Система сепарации мультифазного потока

Группа изобретений относится к системам сепарации мультифазного потока и способам сепарации жидкостей и газов в мультифазной текучей среде. Технический результат заключается в обеспечении сепарации на больших глубинах. Система сепарации мультифазного потока включает впускную линию, выполненную с возможностью обеспечения прохода мультифазной текучей среды в систему сепарации мультифазного потока, распределительный коллектор, выполненный с возможностью разделения потока мультифазной текучей среды по нескольким трубам. Впускная линия содержит множество участков разветвления трубы, выполненных с возможностью снижения скорости потока мультифазной текучей среды и подачи мультифазной текучей среды в распределительный коллектор. Каждая из нескольких труб содержит зону расширения, формирующую часть каждой из нескольких труб, и расположена выше по потоку от соответствующей сливной вертикальной трубы. Несколько труб находятся в той же самой плоскости, как и распределительный коллектор. Зона расширения выполнена с возможностью снижения давления в нескольких трубах для обеспечения выпуска захваченных жидкостей из нескольких верхних труб через соответствующую сливную вертикальную трубу. Каждая зона расширения находится выше по потоку от верхней и нижней трубы гребенки и выполнена с возможностью снижения давления мультифазной текучей среды перед сепарированием мультифазной текучей среды на верхнюю трубу гребенки и нижнюю трубу гребенки. Каждая верхняя труба гребенки вводится в соответствующие верхние трубы, которые расположены над плоскостью распределительного коллектора. Каждая нижняя труба гребенки вводится в соответствующую нижнюю трубу, каждая верхняя труба соединена с соответствующей нижней трубой соответствующей сливной вертикальной трубой. Каждая верхняя труба выполнена с возможностью обеспечения выпуска захваченных жидкостей в соответствующую нижнюю трубу через сливную вертикальную трубу. 4 н. и 28 з.п. ф-лы, 8 ил.

 

ССЫЛКА НА СВЯЗАННЫЕ ЗАЯВКИ

[0001] Данная заявка испрашивает приоритет по временной заявке U.S. Provisional Patent Application 61/711132, выложенной 8 октября 2012 г., под названием MULTIPHASE SEPARATION SYSTEM и связана с временной заявкой U.S. Provisional Patent Application 61/676573, выложенной 27 июля 2012 г. под названием MULTIPHASE SEPARATION SYSTEM, полностью включенными в данный документ в виде ссылки.

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

[0002] Настоящие методики обеспечивают сепарацию газов и жидкостей в текучих средах добычи. Более конкретно, методики обеспечивают сепарацию текучих сред добычи на газы и жидкости с применением подводной системы сепарации мультифазного потока.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

[0003] Данный раздел представляет различные аспекты техники, которые можно связывать с примерами вариантов осуществления настоящих методик. Данное рассмотрение должно помочь пониманию конкретных аспектов настоящих методик. Соответственно, понятно, что данный раздел следует читать с учетом указанного выше, и не как полную информацию по известной технике.

[0004] Каждую из нескольких методик подводной сепарации можно использовать для увеличения объема добычи нефти и газа из подводных скважин. Вместе с тем подводная сепарация при глубинах водоема больше 1500 метров становится особенно проблематичной по условиям окружающей среды. С увеличением глубины воды наружное гидростатическое давление на емкости увеличивается, увеличивая требуемую толщину стенки емкостей, применяемых для подводной переработки. При водных глубинах больше 1500 метров толщина стенки емкости увеличивается настолько, что обычная гравитационная сепарация становится практически невозможной. В дополнение, большая толщина стенки может создавать неразрешимые проблемы при изготовлении, и дополнительный расход материалов и вес могут отрицательно влиять на экономичность проекта, а также затруднять подбор плавсредств для техобслуживания. В результате, сепараторы большого диаметра часто не могут применяться на таких глубинах.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0005] В являющемся примером варианте осуществления изобретения создана система сепарации мультифазного потока, включающая в себя впускную линию, выполненную с возможностью обеспечения прохода мультифазной текучей среды в систему сепарации мультифазного потока. Впускная линия включает в себя несколько участков разветвления трубы, выполненных с возможностью снижения скорости потока мультифазной текучей среды и подачи мультифазной текучей среды в распределительный коллектор. Распределительный коллектор выполнен с возможностью разделения потока мультифазной текучей среды для прохода по нескольким нижним трубам, при этом каждая нижняя труба включает в себя зону расширения. Система также включает в себя несколько верхних труб, ответвляющихся от нижних труб. Зоны расширения выполнены с возможностью снижения давления в нижних трубах для обеспечения выпуска захваченных жидкостей из верхних труб через соответствующую сливную вертикальную трубу.

[0006] В другом являющемся примером варианте осуществления изобретения создан способ сепарации жидкостей и газов в мультифазной текучей среде. Способ включает в себя подачу мультифазной текучей среды в несколько участков разветвления трубы в системе сепарации мультифазного потока, при этом участки разветвления трубы выполнены с возможностью снижения скорости потока мультифазной текучей среды. Способ также включает в себя сепарирование мультифазной текучей среды в нескольких нижних трубах и нескольких верхних трубах, при этом каждая нижняя труба включает в себя зону расширения, выполненную с возможностью снижения давления в нижней трубе для обеспечения выпуска захваченных жидкостей из соответствующей верхней трубы через сливную вертикальную трубу.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0007] Преимущества настоящих методик можно лучше понять из следующего подробного описания и прилагаемых чертежей, на которых показано следующее.

[0008] На Фиг. 1 показана блок-схема системы сепарирования текучих сред добычи на поток газа и поток жидкости с применением системы сепарации мультифазного потока.

[0009] На Фиг. 2 показана в изометрии система сепарации мультифазного потока.

[0010] На Фиг. 3 показан вид сбоку системы сепарации мультифазного потока Фиг. 2.

[0011] На Фиг. 4 показана блок-схема последовательности операций способа сепарирования газов и жидкостей в мультифазной текучей среде.

[0012] На Фиг. 5 показана в изометрии другая система сепарации мультифазного потока.

[0013] На Фиг. 6 показан вид сбоку системы сепарации мультифазного потока Фиг. 5.

[0014] На Фиг. 7 показана в изометрии другая система сепарации мультифазного потока.

[0015] На Фиг. 8 показан вид сбоку системы сепарации мультифазного потока Фиг. 7.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0016] В следующем разделе подробного описания приведены конкретные варианты осуществления настоящих методик. Данные варианты осуществления являются только примерами. Соответственно, методики не ограничиваются конкретными вариантами осуществления, описанными ниже, но включают в себя все альтернативы, модификации и эквиваленты в объеме прилагаемой формулы изобретения.

[0017] Как рассмотрено выше, традиционные сепараторы большого диаметра сталкиваются с техническими проблемами на глубинах больше приблизительно 1500 метров. При этом в вариантах осуществления, описанных в данном документе, создается необычная система сепарации, обеспечивающая приемлемое сепарирование на газ и жидкость с демпфированием возможных флуктуаций потока, причем система соответствует ограничениям по габаритам и весу, предъявляемым к глубоководным перерабатывающим установкам. Дополнительно, система сепарации может выполняться в соответствии с техническими требованиями к трубам, но не с техническими требованиями к емкостям, что может обеспечивать экономию затрат и веса. Во многих случаях для данного класса давления требуемая толщина стенки для трубы меньше требуемой толщины стенки для соответствующей емкости.

[0018] Согласно вариантам осуществления, описанным в данном документе, компактная подводная система сепарации мультифазного потока применяется для улучшения эксплуатации подводной скважины, в частности, в глубоководных и арктических условиях. В различных вариантах осуществления подводная система сепарации мультифазного потока представляет собой четырехфазный подводной сепаратор, который выполнен с возможностью сепарирования текучих сред добычи на газовую фазу, нефтяную фазу, водную фазу и твердую фазу. Другими словами, подводную сепарацию можно использовать для создания однофазных потоков. Данное может обеспечивать применение насосов подачи одной фазы, которые являются более эффективными и могут создавать более высокие перепады давления в сравнении с мультифазными насосами. Для перекачки однофазного потока, один насос для одной фазы может являться достаточным. В отличие от этого, для перекачки мультифазного потока, может потребоваться применение последовательности мультифазных насосов для получения аналогичного перепада давления, в особенности для вариантов применения с высоким подпором.

[0019] Сепарационный процесс, описанный в данном документе, можно использовать для достижения удаления основного объема текучих сред на водной основе из текучей среды добычи. Удаление текучих сред на водной основе называется удалением воды в данном документе, хотя понятно, что здесь вода имеет примеси, например соли или другие смешиваемые текучие среды. Такое удаление основного объема воды может минимизировать проблемы обеспечения бесперебойного режима подачи потока, обеспечивая подачу потоков по существу чистой нефти и/или газов на поверхность. Данные по существу технически чистые потоки должны образовывать меньше гидратов, например, гидратов метана, таким образом снижая риск закупоривания или сужений потока. Дополнительно, проблемы коррозии могут ослабляться или исключаться. Потоки побочных продуктов в виде песка и воды можно затем направлять с верхнего строения в выделенные для утилизации зоны, коллекторы на морское дно или т.п.

[0020] Результатом удаления основного объема воды может также являться уменьшение гидростатического давления, действующего на коллектор, при этом увеличивается вытеснение и добыча из пласта. Дополнительно, сепарационный процесс можно использовать для уменьшения инфраструктуры выкидной линии, уменьшения числа блоков обработки воды на верхнем строении, уменьшения потребляемой электроэнергии и снижения требований по перекачке, а также исключения узких мест существующих сооружений, сталкивающихся с проблемами снижения дебитов добычи вследствие увеличения обводненности продукции.

[0021] При использовании в данном документе термин "водяная пробка" относится к небольшому объему текучей среды, захваченной в текучие среды добычи и часто имеющему плотность выше плотности текучей среды добычи, например, участку жидкости, который переносится газовым потоком в трубопроводе. Водяные пробки могут влиять на характеристики потока текучих сред добычи. В дополнение, водяные пробки, выходящие из трубопровода, могут создавать недопустимую нагрузку для подводных, на верхнем строении или береговых установок переработки газа и жидкости на выпуске трубопровода. Таким образом, согласно вариантам осуществления, описанным в данном документе, одну или несколько подводных мультифазных ловушек для конденсата можно использовать для демпфирования или удаления водяных пробок из текучей среды добычи перед входом текучей среды добычи в отгрузочные трубопроводы.

[0022] На Фиг. 1 показана блок-схема системы 100 сепарирования добываемых текучих сред 102 на поток 104 газа и поток 106 жидкости с применением системы 108 сепарации мультифазного потока. Добываемые текучие среды 102 могут являться углеводородными текучими средами, которые представляют собой смесь природного газа, нефти, рассола и твердых примесей, например, песка. Добываемые текучие среды 102 можно получать из подводной скважины 110, как указано стрелкой 112. Добываемые текучие среды 102 можно получать из подводной скважины 110 с помощью подводной эксплуатационной системы любого типа (не показано), выполненной с возможностью добычи углеводородов на подводных месторождениях.

[0023] В варианте осуществления добываемые текучие среды 102 подаются в систему 108 сепарации мультифазного потока, как указано стрелкой 114. Система 108 сепарации мультифазного потока может являться емкостью любого подходящего типа, выполненной с возможностью сепарирования основного объема газа и жидкости из добываемой текучей среды 102. В дополнение, система 108 сепарации мультифазного потока может удалять водяные пробки из добываемой текучей среды 102. Систему 108 сепарации мультифазного потока можно реализовать в подводной среде.

[0024] В системе 108 сепарации мультифазного потока добываемые текучие среды 108 могут сепарироваться на поток 104 газа и поток 106 жидкости, как указано стрелками 116 и 118, соответственно. Поток 104 газа может включать в себя природный газ, а поток 106 жидкости может включать в себя воду, нефть и другие остаточные примеси, например, песок. Конструктивные решения системы 108 сепарации мультифазного потока, а также механизмы, с помощью которых система 108 сепарации мультифазного потока может воздействовать на качество сепарированного потока 104 газа и сепарированного потока 106 жидкости, описаны ниже и показаны на Фиг. 2-8.

[0025] В некоторых вариантах осуществления поток 104 газа подается на оборудование 120 переработки, как указано стрелкой 122. Оборудование 120 переработки может включать в себя, например, оборудование переработки газа любого подходящего типа, например, газовый компрессор, установку подготовки газа, устройство финишной очистки газа или т.п., а также газопровод. В дополнение, поток 106 жидкости может подаваться на оборудование 124 переработки, как указано стрелкой 126. Оборудование 124 переработки может включать в себя, например, оборудование предварительной обработки нефти и воды или оборудование коагуляции, например, систему нагрева, систему инжектирования химреагента, электростатический коагулятор или т.п., трубный сепаратор или циклон для отделения нефти от воды, или отгрузочный трубопровод жидкости.

[0026] Блок-схема Фиг. 1 не предполагает обязательного включения в состав системы 100 всех компонентов, показанных на Фиг. 1. Любое число подходящих дополнительных компонентов можно включать в состав системы 100 в зависимости от деталей конкретного исполнения. Например, система 108 сепарации мультифазного потока может выполняться с возможностью отделения жидкости от жидкости, при этом два по существу химически чистых потока нефти и воды подаются на оборудование 124 переработки. Дополнительно, мультифазные и однофазные пескоотделители можно устанавливать выше по потоку и/или ниже по потоку от системы 108 сепарации мультифазного потока.

[0027] На Фиг. 2 показана в изометрии система 200 сепарации мультифазного потока. Система 200 сепарации мультифазного потока может включать в себя впускную линию 202, выполненную с возможностью подачи мультифазной текучей среды в кольцеобразный распределительный коллектор 204. Мультифазная текучая среда может являться текучей средой любого типа, включающей в себя как жидкие, так и газообразные компоненты. Например, мультифазная текучая среда может являться текучей средой, добываемой из подводной скважины. Кольцеобразный распределительный коллектор 204 может соединяться с несколькими верхними линиями 206 и несколькими нижними линиями 208. Верхние линии 206 и нижние линии 208 могут являться перпендикулярными кольцеобразному распределительному коллектору 204.

[0028] Каждая верхняя линия 206 может подавать газы в мультифазной текучей среде в кольцеобразный газовый коллектор 210. Кольцеобразный газовый коллектор 210 может располагаться во второй плоскости над и по существу параллельно кольцеобразному распределительному коллектору 204. В дополнение, каждая нижняя линия 208 может подавать жидкости в мультифазной текучей среде в кольцеобразный коллектор 212 жидкости. Кольцеобразный коллектор 212 жидкости может располагаться ниже и по существу параллельно кольцеобразному распределительному коллектору 204.

[0029] Линия 214 выпуска газа может соединяться с кольцеобразным газовым коллектором 210 и может выполняться с возможностью подачи газов на выход из системы 200 сепарации мультифазного потока. Линия 216 выпуска жидкости может соединяться с кольцеобразным коллектором 212 жидкости и может выполняться с возможностью подачи жидкостей на выход из системы 200 сепарации мультифазного потока. Линия 214 выпуска газа и линия 216 выпуска жидкости могут соединяться сливной вертикальной трубой 218. Сливная вертикальная труба 218 может выполняться под прямым углом или непрямым углом.

[0030] Сливная вертикальная труба 218 обеспечивает проход захваченных в газы жидкостей из линии 214 выпуска газа в линию 216 выпуска жидкости. В дополнение, сливная вертикальная труба 218 обеспечивает проход захваченных в жидкости газов из линии 216 выпуска жидкости в линию 214 выпуска газа. Вместе с тем в некоторых вариантах осуществления сепарация газов и жидкостей может являться достаточной в верхних линиях 206 и нижних линиях 208 перпендикулярных кольцеобразному распределительному коллектору 204. В таком случае сливную вертикальную трубу 218 можно исключить из системы 200 сепарации мультифазного потока.

[0031] Схема Фиг. 2 не указывает, что подводная система 200 сепарации мультифазного потока должна включать в себя все компоненты, показанные на Фиг. 2. Любое нужное число дополнительных компонентов, соответствующих конкретному исполнению, можно включать в состав подводной системы 200 сепарации мультифазного потока. Например, линия 216 выпуска жидкости может удлиняться, иметь или не иметь возможную герметичную сливную вертикальную трубу для увеличения времени нахождения в жидкой фазе и достижения сепарирования на нефть и воду. Указанное может обеспечивать улучшение работы или исключение ниже по потоку этапов и оборудования сепарирования на нефть и воду. В дополнение, линия 216 выпуска жидкости может включать в себя отдельные выпускные линии для нефти и воды, выходящей из системы 200 сепарации мультифазного потока.

[0032] На Фиг. 3 показан вид сбоку системы 200 сепарации мультифазного потока Фиг. 2. Как показано на Фиг. 3, кольцеобразный распределительный коллектор 204 может располагаться в одной плоскости с впускной линией 202. Таким образом, мультифазная текучая среда может проходить напрямую в кольцеобразный распределительный коллектор 204. Вследствие конфигурации кольцеобразного распределительного коллектора 204 поток мультифазной текучей среды может вначале распределяться по двум путям потока в кольцеобразном распределительном коллекторе 204, в результате получается уменьшение скорости потока мультифазной текучей среды при ее проходе через кольцеобразный распределительный коллектор 204. В некоторых вариантах осуществления такое уменьшение скорости потока мультифазной текучей среды рассеивает любые водяные пробки в мультифазной текучей среде. В дополнение, кольцеобразный распределительный коллектор 204 может действовать, как секция стратификации, выполненная с возможностью начальной сепарации основного объема газов и жидкостей в мультифазной текучей среде.

[0033] Верхние линии 206 могут являться перпендикулярными кольцеобразному распределительному коллектору 204 и могут соединять кольцеобразный распределительный коллектор 204 с кольцеобразным газовым коллектором 210. Нижние линии 208 могут являться перпендикулярными кольцеобразному распределительному коллектору 204 и могут соединять кольцеобразный распределительный коллектор 204 с кольцеобразным коллектором 212 жидкости. Кольцеобразный газовый коллектор 210 и кольцеобразный коллектор 212 жидкости могут проходить параллельно кольцеобразному распределительному коллектору 204.

[0034] В некоторых вариантах осуществления кольцеобразный газовый коллектор 210 действует как каплеотделитель, выполненный с возможностью удаления захваченных жидкостей из газов в кольцеобразном газовом коллекторе 210. В дополнение, в некоторых вариантах осуществления кольцеобразный коллектор 212 жидкости действует как дегазатор жидкости, выполненный с возможностью удаления захваченных газов из жидкостей в кольцеобразном коллекторе 212 жидкости.

[0035] На Фиг. 4 показана блок-схема последовательности операций способа 400 сепарирования газов и жидкостей в мультифазной текучей среде. В некоторых вариантах осуществления система 500 сепарации мультифазного потока, рассмотренная ниже и показанная на Фиг. 5 и 6 применяется для исполнения способа 400. В других вариантах осуществления система 700 сепарации мультифазного потока, рассмотренная ниже и показанная на Фиг. 7 и 8 применяется для исполнения способа 400.

[0036] Способ начинается в блоке 402, в котором мультифазная текучая среда подается в несколько участков разветвления трубы, выполненных с возможностью снижения скорости потока мультифазной текучей среды. От участков разветвления трубы мультифазная текучая среда может подаваться в распределительный коллектор.

[0037] В блоке 404 мультифазная текучая среда сепарируется в нескольких нижних трубах и нескольких верхних трубах. Каждая нижняя труба включает в себя зону расширения, выполненную с возможностью снижения давления в нижней трубе для обеспечения выпуска захваченных жидкостей из соответствующей верхней трубы через сливную вертикальную трубу.

[0038] Жидкости, проходящие через нижние трубы, могут собираться в коллекторе жидкости. Жидкости могут затем подаваться на выход из системы сепарации мультифазного потока через линию выпуска жидкости. Газы, проходящие через верхние трубы, могут собираться в газовый коллектор. Газы могут затем подаваться на выход из системы сепарации мультифазного потока через линию выпуска газа.

[0039] Блок-схема последовательности операций способа Фиг. 4 не указывает, что этапы способа 400 должны выполняться в конкретном порядке или что все этапы способа 400 включаются в его состав в каждом случае. Дополнительно, любое нужное число дополнительных этапов, не показанных на Фиг. 4, может включаться в состав способа 400, что зависит от деталей конкретного исполнения. Например, газы могут подаваться из системы сепарации мультифазного потока в расположенное ниже по потоку оборудование переработки жидкости или линию отгрузки газа, и жидкости могут подаваться из системы сепарации мультифазного потока в расположенное ниже по потоку оборудование переработки газа или линию отгрузки жидкости.

[0040] В различных вариантах осуществления мультифазная текучая среда подается в распределительный коллектор, выполненный с возможностью распределения мультифазной текучей среды по нескольким трубам в одной плоскости с распределительным коллектором. Мультифазная текучая среда может сепарироваться на газы и жидкости в зоне расширения каждой трубы. Газы в каждой трубе могут подаваться в соответствующую верхнюю трубу во второй плоскости, расположенной над плоскостью распределительного коллектора, и жидкости в каждой трубе могут подаваться в соответствующую нижнюю трубу в плоскости распределительного коллектора. Захваченные жидкости в каждой верхней трубе могут затем выпускаться в соответствующую нижнюю трубу через сливную вертикальную трубу. В дополнение, захваченные газы в каждой нижней трубе могут подаваться в соответствующую верхнюю трубу через сливную вертикальную трубу.

[0041] В других вариантах осуществления мультифазная текучая среда сепарируется на газы и жидкости в распределительном коллекторе. Газы могут подаваться в несколько верхних труб в первой плоскости, расположенной над распределительным коллектором, и жидкости могут подаваться в несколько нижних труб во второй плоскости, расположенной под распределительным коллектором. Газы могут подаваться на выход из системы сепарации мультифазного потока через линию выпуска газа, и жидкости могут подаваться на выход из системы сепарации мультифазного потока через линию выпуска жидкости. В дополнение, захваченные жидкости в верхних трубах могут выпускаться в соответствующие нижние трубы через сливные вертикальные трубы.

[0042] На Фиг. 5 показана в изометрии другая система 500 сепарации мультифазного потока. Система 500 сепарации мультифазного потока может включать в себя впускную линию 502, выполненную с возможностью обеспечения прохода мультифазной текучей среды в систему 500 сепарации мультифазного потока. Впускная линия 502 может включать в себя несколько участков 504 разветвления трубы, выполненных с возможностью снижения скорости потока мультифазной текучей среды и подачи мультифазной текучей среды в распределительный коллектор 506.

[0043] Распределительный коллектор 506 может выполняться с возможностью распределения мультифазной текучей среды по нескольким верхним трубам 508 гребенки и нескольким нижним трубам 510 гребенки. Каждая верхняя труба 508 гребенки направлена наклонно вверх для подачи в соответствующую верхнюю трубу 512 в первой плоскости, расположенной над и по существу параллельно распределительному коллектору 506. Каждая нижняя труба 510 гребенки направлена наклонно вниз для подачи в соответствующую нижнюю трубу 514 во второй плоскости, расположенной ниже и по существу параллельно распределительному коллектору 506. В дополнение, каждая верхняя труба 512 может соединяться с соответствующей нижней трубой 514 через сливную вертикальную трубу 516. Сливная вертикальная труба 516 может выполняться перпендикулярной верхним трубам 512 и нижним трубам 514, или проходящей к ним под непрямым углом.

[0044] Каждая нижняя труба 514 может включать в себя зону 518 расширения, выполненную с возможностью снижения скорости и давления жидкостей в нижней трубе 514. Данное может обеспечивать подъем захваченных газов в жидкостях в соответствующую верхнюю трубу 512 через сливную вертикальную трубу 516.

[0045] Каждая верхняя труба 512 может вводиться в общий газовый коллектор 520. Газовый коллектор 520 может выполняться с возможностью снижения скорости потока газов в верхней трубе 512 для обеспечения слияния капель захваченных в газы жидкостей и их падения в соответствующую нижнюю трубу 514 через сливную вертикальную трубу 516.

[0046] Система 500 сепарации мультифазного потока может также включать в себя коллектор 522 жидкости для сбора жидкостей и подачи жидкостей на выход из системы 500 сепарации мультифазного потока через линию 524 выпуска жидкости. В дополнение, газовый коллектор 520 может включать в себя линии 526 выпуска газа на выход из системы 500 сепарации мультифазного потока.

[0047] Схема Фиг. 5 не служит указанием, что подводная система 500 сепарации мультифазного потока должна включать в себя все компоненты, показанные на Фиг. 5. Любое число нужных дополнительных компонентов может включаться в подводную систему 500 сепарации мультифазного потока в зависимости от конкретного исполнения. Например, нижняя труба 514 может удлиняться с или без возможной герметичной сливной вертикальной трубы для увеличения времени нахождения в жидкой фазе и достижения сепарирования на нефть и воду. Данное может обеспечивать улучшение работы или исключение ниже по потоку этапов и оборудования сепарирования на нефть и воду. Отдельные выпуски нефти и воды можно включать в состав коллектора 522 жидкости для подачи нефти и воды на выход из системы 500 сепарации мультифазного потока.

[0048] На Фиг. 6 показан вид сбоку системы 500 сепарации мультифазного потока Фиг. 5. Как показано на Фиг. 6, участки 504 разветвления трубы могут располагаться в одной плоскости с впускной линией 502. Таким образом, мультифазная текучая среда может подаваться напрямую в участки 504 разветвления трубы из впускной линии 502. Вместе с тем поскольку мультифазная текучая среда разводится по участкам 504 разветвления трубы, скорость мультифазной текучей среды уменьшается. В некоторых вариантах осуществления уменьшение скорости потока мультифазной текучей среды рассеивает любые водяные пробки в мультифазной текучей среде.

[0049] Распределительный коллектор 506 может также располагаться в одной плоскости с впускной линией 502. Таким образом, мультифазная текучая среда может подаваться напрямую в распределительный коллектор 506 из участков 504 разветвления трубы. В распределительном коллекторе 506 мультифазная текучая среда может распределяться между верхней трубой 508 гребенки и нижней трубой 510 гребенки. Данное может дополнительно уменьшать скорость мультифазной текучей среды.

[0050] В некоторых вариантах осуществления распределительный коллектор 506 является секцией стратификации, выполненной с возможностью начальной сепарации основного объема газов и жидкостей в мультифазной текучей среде. Таким образом, газы могут подаваться в верхние трубы 508 гребенки, и жидкости могут подаваться в нижние трубы 510 гребенки. Газы могут подаваться из верхних труб 508 гребенки в соответствующие верхние трубы 512, и жидкости могут подаваться из нижних труб 510 гребенки в соответствующие нижние трубы 514. В некоторых вариантах осуществления верхние трубы 512 параллельны нижним трубам 514.

[0051] На Фиг. 7 показана в изометрии другая система 700 сепарации мультифазного потока. Система 700 сепарации мультифазного потока может включать в себя впускную линию 702, выполненную с возможностью обеспечения прохода мультифазной текучей среды в систему 700 сепарации мультифазного потока. Впускная линия 702 может включать в себя несколько участков 704 разветвления трубы, выполненных с возможностью снижения скорости потока мультифазной текучей среды и подачи мультифазной текучей среды в распределительный коллектор 706.

[0052] Распределительный коллектор 706 выполнен с возможностью разделения мультифазной текучей среды в несколько труб 708, расположенных в одной плоскости с распределительным коллектором. Каждая труба 708 может включать в себя зону 710 расширения, выполненную с возможностью снижения скорости и давления мультифазной текучей среды. Мультифазная текучая среда разводится между каждой верхней трубой 712 гребенки и соответствующей нижней трубой 714.

[0053] Каждая верхняя труба 712 гребенки может вводиться в соответствующую верхнюю трубу 716 во второй плоскости, расположенной над и по существу параллельно плоскости распределительного коллектора 706. Каждая нижняя труба 714 может располагаться в одной плоскости с распределительным коллектором 706. В дополнение, каждая верхняя труба 716 может соединяться с соответствующей нижней трубой 714 через сливную вертикальную трубу 720. Сливная вертикальная труба 720 может выполняться под прямым углом (как показано) или под непрямым углом.

[0054] Каждая нижняя труба 714 может выполняться с возможностью обеспечения подъема захваченных газов в жидкостях в соответствующую верхнюю трубу 716 через сливную вертикальную трубу 720. Каждая верхняя труба 716 может вводиться в общий газовый коллектор 722. Газовый коллектор 722 может выполняться с возможностью снижения скорости газов для обеспечения слияния захваченных капель жидкости и их падения в любую из нижних труб 714 через любую из сливных вертикальных труб 720.

[0055] Система 700 сепарации мультифазного потока может включать в себя коллектор 724 жидкости для сбора жидкостей из нижних труб 714 и подачи жидкостей на выход из системы 700 сепарации мультифазного потока через линию 726 выпуска жидкости. В дополнение, газовый коллектор 722 может включать в себя линию 728 выпуска газа для подачи газов на выход из системы 700 сепарации мультифазного потока.

[0056] Схема Фиг. 7 не служит указанием, что подводная система 700 сепарации мультифазного потока должна включать в себя все компоненты, показанные на Фиг. 7. Любое число нужных дополнительных компонентов может включаться в подводную систему 700 сепарации мультифазного потока в зависимости от конкретного исполнения. Например, нижняя труба 714 может удлиняться с или без возможной герметичной сливной вертикальной трубы для увеличения времени нахождения в жидкой фазе и достижения сепарирования на нефть и воду. Данное может обеспечивать улучшение или исключение ниже по потоку этапов и оборудования сепарирования на нефть и воду. Отдельные выпуски нефти и воды можно включать в состав коллектора 724 жидкости для подачи нефти и воды на выход из системы 700 сепарации мультифазного потока.

[0057] На Фиг. 8 показан вид сбоку системы 700 сепарации мультифазного потока Фиг. 7. Как показано на Фиг. 8, участки 704 разветвления трубы могут располагаться в одной плоскости с впускной линией 702. Таким образом, мультифазная текучая среда может подаваться напрямую в участки 704 разветвления трубы из впускной линии 702. Вместе с тем поскольку мультифазная текучая среда разводится по участкам 704 разветвления трубы, скорость мультифазной текучей среды уменьшается. В некоторых вариантах осуществления такое уменьшение скорости потока мультифазной текучей среды рассеивает любые водяные пробки в мультифазной текучей среде.

[0058] Распределительный коллектор 706 может также располагаться в одной плоскости с впускной линией 702. Таким образом, мультифазная текучая среда может подаваться напрямую в распределительный коллектор 706 из участков 704 разветвления трубы. В распределительном коллекторе 706 мультифазная текучая среда может разделяться между трубами 708. В трубах 708 мультифазная текучая среда может подаваться через зону 710 расширения, в результате давление и скорость мультифазной текучей среды снижаются.

[0059] Мультифазная текучая среда может затем разделяться между каждой из верхних труб 712 гребенки и соответствующей нижней трубой 714. Данное может дополнительно уменьшать скорость потока мультифазной текучей среды. В некоторых вариантах осуществления распределительный коллектор 706 действует, как секция стратификации, выполненная с возможностью начальной сепарации основного объема газов и жидкостей в мультифазной текучей среде. Таким образом, газы могут подаваться в верхние трубы 712 гребенки, и жидкости могут оставаться в нижних трубах 714. В дополнение, газы могут подаваться из верхних труб 712 гребенки в соответствующие верхние трубы 716. В некоторых вариантах осуществления верхние трубы 716 параллельны нижним трубам 714.

[0060] Поскольку настоящие методики могут претерпевать различные модификации и принимать альтернативные формы, варианты осуществления, рассмотренные выше, показаны только в качестве примера. Вместе с тем понятно, что методики не ограничиваются конкретными вариантами осуществления, раскрытыми в данном документе. Настоящие методики включают в себя все альтернативы, модификации и эквиваленты, соответствующие сущности и входящие в объем прилагаемой формулы изобретения.

1. Система сепарации мультифазного потока, включающая в себя:

впускную линию, выполненную с возможностью обеспечения прохода мультифазной текучей среды в систему сепарации мультифазного потока, причем впускная линия содержит множество участков разветвления трубы, выполненных с возможностью снижения скорости потока мультифазной текучей среды и подачи мультифазной текучей среды в распределительный коллектор;

распределительный коллектор, выполненный с возможностью разделения потока мультифазной текучей среды по нескольким трубам, при этом каждая из нескольких труб содержит зону расширения, формирующую часть каждой из нескольких труб, и расположена выше по потоку от соответствующей сливной вертикальной трубы, и при этом несколько труб находятся в той же самой плоскости, как и распределительный коллектор, причем зона расширения выполнена с возможностью снижения давления в нескольких трубах для обеспечения выпуска захваченных жидкостей из нескольких верхних труб через соответствующую сливную вертикальную трубу,

причем каждая зона расширения находится выше по потоку от верхней и нижней трубы гребенки и выполнена с возможностью снижения давления мультифазной текучей среды перед сепарированием мультифазной текучей среды на верхнюю трубу гребенки и нижнюю трубу гребенки;

каждая верхняя труба гребенки вводится в соответствующие верхние трубы, которые расположены над плоскостью распределительного коллектора;

каждая нижняя труба гребенки вводится в соответствующую нижнюю трубу;

каждая верхняя труба соединена с соответствующей нижней трубой соответствующей сливной вертикальной трубой; и

каждая верхняя труба выполнена с возможностью обеспечения выпуска захваченных жидкостей в соответствующую нижнюю трубу через сливную вертикальную трубу.

2. Система сепарации по п.1, включающая в себя коллектор жидкости для сбора жидкостей из нескольких нижних труб и подачи жидкостей на выход из системы сепарации мультифазного потока через линию выпуска жидкости.

3. Система сепарации по п.1, в которой каждая из нескольких верхних труб вводится в общий газовый коллектор, и при этом общий газовый коллектор включает в себя линию выпуска газа для подачи газов из нескольких верхних труб на выход из системы сепарации мультифазного потока.

4. Система сепарации по п.1, в которой захваченные газы в любой из нескольких нижних труб поднимаются в каждую из нескольких верхних труб через соответствующую сливную вертикальную трубу.

5. Система сепарации по п.1, содержащая секцию стратификации выше по потоку от каждой зоны расширения, которая выполнена с возможностью сепарирования газов из жидкостей в мультифазной текучей среде.

6. Система сепарации по п.1, которая реализуется в подводной окружающей среде.

7. Система сепарации по п.1, содержащая ловушку для конденсата.

8. Система сепарации по п.1, в которой пескоотделитель установлен выше по потоку от впускной линии.

9. Система сепарации по п.1, в которой пескоотделитель установлен ниже по потоку от выпускной линии жидкости.

10. Система сепарации по п.1, включающая в себя:

секцию сепарирования на нефть и воду, соединенную с каждой из нескольких нижних труб и выполненную с возможностью сепарирования жидкости на нефть и воду;

линию выпуска нефти, выполненную с возможностью подачи нефти на выход из системы сепарации мультифазного потока; и

линию выпуска воды, выполненную с возможностью подачи воды на выход из системы сепарации мультифазного потока.

11. Система сепарации по п.10, в которой секция сепарирования на нефть и воду соединена с каждой из нескольких нижних труб через герметичную сливную вертикальную трубу.

12. Система сепарации по п.1, в которой каждая верхняя труба гребенки поднимается под острым углом относительно распределительного коллектора, и при этом каждая нижняя труба гребенки расположена в плоскости распределительного коллектора.

13. Система сепарации по п.1, в которой каждая верхняя труба гребенки включает в себя каплеотделитель, выполненный с возможностью удаления захваченных жидкостей из газов.

14. Система сепарации по п.1, в которой каждая нижняя труба гребенки содержит дегазатор жидкости, выполненный с возможностью удаления захваченных газов из жидкостей.

15. Система сепарации по п.1, в которой мультифазная текучая среда содержит водяную пробку, содержащую жидкости, захваченные с газами.

16. Система сепарации мультифазного потока, включающая в себя:

впускную линию, выполненную с возможностью обеспечения прохода мультифазной текучей среды в систему сепарации мультифазного потока, причем впускная линия содержит множество участков разветвления трубы, выполненных с возможностью снижения скорости потока мультифазной текучей среды и подачи мультифазной текучей среды в распределительный коллектор;

распределительный коллектор, выполненный с возможностью разделения потока мультифазной текучей среды по нескольким верхним трубам гребенки и нескольким нижним трубам, при этом каждая из нескольких нижних труб содержит зону расширения, формирующую часть каждой из нескольких нижних труб, и расположена выше по потоку от соответствующей сливной вертикальной трубы, и при этом несколько нижних труб находятся в той же самой плоскости, как и распределительный коллектор, причем зона расширения выполнена с возможностью снижения давления в нескольких нижних трубах для обеспечения выпуска захваченных жидкостей из нескольких верхних труб через соответствующие верхние трубы через сливную вертикальную трубу, и при этом:

каждая верхняя труба гребенки вводится в соответствующую верхнюю трубу в первой плоскости, расположенной над распределительным коллектором;

каждая верхняя труба соединена с соответствующей нижней трубой соответствующей сливной вертикальной трубой.

17. Система сепарации по п.16, в которой каждая верхняя труба гребенки поднимается под острым углом относительно распределительного коллектора, и при этом каждая нижняя труба гребенки опускается под острым углом относительно распределительного коллектора.

18. Система сепарации по п.16, в которой каждая верхняя труба гребенки включает в себя каплеотделитель, выполненный с возможностью удаления захваченных жидкостей из газов.

19. Система сепарации по п.16, в которой каждая нижняя труба гребенки включает в себя дегазатор жидкости, выполненный с возможностью удаления захваченных газов из жидкостей.

20. Способ сепарации жидкостей и газов в мультифазной текучей среде, включающий в себя:

подачу мультифазной текучей среды в несколько участков разветвления трубы в системе сепарации мультифазного потока, при этом несколько участков разветвления трубы выполнены с возможностью снижения скорости потока мультифазной текучей среды; и

сепарирование мультифазной текучей среды в нескольких нижних трубах и нескольких верхних трубах, при этом несколько нижних труб находятся в той же самой плоскости как и распределительный коллектор, и несколько верхних труб расположены во второй плоскости, расположенной над плоскостью распределительного коллектора, и причем каждая из нескольких нижних труб включает в себя зону расширения, формирующую часть каждой из нескольких нижних труб, и расположена выше по потоку от сливной вертикальной трубы, причем зона расширения выполнена с возможностью снижения давления в нескольких нижних трубах для обеспечения выпуска захваченных жидкостей из соответствующей верхней трубы через сливную вертикальную трубу;

сепарирование мультифазной текучей среды на газы и жидкости в зоне расширения каждой из нескольких нижних труб;

подачу газов по каждой из нескольких нижних труб в соответствующую одну из нескольких верхних труб, и

подачу жидкостей по каждой из нескольких верхних труб в соответствующую нижнюю трубу, причем захваченные жидкости из каждой верхней трубы через соответствующие верхние трубы через сливную вертикальную трубу выпускают в соответствующую нижнюю трубу через соответствующую сливную вертикальную трубу.

21. Способ по п.20, включающий в себя:

подачу газов из системы сепарации мультифазного потока в расположенное ниже по потоку оборудование переработки газа или линию отгрузки газа; и

подачу жидкостей из системы сепарации мультифазного потока в установленное ниже по потоку оборудование переработки жидкости или линию отгрузки жидкости.

22. Способ по п.20, включающий в себя:

сепарирование жидкостей на нефть и воду;

подачу нефти на выход из системы сепарации мультифазного потока через линию выпуска нефти; и

подачу воды на выход из системы сепарации мультифазного потока через линию выпуска воды.

23. Способ по п.20, включающий в себя:

сбор жидкостей в коллектор жидкости; и

подачу жидкостей на выход из системы сепарации мультифазного потока через линию выпуска жидкости.

24. Способ по п.20, включающий в себя:

сбор газов в газовый коллектор; и

подачу газов на выход из системы сепарации мультифазного потока через линию выпуска газа.

25. Способ по п.20, включающий в себя подачу захваченных газов в каждой нижней трубе в соответствующую верхнюю трубу через сливную вертикальную трубу.

26. Способ по п.20, включающий в себя снижение скорости и давления потока мультифазной текучей среды разделением потока мультифазной текучей среды для прохода по нескольким трубам в одной плоскости с распределительным коллектором.

27. Способ сепарации жидкостей и газов в мультифазной текучей среде, включающий в себя:

подачу мультифазной текучей среды через распределительный коллектор в несколько участков разветвления трубы в системе сепарации мультифазного потока, при этом несколько участков разветвления трубы выполнены с возможностью снижения скорости потока мультифазной текучей среды;

сепарирование мультифазной текучей среды в нескольких нижних трубах и нескольких верхних трубах, при этом несколько нижних труб находятся в той же самой плоскости, как и распределительный коллектор, и несколько верхних труб расположены во второй плоскости, расположенной над плоскостью распределительного коллектора, и причем каждая из нескольких нижних труб включает в себя зону расширения, формирующую часть каждой из нескольких нижних труб, и расположена выше по потоку от сливной вертикальной трубы, причем зона расширения выполнена с возможностью снижения давления в нескольких нижних трубах для обеспечения выпуска захваченных жидкостей из соответствующей верхней трубы через сливную вертикальную трубу;

сепарирование мультифазной текучей среды на газы и жидкости в распределительном коллекторе;

подачу газов в несколько верхних труб в первой плоскости, расположенной над распределительным коллектором;

подачу жидкостей в несколько нижних труб во второй плоскости, расположенной под распределительным коллектором,

подачу газов на выход из системы сепарации мультифазного потока через линию выпуска газа; и

подачу жидкостей на выход из системы сепарации мультифазного потока через линию выпуска жидкости;

при этом захваченные жидкости в каждой из нескольких верхних труб выпускаются в соответствующую нижнюю трубу через сливную вертикальную трубу.

28. Способ по п.27, включающий в себя подачу газов в несколько верхних труб через несколько верхних труб гребенки.

29. Способ по п.27, включающий в себя снижение скорости и давления потока газов в распределительном коллекторе.

30. Способ по п.27, включающий в себя подачу жидкостей в несколько нижних труб через несколько нижних труб гребенки.

31. Способ по п.30, включающий в себя сепарирование захваченных газов из жидкостей в дегазаторе жидкости каждой из нескольких нижних труб гребенки.

32. Способ по п.27, включающий в себя снижение скорости и давления потока жидкостей в распределительном коллекторе.



 

Похожие патенты:

Группа изобретений относится к системам и способам увеличения давления жидкостей в сепараторе углеводородный газ – жидкость, расположенном на морском дне. Технический результат заключается в увеличении давления жидкостей в сепараторе до требуемого уровня.

Предложены система и способ управления расположенным под водой циклоном, предназначенным для отделения нефти от воды. Циклон расположен с возможностью приема воды вместе с нефтяной составляющей по впускному трубопроводу, нефть отделяется от воды и подается через отверстие для выпуска нефти в выпускной нефтепровод, а вода подается через отверстие для выпуска воды в выпускной водопровод.

Изобретение относится к устройству для обеднения вод газами и включает в себя: систему труб, имеющую одну разведочную трубу для приема газосодержащего флюида, одну нагнетательную трубу для обратного отвода флюида, обедненного газами, и, по меньшей мере, две газовые ловушки, которые расположены в устройстве таким образом, что в газовой ловушке можно создавать выбираемое давление, при этом газовая ловушка функционально связана как с разведочной трубой, так и с нагнетательной трубой таким образом, что флюид из разведочной трубы может направляться через газовую ловушку в нагнетательную трубу, а газовая ловушка выполнена с возможностью соединения с устройством для приема газа.

Первый и второй многофазные потоки обрабатываются в первой и второй технологических линиях, которые структурно отличаются друг от друга. При этом в первой и второй технологических линиях создаются различные технологические условия.

Изобретение относится к подводным системам добычи и транспортировки и может быть применена для сепарирования мультифазного потока. .
Изобретение относится к нефтяной промышленности и может найти применение при выравнивании приемистостей двух скважин. .

Изобретение относится к добыче полезных ископаемых, в частности - метана и пресной воды из подводных газогидратов снижением гидростатического давления. .

Изобретение относится к трубчатому сепаратору. .

Изобретение относится к трубчатому сепаратору для разделения текучих сред с несмешивающимися компонентами, таких как нефть, газ и вода. .

Изобретение относится к промысловой переработке скважинной продукции газоконденсатных месторождений и может найти применение в газовой промышленности. Установка включает блоки входной сепарации и подготовки газа, блоки дегазации, электрообессоливания и фракционирования углеводородного конденсата, а также блоки каталитической переработки дистиллята широкого фракционного состава и дегидроциклодимеризации смеси газа дегазации с газом каталитической переработки.

Изобретение относится к способу извлечения углеводородов из установки для получения полиолефинов. Способ включает следующие действия: i) введение углеводородсодержащего инертного газа из блока для отделения остаточных мономеров установки для получения полиолефинов в устройство для конденсации и разделения, причем углеводороды представляют собой пропилен и необязательно пропан или этилен и необязательно этан, а инертный газ представляет собой азот, ii) введение жидкого азота в устройство для конденсации и разделения, iii) конденсацию по меньшей мере части углеводородов из углеводородсодержащего инертного газа в устройстве для конденсации и разделения с использованием энергии испарения жидкого азота, iv) разделение конденсированного углеводородсодержащего инертного газа на конденсированный углеводородсодержащий продукт, а также очищенный инертный газ в устройстве для конденсации и разделения и v) введение конденсированного углеводородсодержащего продукта из устройства для конденсации и разделения в расположенное ниже по потоку дополнительное разделительное устройство, в котором отделяют растворенные газы от конденсированного углеводородсодержащего продукта.

Изобретение относится к подготовке скважинного продукта и может быть использовано в нефтяной промышленности для подготовки нефти и воды. Установка подготовки скважинной продукции содержит емкость 5 сбора и дегазации скважинного продукта, устройство для обезвоживания 14, насосы 6, 8, 13, теплообменное устройство 11, измерительные приборы, трубопроводную обвязку, запорно-регулирующую арматуру.

Изобретение относится к области газовой промышленности и может быть использовано при промысловой подготовке продукции газоконденсатных залежей. Способ промысловой подготовки продукции газоконденсатных залежей включает сепарацию пластовой смеси с получением сырого газа и нестабильного газового конденсата, адсорбционную осушку сырого газа и деэтанизацию нестабильного газового конденсата, глубокое охлаждение осушенного газа с получением товарного природного газа и широкой фракции легких углеводородов (ШФЛУ) и низкотемпературную деэтанизацию ШФЛУ.

Изобретение относится к массообменным процессам и может быть использовано в нефтяной, нефтеперерабатывающей, химической и других смежных отраслях промышленности при проведении процессов ректификации, отпарки, абсорбции и десорбции.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для разделения нефти и газа при сборе продукции скважин. Газожидкостный сепаратор содержит вертикальный цилиндрический корпус, трубопроводы подвода газожидкостной смеси, отвода газа и жидкости, при этом корпус сепаратора разделен конической перегородкой на входную и каплеотбойную камеры и снабжен газоуравнительным трубопроводом, соединяющим корпус с трубопроводом отвода газа.

Изобретение относится к реактору полимеризации для осуществления реакции полимеризации. Реактор полимеризации для выполнения реакции полимеризации включает корпус сосуда и рубашку, охватывающую наружную поверхность корпуса сосуда и образующую канал для прохождения охлаждающей/нагревающей среды между этой рубашкой и внешней поверхностью корпуса сосуда, реактор включает устройство для подачи инертного газа в канал, при этом корпус сосуда изготовлен из плакированной металлической пластины, включающей слой металла основы, который имеет внутреннюю поверхность на внутренней стороне корпуса сосуда и наружную поверхность на внешней стороне корпуса сосуда, и внутренний поверхностный слой коррозионно-стойкого металла, связанный с внутренней поверхностью слоя металла основы, который имеет меньшую толщину, чем толщина слоя металла основы.

Изобретение относится к области газовой промышленности и может быть использовано для процессов централизованной деэтанизации (частичной стабилизации) поставляемого с промыслов газоконденсатных месторождений нестабильного парафинистого конденсата в ректификационных колоннах, работающих без использования верхнего конденсационного орошения.

Изобретение относится к сепараторам для разделения жидких сред, имеющих различный удельный вес, и для выделения накопившейся в жидкости газообразной среды. Жидкостно-газовый сепаратор содержит корпус, вертикальную разделительную перегородку, установленную в корпусе с разделением последнего на входную и выходную секции, сообщенные между собой в верхней части корпуса, трубопровод ввода газожидкостной смеси, сообщенный с входной секцией, а также патрубки вывода газообразной среды, более тяжелой и более легкой фракций жидкой среды, пакет фазоразделительных насадок в виде системы параллельно установленных перфорированных пластин, переливную перегородку, установленную в выходной секции, и сливной лоток, который расположен своим верхним краем с верхней кромкой вертикальной разделительной перегородки и своим нижним краем - с пакетом фазоразделительных насадок со стороны входа в него, закрепленных к поперечной перегородке, пропускающей более тяжелые фракции жидкой среды снизу, а газ – сверху.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для разделения нефти и газа при сборе продукции скважин. Газожидкостный сепаратор содержит вертикальный цилиндрический корпус, трубопроводы подвода газожидкостной смеси, отвода газа и жидкости, при этом корпус разделен конической перегородкой на входную и каплеотбойную камеры и снабжен газоуравнительным трубопроводом, соединяющим корпус сепаратора с трубопроводом отвода газа.

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к области технического обустройства нефтедобычи, и может быть использована для разделения жидкой и газообразной фаз. Технический результат заключается в повышении качества сепарации газожидкостной смеси путем извлечения газа без дополнительного энергоемкого оборудования. Способ ступенчатого извлечения газа из скважинной газожидкостной смеси включает напорный ввод потока газожидкостной смеси по подводящему трубопроводу в вертикальную камеру сепаратора первой ступени тангенциально направляющей ее цилиндрической оболочки, закручивание потока в ниспадающую спираль, отвод частично осушенного газа из верхней части камеры и отвод частично дегазированной жидкости из нижней части камеры. При этом исходящий из камеры первой ступени сепарации поток частично осушенного газа направляют далее в сепаратор-газоосушитель, с газового выхода которого получают осушенный газ, при этом отсепарированные жидкости и газовый конденсат, получаемые на жидкостном выходе сепаратора-газоосушителя, направляют на всасывающий вход эжектора, установленного на входе сепаратора первой ступени. Газожидкостная система включает трубопровод, подводящий газожидкостную смесь, сепаратор первой ступени, содержащий оболочку в форме кругового цилиндра, расположенную вертикально. При этом в систему включен по меньшей мере один сепаратор-газоосушитель, а в подводящий трубопровод скважинной смеси на входе в сепаратор первой ступени включен эжектор, к всасывающему входу которого присоединен трубопровод от жидкостного выхода сепаратора-газоосушителя. 2 н. и 3 з.п. ф-лы, 2 ил.
Наверх