанокапсул витаминов группы B в каппа-каррагинане. Указанный способ характеризуется тем, что в качестве оболочки используется каппа-каррагинан, а в качестве ядра - витамины группы В, при массовом соотношении ядро:оболочка 1:3 или 1:1, при этом витамин добавляют в суспензию каппа-каррагинана в изопропиловом спирте в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее добавляют петролейный эфир, полученную суспензию отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает ускорение и упрощение процесса получения нанокапсул витаминов группы В, а также увеличение их выхода по массе. 5 ил., 11 пр.

 

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул витаминов группы В, отличающимся тем, что в качестве оболочки нанокапсул используется каппа-каррагинан, а в качестве ядра - витамины (тиамина, рибофлавина, пиридоксина, фолиевой кислоты и карнитина) при получении нанокапсул методом осаждения нерастворителем с применением петролейного эфира в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием петролейного эфира в качестве осадителя, а также использование каппа-каррагинана в качестве оболочки частиц и витамины группы В - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул витаминов группы В.

ПРИМЕР 1. Получение нанокапсул тиамина (В1), соотношение ядро:оболочка 1:3

100 мг тиамина добавляют в суспензию каппа-каррагинана в изопропиловом спирте, содержащую 300 мг указанного полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул тиамина (В1), соотношение ядро:оболочка 1:1

100 мг тиамина добавляют в суспензию 100 мг каппа-каррагинана в изопропиловом спирте, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул рибофлавина (В2), соотношение ядро:оболочка 1:3

100 мг рибофлавина добавляют в суспензию 300 мг каппа-каррагинана в изопропиловом спирте, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул рибофлавина (В2), соотношение ядро:оболочка 1:1

100 мг рибофлавина добавляют в суспензию 100 мг каппа-каррагинана в изопропиловом спирте, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 5. Получение нанокапсул пиридоксина (В6), соотношение ядро:оболочка 1:3

100 мг пиридоксина добавляют в суспензию 300 мг каппа-каррагинана в изопропиловом спирте, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 6. Получение нанокапсул пиридоксина (В6), соотношение ядро:оболочка 1:1

100 мг пиридоксина добавляют в суспензию 100 мг каппа-каррагинана в изопропиловом спирте, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 7. Получение нанокапсул фолиевой кислоты (В9), соотношение ядро:оболочка 1:3

100 мг фолиевой кислоты добавляют в суспензию 300 мг каппа-каррагинана в изопропиловом спирте, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 8. Получение нанокапсул фолиевой кислоты (В9), соотношение ядро:оболочка 1:1

100 мг фолиевой кислоты добавляют в суспензию 100 мг каппа-каррагинана в изопропиловом спирте, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 9. Получение нанокапсул карнитина (В11), соотношение ядро:оболочка 1:3

100 мг карнитина добавляют в суспензию 300 мг каппа-каррагинана в изопропиловом спирте, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 10. Получение нанокапсул карнитина (B11), соотношение ядро:оболочка 1:1

100 мг карнитина добавляют в суспензию 100 мг каппа-каррагинана, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 11. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Auto, длительность единичного измерения 215s, использование шприцевого насоса.

Способ получения нанокапсул витаминов группы B в каппа-каррагинане, характеризующийся тем, что в качестве оболочки используется каппа-каррагинан, а в качестве ядра - витамины группы В, при массовом соотношении ядро:оболочка 1:3 или 1:1, при этом витамин добавляют в суспензию каппа-каррагинана в изопропиловом спирте в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее добавляют петролейный эфир, полученную суспензию отфильтровывают и сушат при комнатной температуре.



 

Похожие патенты:

Изобретение относится к коллоидному раствору наносеребра в органическом растворителе - метилцеллозольве и способу его получения. Предложенный коллоидный раствор содержит метилцеллозольв и наночастицы серебра и имеет концентрацию наночастиц серебра от 0,29 до 0,30 мас.%, при следующем долевом распределении наночастиц серебра по размеру: 80% - наночастиц размером 50-75 нм, 20% - наночастиц размером от 80 нм до 100 нм.

Изобретение относится к материаловедению и может быть использовано при изготовлении наполнителей для порошковой металлургии, красок, пластмасс, металлокерамики, клеевых и композиционных материалов.

Изобретение может быть использовано в медицине, косметологии и пищевой промышленности. Для получения наночастиц серебра сначала готовят водный раствор стабилизатора.

Изобретение относится к сварочным и наплавочным материалам и может быть использовано для получения наплавленного металла и сварных швов на низко-, средне- и высоколегированных сталях и сплавах.

Изобретение относится к получению многослойной энерговыделяющей наноструктурированной фольги для соединения материалов. Способ включает приготовление исходной смеси металлических порошков планетарным перемешиванием, формование смеси порошков горячей прецизионной прокаткой через валки.

Изобретение относится к оптико-механической промышленности, а именно к технологии получения нелинейно-оптических материалов для оптических и оптико-электронных приборов и комплексов.

Изобретение предназначено для исследования и модификации поверхности измеряемых объектов с помощью источников излучения. Сканирующее устройство локального воздействия включает образец (1) с первой (2) и второй поверхностями (3), зонд (4) с острием (5), закрепленный в модуле зонда (7), сканер (8), первый модуль перемещения (9) и блок управления (10).

Изобретение относится к химической технологии получения нитевидных нанокристаллов нитрида алюминия (или нановискеров) и может быть использовано при создании элементов нано- и оптоэлектроники, а также люминесцентно-активных наноразмерных сенсоров медико-биологического профиля.

Изобретение относится к области измерительной техники и касается способа измерения температуры. Способ включает в себя предварительное построение экспериментальной градуировочной кривой зависимости от температуры величины магнитного поля в точке антипересечения уровней (АПУ) энергии спиновых центров с возбужденным квадруплетным спиновым состоянием S=3/2, содержащихся в кристалле карбида кремния.

Изобретение относится к области оптических измерений и касается оптического квантового термометра. Термометр включает в себя генератор низкой частоты (НЧ), конденсатор, катушку электромагнита, помещенный в катушку активный материал в виде кристалла карбида кремния, содержащий по меньшей мере один спиновый центр на основе вакансии кремния с возбужденным квадруплетным спиновым состоянием S=3/2, источник постоянного тока, синхронный детектор, блок управления, лазер и фотоприемник.

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности, в частности к способу получения нанокапсул витаминов группы В. Способ характеризуется тем, что в качестве оболочки используется геллановая камедь, при этом витамин группы В добавляют в суспензию геллановой камеди в бензоле в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее добавляют ацетонитрил, при массовом соотношении ядро:оболочка 1:3 или 1:1, полученную суспензию отфильтровывают и сушат при комнатной температуре.
Изобретение относится к области нанотехнологии, ветеринарии и пищевой промышленности. Способ получения нанокапсул унаби в конжаковой камеди, в котором порошок ягод унаби диспергируют в суспензию конжаковой камеди в этаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем приливают бутилхлорид, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1 или 1:3.

Изобретение относится к области нанотехнологии, медицины и фармацевтике. Способ получения нанокапсул розувостатина осуществляют следующим образом.

Изобретение относится к способу получения нанокапсул розувастатина, характеризующемуся тем, что розувастатин медленно добавляют в суспензию каррагинана в гексане, в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/мин, при массовом соотношении оболочка:ядро 3:1 или 1:5, затем приливают 5 мл 1,2-дихлорэтана, полученную суспензию отфильтровывают и сушат при комнатной температуре.
Изобретение относится к области нанотехнологии, сельского хозяйства и пищевой промышленности. Способ получения нанокапсул бетулина, при этом 100 мг порошка бетулина диспергируют в суспензию 300 мг конжаковой камеди в этаноле, в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/мин, далее приливают 3 мл бутилхлорид, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к медицине, в частности к онкологии и может быть использовано для терапии опухолей. Животному с опухолью внутривенно вводят раствор золотых наностержней, покрытых полиэтиленгликолем.

Изобретение относится к способу получения нанокапсул розмарина в альгинате натрия. Указанный способ характеризуется тем, что в качестве оболочки нанокапсул используют альгинат натрия, при этом порошок розмарина медленно добавляют в суспензию альгината натрия в петролейном эфире в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1000 об/мин, после приливают этилацетат, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:1 или 1:3.
Изобретение относится в области нанотехнологии, ветеринарной и пищевой промышленности. Способ получения нанокапсул сухого экстракта шиповника, при этом в качестве оболочки нанокапсул используется конжаковая камедь, сухой экстракт шиповника диспергируют в суспензию конжаковой камеди в бутаноле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем приливают 5 мл хлороформа, после чего выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом соотношение сухого экстракта шиповника к конжаковой камеди составляет 1:1, 1:3 или 5:1.

Изобретение относится к способу получения нанокапсул вакцины «КС» от чумы свиней в альгинате натрия. Указанный способ характеризуется тем, что 55 мг вакцины «КС» растворяют в 3 мл петролейного эфира и диспергируют в суспензию альгината натрия в петролейном эфире, содержащую 550 мг указанного полимера, в присутствии 60 мг препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают 5 мл этилацетата, выпавший осадок отфильтровывают и сушат при комнатной температуре.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения нанокапсул лекарственных растений, обладающих седативным действием, характеризующийся тем, что настойки валерьяны, пустырника или пиона уклоняющегося добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании при 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре, причем соотношение ядро:оболочка в случае получения нанокапсул настойки пустырника составляет 1:3, 1:1, 5:1 или 1:5, в случае получения нанокапсул настойки валерьяны 1:3, 1:1, 5:1, 1:5, в случае получения нанокапсул настойки пиона уклоняющегося 1:3, 1:5.

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности, в частности к способу получения нанокапсул витаминов группы В. Способ характеризуется тем, что в качестве оболочки используется геллановая камедь, при этом витамин группы В добавляют в суспензию геллановой камеди в бензоле в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее добавляют ацетонитрил, при массовом соотношении ядро:оболочка 1:3 или 1:1, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул витаминов группы B в каппа-каррагинане. Указанный способ характеризуется тем, что в качестве оболочки используется каппа-каррагинан, а в качестве ядра - витамины группы В, при массовом соотношении ядро:оболочка 1:3 или 1:1, при этом витамин добавляют в суспензию каппа-каррагинана в изопропиловом спирте в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 обмин, далее добавляют петролейный эфир, полученную суспензию отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает ускорение и упрощение процесса получения нанокапсул витаминов группы В, а также увеличение их выхода по массе. 5 ил., 11 пр.

Наверх