Радиотерминал, система радиосвязи и способ радиосвязи



Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи
Радиотерминал, система радиосвязи и способ радиосвязи

 


Владельцы патента RU 2619776:

ФУДЗИЦУ ЛИМИТЕД (JP)

Изобретение относится к беспроводной связи. Технический результат заключается в улучшении точности измерений для обнаружения соты с более высоким качеством радиосвязи. Блок связи радиотерминала выполняет радиоизмерение для базовой станции и отслеживание сигнала поискового вызова в течение периодического отрезка времени. Контроллер управляет блоком связи для выполнения фильтрации радиоизмерений в течение отрезка времени с интервалами менее половины отрезка времени. 4 н. и 1 з.п. ф-лы, 24 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Варианты осуществления, рассмотренные в настоящем документе, относятся к радиотерминалу, который осуществляет радиосвязь, системе радиосвязи и способу радиосвязи.

УРОВЕНЬ ТЕХНИКИ

Сотовая мобильная связь развивалась от UMTS (Универсальная система мобильной связи) в LTE (стандарт «Долгосрочное развитие»). В LTE в качестве технологии радиодоступа указана система, основанная на OFDM (Мультиплексировании с ортогональным частотным разделением сигналов), и обеспечивается высокоскоростная беспроводная пакетная связь с пиковой скоростью передачи 100 Мбит/с или более в нисходящей линии связи и пиковой скоростью передачи 50 Мбит/с или более в восходящей линии связи.

3GPP (Партнерский проект по системам 3-го поколения), который является международной организацией по стандартизации, в настоящее время начал исследования LTE-A (Усовершенствованного LTE), основанного на LTE, для реализации более высокоскоростной связи. LTE-A ставит целью пиковую скорость передачи 1 Гбит/с в нисходящей линии связи и пиковую скорость передачи 500 Мбит/с в восходящей линии связи, и изучаются различные новые технологии, такие как система радиодоступа и сетевая архитектура (например, см. NPTL 1 - NPTL 3). С другой стороны, LTE-A является системой на основе LTE, и поэтому важно поддерживать обратную совместимость.

В LTE или LTE-A в качестве операции в режиме ожидания радиотерминала задается выбор соты. В частности, заданы выбор соты и повторный выбор соты (см., например, NPTL 4 и NPTL 5).

Выбор соты выполняется, когда радиотерминал включает питание и выбирается PLMN (Наземная сеть мобильной связи общего пользования: оператор мобильной связи). В качестве выбора соты задан выбор соты (первичный выбор соты), выполняемый радиотерминалом без знания информации о соте, и выбор соты (выбор соты, имеющей сохраненную информацию), выполняемый мобильной станцией при наличии информации о соте.

При выборе соты радиотерминал измеряет качество радиосвязи и выбирает соту с хорошим качеством радиосвязи в качестве обслуживающей соты и базируется в сети. А именно, если удовлетворены критерии «S» для выбора соты, определенные с помощью RSRP (Принимаемая мощность опорного сигнала) и RSRQ (Принимаемое качество опорного сигнала), можно базироваться в соте (например, см. NPTL 4). Радиотерминал может принять входящий вызов, базируясь в сети. Повторный выбор соты выполняется для обнаружения соты с более высоким качеством радиосвязи, и когда обнаружено более высокое качество радиосвязи, радиотерминал базируется в соте.

Радиоизмерение в режиме ожидания задано для обнаружения соты с более высоким качеством радиосвязи (см., например, NPTL 5). В режиме ожидания необходимо достичь баланс между потреблением энергии радиотерминала и точностью радиоизмерений.

Например, если частота измерений уменьшается для уменьшения потребления энергии, точность измерений ухудшается, и может иметь место случай, когда невозможно базироваться в соответствующей соте. С другой стороны, если частота измерения увеличивается для улучшения точности измерения, увеличивается потребление энергия. Ввиду этого задается DRX (Прерывистый прием) (см., например, NPTL 5).

Имеются случаи, когда значение цикла DRX получают с помощью широковещательной информации, передаваемой базовой станцией, и когда его задают с помощью NAS (Уровня без доступа), который является верхним уровнем. Радиотерминал выполняет измерения по меньшей мере один раз для каждого DRX и замеряет качество радиосвязи. Радиотерминал затем усредняет качество радиосвязи в соответствии с интервалами замеров, указанными с помощью функции DRX, и затем вычисляет измеренную величину качества радиосвязи.

Кроме того, радиотерминал в режиме ожидания периодически отслеживает сигнал поискового вызова для обнаружения входящего вызова. В радиотерминале, как и в случае измерения, описанного выше, если частота отслеживания сигнала поискового вызова уменьшается, происходит задержка связи, а если частота отслеживания сигнала поискового вызова увеличивается, увеличивается потребление энергии. Поэтому задается, что отслеживание сигнала поискового вызова выполняется только один раз за цикл DRX (см., например, NPTL 4).

Как было описано выше, радиотерминал может выполнять выбор соты и обнаружение входящего вызова с учетом потребления энергия путем выполнения измерения и отслеживания сигнала поискового вызова в течение цикла DRX, который является циклом измерений.

СПИСОК БИБЛИОГРАФИЧЕСКИХ ССЫЛОК

Непатентная литература

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Техническая задача

Задано, что решение о том, выполнять ли измерение и выбор соты, выполняется по меньшей мере один раз для каждого цикла DRX. Кроме того, задано, что значения замеров (в частности, значения RSRP и RSRQ) качества радиосвязи, полученные путем измерений, фильтруются и усредняются, где значения замеров расположены с интервалом по меньшей мере в половину продолжительности DRX при вычислении измеренной величины измерения (см., например, NPTL 5).

Поэтому, если цикл DRX увеличивается для уменьшения потребления энергии радиотерминала, интервал замеров измерения увеличивается, и была такая проблема, что ухудшается точность измерений.

РЕШЕНИЕ ЗАДАЧИ

Для решения вышеописанной задачи обеспечен радиотерминал, который осуществляет радиосвязь с базовой станцией. Радиотерминал имеет блок связи, выполненный с возможностью выполнять радиоизмерения для базовой станции и отслеживание сигнала поискового вызова в течение периодического отрезка времени, и контроллер, выполненный с возможностью управлять блоком связи для выполнения фильтрации радиоизмерений в течение отрезка времени с интервалами менее половины отрезка времени.

ПОЛЕЗНЫЕ ЭФФЕКТЫ ИЗОБРЕТЕНИЯ

В соответствии с раскрытым устройством и способом можно уменьшить ухудшение измерения.

Вышеописанные и другие цели, характеристики и преимущества настоящих вариантов осуществления будут разъяснены с помощью нижеследующего пояснения в сочетании с прилагаемыми чертежами, иллюстрирующими предпочтительные варианты осуществления как примеры настоящих вариантов осуществления.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 объясняет радиотерминал в соответствии с первым вариантом осуществления.

Фиг. 2 изображает систему радиосвязи в соответствии со вторым вариантом осуществления.

Фиг. 3 является функциональной блок-схемой радиотерминала.

Фиг. 4 изображает пример конфигурации аппаратных средств радиотерминала.

Фиг. 5 является функциональной блок-схемой базовой станции.

Фиг. 6 изображает пример конфигурации аппаратных средств базовой станции.

Фиг. 7 является частью 1 временной диаграммы радиотерминала.

Фиг. 8 является частью 2 временной диаграммы радиотерминала.

Фиг. 9 является блок-схемой последовательности операций радиотерминала.

Фиг. 10 является блок-схемой последовательности операций базовой станции.

Фиг. 11 является временной диаграммой радиотерминала в соответствии с третьим вариантом осуществления.

Фиг. 12 объясняет шаблон маски DRX.

Фиг. 13 является блок-схемой последовательности операций радиотерминала.

Фиг. 14 является блок-схемой последовательности операций базовой станции.

Фиг. 15 является временной диаграммой радиотерминала в соответствии с четвертым вариантом осуществления.

Фиг.16 является блок-схемой последовательности операций радиотерминала.

Фиг. 17 является блок-схемой последовательности операций базовой станции.

Фиг. 18 является временной диаграммой радиотерминала в соответствии с пятым вариантом осуществления.

Фиг. 19 является блок-схемой последовательности операций радиотерминала.

Фиг. 20 является блок-схемой последовательности операций базовой станции.

Фиг. 21 является временной диаграммой радиотерминала в соответствии с шестым вариантом осуществления.

Фиг. 22 объясняет операции процедуры Присоединения NAS и процедуры отсоединения NAS.

Фиг. 23 является блок-схемой последовательности операций радиотерминала.

Фиг. 24 является блок-схемой последовательности операций базовой станции.

ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Далее со ссылкой чертежи подробно объясняются варианты осуществления.

(Первый вариант осуществления)

Фиг. 1 объясняет радиотерминал в соответствии с первым вариантом осуществления. Как показано на фиг. 1, радиотерминал 1 имеет блок 1а связи и контроллер 1b. Стрелки А1-А3, изображенные на фиг. 1, указывают тайминг (timing) измерения базовой станции, не изображенной, и тайминг отслеживания сигнала поискового вызова, выполняемого радиотерминалом 1. На фиг. 1 m указывает тайминг измерения базовой станции, не изображенной, а p указывает тайминг отслеживания сигнала поискового вызова, выполняемого радиотерминалом 1.

Блок 1а связи периодически выполняет измерение базовой станции, не изображенной, и отслеживание сигнала поискового вызова в течение периодического отрезка времени Т.

Например, Т, изображенный на фиг. 1, обозначает DRX. Блок 1а связи периодически выполняет измерение (m) базовой станции и отслеживание сигнала (p) поискового вызова в течение цикла DRX DRX.

Контроллер 1b управляет блоком 1а связи для выполнения измерения в течение отрезка времени Т с интервалами менее половины отрезка времени Т. Кроме того, также сделано возможным выполнять фильтрацию значений замеров (в частности, значений RSRP и RSRQ) качества радиосвязи, полученных с помощью измерения, где значения замеров расположены с интервалами менее половины отрезка времени Т.

Например, как указано стрелкой А1, контроллер 1b управляет блоком 1а связи для выполнения измерения, при этом значения замеров расположены с интервалами менее половины отрезка времени Т. В частности, контроллер 1b управляет блоком 1а связи для выполнения измерения, при этом значения замеров расположены с интервалами менее половины цикла DRX.

Стрелка А2 указывает пример традиционного тайминга измерения и отслеживания сигнала поискового вызова. Как было описано выше, задано, что решение о том, выполнять ли измерение и выбор соты, выполняется по меньшей мере с интервалами цикла DRX. Здесь, чтобы уменьшить потребление энергии радиотерминала 1, длительность (цикл DRX) отрезка времени Т увеличивается, как обозначено стрелкой A3.

Стрелка A3 указывает другой пример традиционного тайминга измерения и отслеживания сигнала поискового вызова. Не нарушая спецификации, измерение выполняется с интервалами равными половине цикла DRX (цикл DRX/2). Кроме того, при вычислении измеренных величин измерения значения замеров измерения усредняются, и усредненные значения являются результатом измерения качества радиосвязи каждой соты. Путем выполнения измерения и вычисления измеренных величин, можно поддерживать точность измерений, даже если длительность (цикл DRX) отрезка времени Т увеличивается. Однако традиционный интервал измерений увеличивается по мере увеличения цикла DRX, и поэтому увеличивается интервал усреднения измерений, и ухудшается точность измерений.

В отличие от этого, как было описано выше, контроллер 1b управляет блоком 1a связи для выполнения измерений с интервалами менее половины длительности отрезка времени Т. Кроме того, также при фильтрации значений замеров (в частности, значений RSRP и RSRQ) качества радиосвязи, полученных с помощью измерений, сделано возможным выполнять фильтрацию, когда значения замеров расположены с интервалами менее половины длительности. Благодаря этому радиотерминал 1 может сократить интервал усреднения измерения, а также уменьшить потребление энергии, и может уменьшить ухудшение измерений.

Как было описано выше, блок 1а связи радиотерминала 1 выполняет измерение базовой станции и отслеживание сигнала поискового вызова в течение периодического отрезка времени Т. Затем контроллер 1b управляет блоком 1а связи для выполнения измерения с интервалами менее половины длительности отрезка времени Т в пределах отрезка времени Т. Благодаря этому радиотерминал 1 может предотвратить увеличение интервала измерения, и может уменьшить ухудшение измерения, даже если длительность отрезка времени Т увеличивается для уменьшения потребления энергии.

(Второй вариант осуществления)

Далее со ссылкой на чертежи объясняется второй вариант осуществления.

Фиг. 2 изображает систему радиосвязи в соответствии со вторым вариантом осуществления. Фиг. 2 изображает базовую станцию 11 и радиотерминал 12. Базовая станция 11 и радиотерминал 12 осуществляют радиосвязь с помощью системы связи LTE или LTE-A.

Радиотерминал 12 встроен в устройство, такое как газовый расходомер и электросчетчик. Радиотерминал 12 передает базовой станции 11 информацию, такую как аномалия и плата за использование, обнаруженные устройством, например, газовым расходомером и электросчетчиком. Информация, передаваемая базовой станции 11, передается, например, газовой компании или электроэнергетической компании.

Описанное выше устройство имеет характеристики связи, отличающиеся от таковых мобильного телефона и т.д. Например, устройство не перемещается, а объемы связи малы. Следовательно, считается, что устройство находится в режиме ожидания большую часть времени и редко входит в подсоединенный режим.

В случае, когда устройство установлено в частной квартире и т.д., базовая станция 11 может быть, например, домашним eNB (усовершенствованным узлом В). Кроме того, устройство может быть встроено в датчик или индикатор здоровья для управления состоянием здоровья человека, не ограничиваясь вышеописанным измерительным прибором.

Фиг. 3 является функциональной блок-схемой радиотерминала. Как показано на фиг. 3, радиотерминал 12 имеет блок 21 связи и контроллер 22. Контроллер 22 имеет радиоконтроллер 22а, контроллер 22b уровня плоскости управления и контроллер 22с прикладного уровня.

Блок 21 связи выполняет управление радиосвязью. Например, блок 21 связи выполняет обработку основной полосы частот (ВВ) и радиочастотную (RF) обработку сигнала, передаваемого в и принимаемого от базовой станции 11. Кроме того, питание блока 21 связи включается и выключается с помощью управления радиоконтроллером 22а контроллера 22.

Радиоконтроллер 22а управляет ВВ обработкой и RF обработкой блока 21 связи. Кроме того, радиоконтроллер 22а выполняет управление включением и выключением питания блока 21 связи.

Контроллер 22b уровня плоскости управления выполняет управление уровнем RRC (Управления радиоресурсами) и уровнем NAS.

Контроллер 22с прикладного уровня выполняет управление прикладным уровнем.

Блок 21 связи соответствует, например, блоку 1а связи на фиг. 1. Радиоконтроллер 22а и контроллер 22b уровня плоскости управления соответствует, например, контроллеру 1b на фиг. 1.

Фиг. 4 изображает пример конфигурации аппаратных средств радиотерминала. Как показано на фиг. 4, радиотерминал 12 имеет процессор 31, основную память 32, ROM (постоянную память) 33, накопитель 34, интерфейс 35 связи, устройство 36 ввода и вывода, дисплей 37 и шину 38.

Процессор 31, основная память 32, ROM 33, накопитель 34, интерфейс 35 связи, устройство 36 ввода и вывода и дисплей 37 соединены через шину 38. Весь радиотерминал 12 управляется процессором 31. Процессор 31 является, например, CPU (центральным процессором) или DSP (цифровым сигнальным процессором).

В основной памяти 32 временно хранятся данные и программы, используемые в различных видах обработки процессора 31. В ROM 33 хранится статическая информация, такая как протокол, для задания работы радиотерминала 12. Например, в ROM 33 хранится информация для процессора 31, чтобы выполнять обработку плоскости данных, обработку плоскости управления, обработку планирования и т.п. В накопителе 34 хранятся данные и программы, используемые в различных видах обработки процессора 31. Интерфейс 35 связи осуществляет радиосвязь с базовой станцией 11. Например, интерфейс 35 связи преобразует сигнал полосы частот модулирующих сигналов в радиочастоту и выводит радиочастоту на антенну, которая не показана. Кроме того, интерфейс 35 связи преобразует по частоте радиосигнал, принятый антенной, которая не показана, в сигнал основной полосы частот.

Устройство 36 ввода и вывода является, например, клавишей, громкоговорителем или микрофоном. Например, клавиша принимает символ или цифру, введенную пользователем. Громкоговоритель, например, преобразует речевой сигнал, принятый от базовой станции 11, в речь и выводит речь. Микрофон преобразует речь пользователя в электрический сигнал. Дисплей 37 является, например, LCD (жидкокристаллическим дисплеем). Дисплей 37 отображает, например, данные, принятые от базовой станции 11.

Функция блока 21 связи на фиг. 3 реализована, например, с помощью интерфейса 35 связи. Функция контроллера 22 реализована, например, с помощью процессора 31.

Фиг. 5 является функциональной блок-схемой базовой станции. Как показано на фиг. 5, базовая станция 11 имеет блок 41 связи и контроллер 42. Контроллер 42 имеет радиоконтроллер 42а и контроллер 42b уровня плоскости управления.

Блок 41 связи осуществляет управление радиосвязью. Например, блок 41 связи выполняет обработку ВВ и радиочастотную (RF) обработку сигнала, передаваемого в и принимаемого от радиотерминала 12.

Радиоконтроллер 42а управляет обработкой ВВ и RF обработкой блока 41 связи.

Контроллер 42b уровня плоскости управления осуществляет управление уровнем RRC и уровнем NAS.

Фиг. 6 изображает пример конфигурации аппаратных средств базовой станции. Как показано на фиг. 6, базовая станция 11 имеет процессор 51, основную память 52, ROM 53, накопитель 54, интерфейс 55 связи и шину 56.

Процессор 51, основная память 52, ROM 53, накопитель 54 и интерфейс 55 связи соединены через шину 56. Вся базовая станция 11 управляется процессором 51. Процессор 51 является, например, CPU или DSP.

В основной памяти 52 временно хранятся данные и программы, используемые в различных видах обработки процессора 51. В ROM 53 хранится статическая информация, такая как протокол для задания работы базовой станции 11. Например, в ROM 53 хранится информация для процессора 51 для выполнения обработки плоскости данных, обработки плоскости управления, обработки планирования и т.п. В накопителе 54 хранятся данные и программы, используемые в различных видах обработки процессора 51. Интерфейс 55 связи осуществляет радиосвязь с радиотерминалом 12. Например, интерфейс 55 связи преобразует сигнал полосы частот модулирующих сигналов в радиочастоту и выводит радиочастоту на антенну, которая не показана. Кроме того, интерфейс 55 связи преобразует по частоте радиосигнал, принятый антенной, которая не показана, в сигнал основной полосы частот. Кроме того, интерфейс 55 связи осуществляет проводную связь с устройством высокого уровня, таким как S-GW (Обслуживающий шлюз).

Фиг. 7 является частью 1 временной диаграммы радиотерминала. На фиг. 7 m обозначает тайминг измерения радиотерминала 12. Кроме того, p обозначает тайминг отслеживания сигнала поискового вызова радиотерминала 12.

В примере на фиг. 7 тайминги m и p до и после события, обнаруженного прикладным уровнем, отличаются. Событие происходит, например, при отчете о зарядке от электросчетчика и т.п. и отчете об аномалии.

Радиотерминал 12 использует длинный цикл DRX, более длинный, чем нормальный цикл DRX, чтобы, например, уменьшить потребление энергии.

Здесь измеренная величина традиционного измерения вычисляется путем усреднения замеров измерения с интервалом по меньшей мере «цикл DRX/2». Поэтому, интервал измерения увеличивается, например, как обозначено стрелкой A3 на фиг. 1, и точность измерения ухудшается.

В противоположность этому в радиотерминале 12 измерение выполняется по меньшей мере один раз в течение отрезка времени DRX. Следовательно, можно выполнять измерение множество раз в течение отрезка времени DRX. Однако измеренная величина вычисляется путем фильтрации значений замеров измерения, при этом значения замеров расположены с интервалом «длинный цикл DRX/n» (n>2). Следовательно, радиотерминал 12 выполняет измерение с интервалами «X», изображенными на фиг. 7.

Радиотерминал 12 вычисляет измеренную величину измерения, например, путем усреднения двух измерений. Например, радиотерминал 12 вычисляет измеренную величину, используя значения замеров двух измерений m на левой стороне и m на правой стороне в длинном цикле DRX до наступления события, изображенного на фиг. 1. Кроме того, радиотерминал 12 вычисляет измеренную величину, используя значения замеров измерений первого m и второго m слева в длинном цикле DRX после наступления события. Кроме того, радиотерминал 12 вычисляет измеренную величину, используя значения замеров измерений третьего m и четвертого m слева.

После наступления события число измерений в течение длинного цикла DRX увеличилось по сравнению с таковым до наступления события. Например, на фиг. 7 до наступления события число измерений равно двум, а после наступления события число равно четырем. Причиной этого является то, что базирование в соответствующей соте и соответствующее уведомление об информации о событии для базовой станции достигаются с помощью увеличения числа измерений для улучшения точности оценки измерения. При определении, что не возможно соединиться с предыдущей сотой, с помощью измерения после наступления события, радиотерминал 12 выполняет выбор соты, чтобы попытаться обнаружить новую соту. Кроме того, после передачи данных UL для события, радиотерминал 12 возвращается к работе до наступления события.

Фиг. 8 является частью 2 временной диаграммы радиотерминала. На временной диаграмме на фиг. 8, интервал измерения после наступления события, то есть интервал Y, является коротким относительно временной диаграммы на фиг. 7. Другими словами, на фиг. 8 частота измерений увеличена по сравнению с фиг. 7. Из-за этого потребление энергии радиотерминала 12 увеличивается по сравнению с фиг. 7, а точность измерений улучшается, потому что при вычислении измеренной величины измерения уменьшается интервал, на котором усредняется каждый замер.

Однако это не означает, что чем короче интервал усреднения, тем выше точность измерений при вычислении измеренной величины измерения. Если интервал усреднения слишком мал, существует вероятность, что оценка сделана только в момент хороших условий распространения радиоволн, или наоборот, вероятность, что оценка сделана только в момент плохих условий распространения радиоволн. Поэтому рекомендуется устанавливать интервал между каждым замером с сохранением некоторого интервала. Например, на фиг. 7, интервал фильтрации измерений установлен равным «Х/2», а на фиг. 8 интервал фильтрации измерений установлен равным «Y/2».

Следует отметить, что радиотерминал 12 может возобновить обычный интервал измерений после наступления события. Например, радиотерминал 12 может выполнять измерения с интервалами «цикл DRX/2» после наступления события.

Далее объясняется получение n, которое определяет интервал измерения. Например, n сообщается базовой станцией 11 с помощью широковещательной информации.

В частности, после включения питания радиотерминал 12 выполняет первичный поиск соты и базируется в соте с хорошим качеством радиосвязи (подходящей соте). В это время радиотерминал 12 выполняет процедуру Присоединения NAS. Базируясь в соте, радиотерминал 12 получает широковещательную информацию соты от базовой станции 11 и получает n из полученной широковещательной информации. Благодаря этому радиотерминал 12 может вычислить интервал измерения.

Как показано на фиг. 8, когда интервал измерения изменяется после наступления события, радиотерминал 12 может уведомить базовую станцию 11, что произошло событие, а базовая станция 11 может уведомить радиотерминал 12 о новом n. Базовая станция 11 может также изменить n в соответствии, например, с типом события (например, если событие является чрезвычайным происшествием).

Кроме того, n может быть определено заранее или может быть вычислено по идентификатору (ID) устройства. Например, ID устройства указан с помощью 12 битного значения. Радиотерминал 12 может разделить ID устройства радиотерминала 12, например, на соответствующее значение, такое как 4000, и может установить остаток равным n.

Базовая станция 11 может также уведомить радиотерминал 12 о числе измерений в течение длинного цикла DRX с помощью широковещательной информации. Кроме того, базовая станция 11 может уведомить о числе измерений в течение длинного цикла DRX при приеме уведомления о событии от радиотерминала 12.

Фиг. 9 является блок-схемой последовательности операций радиотерминала.

(Этап S1) Включается питание радиотерминала 12.

(Этап S2) Контроллер 22b уровня плоскости управления принимает широковещательную информацию от базовой станции 11. Другими словами, контроллер 22b уровня плоскости управления принимает «n», которое используется для вычисления интервала измерения.

(Этап S3) Контроллер 22b уровня плоскости управления выполняет процедуру Присоединения NAS.

(Этап S4) Контроллер 22b уровня плоскости управления вычисляет интервал измерения по принятому «n». Радиоконтроллер 22а включает и выключает блок 21 связи, чтобы выполнить измерение с интервалами, вычисленными контроллером 22b уровня плоскости управления. Контроллер 22b уровня плоскости управления усредняет измеренные измерения для оценки их качества.

Контроллер 22b уровня плоскости управления выполняет отслеживание поискового вызова, например, с таймингом, который удовлетворяет следующему выражению.

SFN является системным номером кадра. Т является циклом DRX (длинным циклом DRX). UE-ID является ID радиотерминала. N является значением, определенным циклом DRX.

(Этап S5) Контроллер 22 с прикладного уровня ожидает событие.

(Этап S6) Контроллер 22 с прикладного уровня определяет, произошло ли событие. В случае если событие произошло, контроллер 22 с прикладного уровня переходит к этапу S7. В случае если событие не произошло, контроллер 22 с прикладного уровня переходит к этапу S5.

(Этап S7) Контроллер 22b уровня плоскости управления и радиоконтроллер 22а выполняют измерение с новыми настройками и делают оценку его качества. Например, контроллер 22b уровня плоскости управления выполняет измерение с новыми настройками, как было объяснено на фиг. 8. Контроллер 22b уровня плоскости управления может выполнять измерение, как показано на фиг. 7.

Фиг. 10 является блок-схемой последовательности операций базовой станции.

(Этап S11) Контроллер 42b уровня плоскости управления уведомляет радиотерминал 12 о широковещательной информации через радиоконтроллер 42а. Широковещательная информация включает в себя «n», которое используется для вычисления интервала измерения.

(Этап S12) Контроллер 42b уровня плоскости управления выполняет процедуру Присоединения NAS.

(Этап S13) Контроллер 42b уровня плоскости управления ожидает отчет о событии от радиотерминала 12.

(Этап S14) Контроллер 42b уровня плоскости управления определяет, принят ли отчет о событии от радиотерминала 12. В случае, когда отчет о событии от радиотерминала 12 принят, контроллер 42b уровня плоскости управления переходит к этапу S15. В случае, когда отчет о событии от радиотерминала 12 не принят, контроллер 42b уровня плоскости управления переходит к этапу S13.

(Этап S15) Контроллер 42b уровня плоскости управления уведомляет радиотерминал 12 о новом «n».

Как было описано выше, контроллер 22b уровня плоскости управления и радиоконтроллер 22а управляют блоком 21 связи для выполнения фильтрации измерения, в течение длинного цикла DRX, с интервалами менее половины длины длинного цикла DRX. Благодаря этому радиотерминал 12 может уменьшить увеличение интервала измерения и может уменьшить ухудшение точности измерения, даже если используется длинный цикл DRX для уменьшения потребления энергии.

Кроме того, контроллер 22b уровня плоскости управления и радиоконтроллер 22а после наступления события увеличивают число измерений в течение длинного цикла DRX по сравнению с таковым перед событием. Благодаря этому радиотерминал 12 может улучшить качество измерения.

Кроме того, контроллер 22b уровня плоскости управления и радиоконтроллер 22а после наступления события уменьшают интервал измерения по сравнению с таковым перед событием. Благодаря этому радиотерминал 12 может улучшить качество измерения.

(Третий вариант осуществления)

Далее подробно объясняется третий вариант осуществления со ссылкой чертежи. В третьем варианте осуществления к традиционному DRX применяется маскирование для обеспечения отрезка времени, в котором DRX не выполняется, и DRX выполняется периодически. Хотя традиционный DRX может выполняться в отрезке времени, в котором выполняется DRX, для улучшения качества измерения также можно выполнять измерение множество раз в течение цикла DRX и выполнять фильтрацию измерения с интервалами менее половины длины цикла DRX.

Следует отметить, что система радиосвязи в соответствии с третьим вариантом осуществления является такой же, как система на фиг. 2. Блок радиотерминала 12 является таким же, как блок на фиг. 3, но отличается функция контроллера 22b уровня плоскости управления. Конфигурация аппаратных средств радиотерминала 12 является такой же, как конфигурация на фиг. 4. Блок базовой станции 11 является таким же, как блок на фиг. 5, но отличается функция контроллера 42b уровня плоскости управления. Конфигурация аппаратных средств базовой станции 11 является такой же, как конфигурация на фиг. 6.

Фиг. 11 является временной диаграммой радиотерминала в соответствии с третьим вариантом осуществления. На фиг. 11 длинный цикл DRX на фиг. 7 заменен циклом DRX. Другие части на фиг. 11 являются такими же, как части на фиг. 7, и поэтому их объяснение опущено.

Радиотерминал 12 действует так, что до того, как произойдет событие, цикл DRX замаскирован, при этом измерение не выполняется, a DRX выполняется периодически (толстая линия на фиг. 11). Радиотерминал 12 выполняет измерение и отслеживание сигнала поискового вызова в течение не замаскированного цикла DRX.

В не замаскированной секции радиотерминал 12 выполняет измерение с интервалами «цикл DRX/n» (n>2), как показано на фиг. 11. Следовательно, радиотерминал 12 выполняет фильтрацию измерения с интервалами «X», показанными на фиг. 11.

После наступления события радиотерминал 12 не маскирует цикл DRX. Другими словами, радиотерминал 12 выполняет измерение и отслеживание сигнала поискового вызова в каждом цикле DRX, как показано на фиг. 11.

Фиг. 12 объясняет шаблон маски DRX. Контроллер 22b уровня плоскости управления радиотерминала 12 сбрасывает маску DRX синхронно с периодом модификации ВССН (Широковещательного канала управления), который является периодом проверки изменения широковещательной информации.

Двунаправленные стрелки A11, А12, изображенные на фиг. 12, указывают период модификации ВССН. Контроллер 22b уровня плоскости управления сбрасывает маску DRX с таймингом пунктирных линий А13, А14, изображенных на фиг. 12. Например, контроллер 22b уровня плоскости управления управляет радиоконтроллером 22а для включения блока 21 связи (для выполнения DRX) с таймингом пунктирных линий А13, А14.

Линия с чередующимися длинными и короткими штрихами, изображенная на фиг. 12, указывает промежуток времени, в течение которого сбрасывается маска цикла DRX (период времени, в течение которого выполняется DRX). Прямоугольник и прямоугольник с наклонными линиями, изображенные на фиг. 12, указывают широковещательную информацию (SIB: Блок системной информации), сообщаемую радиотерминалу 12 от базовой станции 11.

Контроллер 22b уровня плоскости управления отслеживает SIB1 (прямоугольник с наклонными линиями с наклоном вверх в правую сторону на фиг. 12) или сигнал поискового вызова для проверки, есть ли изменение в широковещательной информации. Контроллер 22b уровня плоскости управления включает блок 21 связи для отслеживания SIB1 и сигнала поискового вызова. Контроллер 22b уровня плоскости управления выполняет измерение и отслеживание сигнала поискового вызова, используя этот тайминг. Прямоугольник с наклонными линиями с наклоном вниз в правую сторону указывает SIB, информация которого была изменена.

Период времени, в течение которого сбрасывается маска, может быть сообщен, например, с помощью широковещательной информации, или может быть определен заранее. Кроме того, период времени может быть вычислен по ID устройства радиотерминала 12. Кроме того, радиотерминал 12 может беспрепятственно сбросить маску посредством его реализации.

Выше было описано, что шаблон маски синхронизируется с периодом модификации ВССН, а теперь объясняется пример задания другого шаблона маски.

Пример 1: базовая станция 11 передает шаблон маскирования с помощью широковещательной информации. Например, базовая станция 11 передает с помощью широковещательной информации, в каком цикле DRX выполнять DRX. Контроллер 22b уровня плоскости управления радиотерминала 12 сбрасывает маску в пределах цикла DRX, содержащегося в принятой широковещательной информации, и выполняет измерение и отслеживание сигнала поискового вызова. Период времени, в течение которого сбрасывается маска, может быть передан, например, с помощью широковещательной информации, или может быть определен заранее. Кроме того, промежуток времени может быть вычислен по ID устройства радиотерминала 12.

Пример 2: шаблон маскирования сообщается с помощью сигнала поискового вызова. Например, когда радиотерминал 12 находится в режиме ожидания, базовая станция 11 сообщает шаблон маскирования DRX с помощью сигнала поискового вызова.

Пример 3: Когда радиотерминал 12 находится в режиме ожидания, местоположение регистрируется в ММЕ (Узел управления мобильностью). Регистрация местоположения выполняется в уровне NAS, и выполняется процедура Присоединения NAS. Радиотерминал 12 принимает шаблон маскирования с помощью сообщения NAS «Присоединение NAS Принято», передаваемого и принимаемого с помощью процедуры Присоединения NAS.

Пример 4: Каждый раз, когда DRX маскируется N раз, маскирование DRX сбрасывается. N может быть сообщено с помощью широковещательной информации от базовой станции 11 или может быть определено заранее базовой станцией 11 и радиотерминалом 12. Кроме того, N может быть вычислено по ID устройства радиотерминала 12.

Пример 5: На основании IMSI (Международного идентификатора мобильного абонента), который является идентификатором радиотерминала, определяется радиокадр, в котором сбрасывается маска DRX. Например, маска DRX сбрасывается в радиокадре, в котором цикл SFN mod DRX и func (IMSI) становятся равными друг другу, func () является соответствующей функцией и, например, функцией, которая выводит значение IMSI.

Фиг. 13 является блок-схемой последовательности операций радиотерминала.

(Этап S21) Включается питание радиотерминала 12.

(Этап S22) Контроллер 22b уровня плоскости управления принимает широковещательную информацию от базовой станции 11.

(Этап S23) Контроллер 22b уровня плоскости управления выполняет процедуру Присоединения NAS.

(Этап S24) Контроллер 22b уровня плоскости управления принимает шаблон маски DRX. путем выполнения процедуры Присоединения NAS. Блок-схема последовательности операций на фиг. 13 показывает пример обработки в случае Примера 3, описанного выше.

(Этап S25) Контроллер 22b уровня плоскости управления управляет радиоконтроллером 22а для выполнения DRX с принятым шаблоном маски. Радиоконтроллер 22а включает и выключает блок 21 связи в соответствии с управлением контроллера 22b уровня плоскости управления, в результате чего выполняются измерение и отслеживание сигнала поискового вызова. Контроллер 22b уровня плоскости управления усредняет измеренные измерения для оценки их качества.

(Этап S26) Контроллер 22 с прикладного уровня ожидает событие.

(Этап S27) Контроллер 22 с прикладного уровня определяет, произошло ли событие. В случае, когда произошло событие, контроллер 22 с прикладного уровня переходит к этапу S28. В случае, когда событие не произошло, контроллер 22 с прикладного уровня переходит к этапу S26.

(Этап S28) Контроллер 22b уровня плоскости управления сбрасывает все маски. Например, контроллер 22b уровня плоскости управления управляет радиоконтроллером 22а так, что измерение и отслеживание сигнала поискового вызова выполняются в каждом цикле DRX, как показано после наступления события на фиг. 11.

Фиг. 14 является блок-схемой последовательности операций базовой станции.

(Этап S31) Контроллер 42b уровня плоскости управления уведомляет радиотерминал 12 о широковещательной информации через радиоконтроллер 42а.

(Этап S32) Контроллер 42b уровня плоскости управления выполняет процедуру Присоединения NAS.

(Этап S33) Контроллер 42b уровня плоскости управления передает шаблон маски DRX с помощью процедуры Присоединения NAS. Блок-схема последовательности операций на фиг. 14 показывает пример обработки в случае Примера 3, описанного выше.

(Этап S34) Контроллер 42b уровня плоскости управления ожидает отчет о событии от радиотерминала 12.

(Этап S35) Контроллер 42b уровня плоскости управления определяет, принят ли отчет о событии от радиотерминала 12. В случае, когда отчет о событии от радиотерминала 12 принят, контроллер 42b уровня плоскости управления завершает обработку. В случае, когда отчет о событии от радиотерминала 12 не принят, контроллер 42b уровня плоскости управления переходит к этапу S34.

Как было описано выше, контроллер 42b уровня плоскости управления действует так, что задается отрезок времени, во время которого не выполняется DRX, и DRX периодически выполняется. Затем, контроллер 42b уровня плоскости управления и радиоконтроллер 42а выполняют фильтрацию измерения с интервалами менее половины длины цикла DRX в пределах цикла DRX периодически выполняемого DRX. Благодаря этому радиотерминал 12 может уменьшить увеличение интервала измерения и может уменьшить ухудшение измерений в пределах цикла DRX выполняемого периодически DRX для уменьшения потребления энергии.

(Четвертый вариант осуществления)

Далее подробно объясняется четвертый вариант осуществления со ссылкой на чертежи. В четвертом варианте осуществления базовая станция указывает DRX, который должен выполняться следующим.

Система радиосвязи в соответствии с четвертым вариантом осуществления является такой же, как система на фиг. 2. Блок радиотерминала 12 является таким же, как блок на фиг. 3, но отличается функция контроллера 22b уровня плоскости управления. Конфигурация аппаратных средств радиотерминала 12 является такой же, как конфигурация на фиг. 4. Блок базовой станции 11 является таким же, как блок на фиг. 5, но отличается функция контроллера 42b уровня плоскости управления. Конфигурация аппаратных средств базовой станции 11 является такой же, как конфигурация на фиг. 6.

Фиг. 15 является временной диаграммой радиотерминала в соответствии с четвертым вариантом осуществления. На фиг. 15 DRX, который должен выполняться следующим, указан с помощью сигнала поискового вызова, что отличается от фиг. 11. Другие части на фиг. 15 являются такими же, как те на фиг. 11, и поэтому их объяснение опущено.

При базировании в соте базовой станции 11 контроллер 22b уровня плоскости управления радиотерминала 12 выполняет измерение и отслеживание сигнала поискового. вызова. Базовая станция 11 указывает с помощью сигнала поискового вызова, в течение какого DRX радиотерминал 12 в следующий раз выполняет измерение и отслеживание сигнала поискового вызова. Контроллер 22b уровня плоскости управления выполняет измерение и отслеживание сигнала поискового вызова, в течение указанного DRX.

Период времени, в течение которого выполняется DRX, может быть указан с помощью сигнала поискового вызова или сообщен с помощью широковещательной информации. Кроме того, период времени может быть определен заранее или может быть вычислен по ID устройства радиотерминала 12. Кроме того, период времени может быть определен реализацией радиотерминала. Например, базовая станция 11 указывает начало DRX с помощью широковещательной информации, а период времени DRX определяется реализацией радиотерминала 12.

Базовая станция 11 может указать выполнять DRX с помощью NAS. Например, когда радиотерминал 12 находится в режиме ожидания, местоположение регистрируется в ММЕ. Регистрация местоположения выполняется в уровне NAS, и выполняется процедура Присоединения NAS. Базовая станция 11 указывает DRX, который должен выполняться следующим, с помощью сообщения NAS «Присоединение NAS Принято», передаваемого и принимаемого с помощью процедуры Присоединения NAS. Период времени, в течение которого выполняется DRX, может быть сообщен с помощью «Присоединение NAS Принято» или сообщен с помощью широковещательной информации. Кроме того, период времени может быть определен заранее или может быть определен по ID устройства радиотерминала 12.

Фиг. 16 является блок-схемой последовательности операций радиотерминала.

(Этап S41) Включается питание радиотерминала 12.

(Этап S42) Контроллер 22b уровня плоскости управления принимает широковещательную информацию от базовой станции 11.

(Этап S43) Контроллер 22b уровня плоскости управления выполняет процедуру Присоединения NAS.

(Этап S44) Контроллер 22b уровня плоскости управления принимает DRX, который должен выполняться следующим, с помощью сигнала поискового вызова или путем выполнения процедуры Присоединения NAS.

(Этап S45) Контроллер 22b уровня плоскости управления управляет радиоконтроллером 22а для выполнения DRX, указанного базовой станцией 11 (этап S44). Контроллер 22b уровня плоскости управления выполняет измерение DRX и делает его оценку.

(Этап S46) Контроллер 22 с прикладного уровня находится в режиме ожидания события.

(Этап S47) Контроллер 22 с прикладного уровня определяет, произошло ли событие. В случае, когда событие произошло, контроллер 22 с прикладного уровня переходит к этапу S48. В случае, когда событие не произошло, контроллер 22 с прикладного уровня переходит к этапу S4 6.

(Этап S48) Контроллер 22b уровня плоскости управления выполняет все DRX. Например, как показано после наступления события на фиг. 15, контроллер 22b уровня плоскости управления управляет радиоконтроллером 22а так, что измерение и отслеживание сигнала поискового вызова выполняются в каждом цикле DRX.

Фиг. 17 является блок-схемой последовательности операций базовой станции.

(Этап S51) Контроллер 42b уровня плоскости управления уведомляет радиотерминал 12 о широковещательной информации через радиоконтроллер 42а.

(Этап S52) Контроллер 42b уровня плоскости управления выполняет процедуру Присоединения NAS.

(Этап S53) Контроллер 42b уровня плоскости управления передает DRX, который должен выполняться следующим, с помощью сигнала поискового вызова или путем выполнения процедуры Присоединения NAS.

(Этап S54) Контроллер 42b уровня плоскости управления находится в режиме ожидания отчета о событии от радиотерминала 12.

(Этап S55) Контроллер 42b уровня плоскости управления определяет, принят ли отчет о событии от радиотерминала 12. В случае если отчет о событии от радиотерминала 12 принят, контроллер 42b уровня плоскости управления завершает обработку. В случае если отчет о событии от радиотерминала 12 не принят, контроллер 42b уровня плоскости управления переходит к этапу S54.

Как было описано выше, контроллер 42b уровня плоскости управления принимает DRX, который должен выполняться следующим, с помощью сигнала поискового вызова или NAS. Затем, контроллер 42b уровня плоскости управления и радиоконтроллер 42а выполняют фильтрацию измерения с интервалами менее половины длины цикла DRX в течение цикла DRX, который будет выполняться следующим. Благодаря этому радиотерминал 12 может уменьшить ухудшение измерения, а также уменьшить потреблении энергии.

(Пятый вариант осуществления)

Далее подробно объясняется пятый вариант осуществления со ссылкой на чертежи. В пятом варианте осуществления задаются два цикла DRX и выполняются измерение и отслеживание сигнала поискового вызова.

Система радиосвязи в соответствии с пятым вариантом осуществления является такой же, как система на фиг. 2. Блок радиотерминала 12 является таким же, как блок на фиг. 3, но отличается функция контроллера 22b уровня плоскости управления. Конфигурация аппаратных средств радиотерминала 12 является такой же, как конфигурация на фиг. 4. Блок базовой станции 11 является таким же, как блок на фиг. 5, но отличается функция контроллера 42b уровня плоскости управления. Конфигурация аппаратных средств базовой станции 11 является такой же, как конфигурация на фиг. 6.

Фиг. 18 является временной диаграммой радиотерминала в соответствии с пятым вариантом осуществления. Фиг. 18 показывает короткий цикл DRX и длинный цикл DRX, период которого больше, чем длительность короткого цикла DRX. Короткий цикл DRX, например, является традиционным циклом DRX, а длинный цикл DRX сделан более длинным в цикле, чем короткий цикл DRX, чтобы уменьшить потребление энергии радиотерминала 12.

Радиотерминал 12 выполняет DRX в коротком цикле DRX, например, в течение заранее заданного периода времени и после этого выполняет DRX в длинном цикле DRX в течение заранее заданного периода времени. Затем радиотерминал 12 повторяет эти операции. Период времени, в течение которого выполняется DRX в коротком цикле DRX, и период времени, в течение которого выполняется DRX в длинном цикле DRX, сообщаются, например, с помощью широковещательной информации.

Если цикл DRX удлинен простым образом, интервал времени, в течение которого выполняется измерение, также удлиняется, и поэтому контроллер 22b уровня плоскости управления радиотерминала 12 выполняет измерение в течение длинного DRX по меньшей мере один раз с традиционными интервалами DRX. Следовательно, можно выполнять измерение много раз в течение отрезка времени DRX. Однако измерение выполняется с интервалами «длинный цикл DRX/n» (n>2). Следовательно, радиотерминал 12 выполняет управление для выполнения фильтрации измерения по меньшей мере с интервалом «X», как изображено на фиг. 18. Контроллер 22b уровня плоскости управления может выполнять измерение как традиционно в коротком цикле DRX, но чтобы улучшить точность измерения, выполняет фильтрацию измерения по меньшей мере с интервалом «короткий цикл DRX/2».

Радиотерминал 12 усредняет два измерения для вычисления измеренной величины измерения. Например, радиотерминал 12 выполняет фильтрацию двух значений замеров m на левой стороне и m на правой стороне в длинном цикле DRX, изображенном на фиг. 18.

В качестве примера модификации, если цикл DRX удлинен простым образом, очевидно, что интервал времени, в течение которого выполняется измерение, удлиняется, и поэтому есть также способ, в котором измерение и отслеживание сигнала поискового вызова вообще не выполняются в длинном цикле DRX.

В вышеупомянутом период времени, в течение которого выполняется DRX в коротком цикле DRX, и период времени, в течение которого выполняется DRX в длинном цикле DRX, сообщаются с помощью широковещательной информации, и здесь объясняется другой пример.

Пример 1: Когда радиотерминал 12 находится в режиме ожидания, базовая станция 11 сообщает период времени, в течение которого выполняется DRX, с помощью сигнала поискового вызова.

Пример 2: Когда радиотерминал 12 находится в режиме ожидания, в ММЕ регистрируется местоположение. Регистрация местоположения выполняется в уровне NAS, и выполняется процедура Присоединения NAS. Радиотерминал 12 принимает период времени, в течение которого выполняется DRX, с помощью сообщения NAS «Присоединив NAS Принято», передаваемого и принимаемого с помощью процедуры Присоединения NAS.

Пример 3: Контроллер 22b уровня плоскости управления выполняет DRX в коротком цикле DRX N раз, а затем выполняет DRX в длинном цикле DRX М раз. Значения N и М могут сообщаться с помощью широковещательной информации, или могут использоваться определенные заранее значения. Кроме того, контроллер 22b уровня плоскости управления может вычислить значения N и М по ID устройства радиотерминала 12.

Пример 4: Контроллер 22b уровня плоскости управления переключает циклы DRX в сочетании с периодом модификации ВССН, объясненным на фиг. 12. Например, контроллер 22b уровня плоскости управления выполняет DRX в коротком цикле DRX каждые N границ модификации (пунктирные линии А13, А14 на фиг. 12). Период времени, в течение которого выполняется DRX в коротком цикле DRX, может сообщаться, например, с помощью широковещательной информации или может использоваться значение, определенное заранее. Кроме того, контроллер 22b уровня плоскости управления может вычислить период времени, в течение которого выполняется DRX в коротком цикле DRX, по ID устройства радиотерминала 12.

Пример 5: Контроллер 22b уровня плоскости управления начинает DRX в коротком цикле DRX в радиокадре, в котором цикл SFN mod DRX и func (IMSI) становятся равными друг другу. Контроллер 22b уровня плоскости управления выполняет DRX в коротком цикле DRX в N последовательных радиокадрах. N может сообщаться, например, с помощью широковещательной информации или может использоваться значение, определенное заранее. Кроме того, контроллер 22b уровня плоскости управления может вычислить N по ID устройства радиотерминала 12. Завершая DRX в коротком цикле DRX, контроллер 22b уровня плоскости управления выполняет DRX в длинном цикле DRX.

Фиг. 19 является блок-схемой последовательности операций радиотерминала.

(Этап S61) Включается питание радиотерминала 12.

(Этап S62) Контроллер 22b уровня плоскости управления принимает широковещательную информацию от базовой станции 11.

(Этап S63) Контроллер 22b уровня плоскости управления выполняет процедуру Присоединения NAS.

(Этап S64) Контроллер 22b уровня плоскости управления получает период времени, в течение которого выполняется DRX в коротком цикле DRX, и период времени, в течение которого выполняется DRX в длинном цикле DRX, например, с помощью «Присоединение NAS Принято». Контроллер 22b уровня плоскости управления может также получить период времени, в течение которого выполняется DRX в коротком цикле DRX, и период времени, в течение которого выполняется DRX в длинном цикле DRX, из широковещательной информации.

(Этап S65) Контроллер 22b уровня плоскости управления управляет радиоконтроллером 22а для выполнения DRX в коротком цикле DRX и в длинном цикле DRX, указанных базовой станцией 11 (этап S64). Контроллер 22b уровня плоскости управления выполняет измерение DRX и делает его оценку.

Фиг. 20 является блок-схемой последовательности операций базовой станции.

(Этап S71) Контроллер 42b уровня плоскости управления уведомляет радиотерминал 12 о широковещательной информации через радиоконтроллер 42а.

(Этап S72) Контроллер 42b уровня плоскости управления выполняет процедуру Присоединения NAS.

(Этап S73) Контроллер 42b уровня плоскости управления передает период времени, в течение которого выполняются DRX в коротком цикле DRX и DRX в длинном цикле DRX, например, с помощью широковещательной информации или путем выполнения процедуры Присоединения NAS.

Как было описано выше, контроллер 42b уровня плоскости управления выполняет DRX в коротком цикле DRX и в длинном цикле DRX. Благодаря этому радиотерминал 12. может улучшить точность измерения с помощью короткого цикла DRX, а также уменьшить потребление энергии с помощью длинного цикла DRX.

(Шестой вариант осуществления)

Далее подробно объясняется шестой вариант осуществления со ссылкой на чертежи. В шестом варианте осуществления, после включения питания радиотерминала 12, выполняются процедура Присоединения NAS и процедура Отсоединения NAS. После этого радиотерминал 12 выключает питание блока 21 связи. После этого, если в прикладном уровне обнаружено событие, радиотерминал 12, выполняет измерение и отслеживание сигнала поискового вызова с помощью DRX и, например, передает информацию события базовой станции 11 с помощью UL.

Система радиосвязи в соответствии с шестым вариантом осуществления является такой же, как система на фиг. 2. Блок радиотерминала 12 является таким же, как блок на фиг. 3, но отличается функция контроллера 22b уровня плоскости управления. Конфигурация аппаратных средств радиотерминала 12 является такой же, как конфигурация на фиг. 4. Блок базовой станции 11 является таким же, как блок на фиг. 5, но отличается функция контроллера 42b уровня плоскости управления. Конфигурация аппаратных средств базовой станции 11 является такой же, как конфигурация на фиг. 6.

Фиг. 21 является временной диаграммой радиотерминала в соответствии с шестым вариантом осуществления. Стрелка А21 на фиг.21 указывает выполнение процедуры Присоединения NAS, а стрелка А22 указывает выполнение процедуры Отсоединения NAS. Когда включается питание, радиотерминал 12 выполняет поиск соты и регистрирует местоположение путем выполнения процедуры Присоединения NAS, как обозначено стрелкой А21. Затем радиотерминал 12 выключает питание блока 21 связи путем выполнения процедуры Отсоединения NAS, как обозначено стрелкой А22.

При обнаружении события, произошедшего в прикладном уровне, контроллер 22с прикладного уровня радиотерминала 12 уведомляет контроллер 22b уровня плоскости управления об обнаружении. Контроллер 22b уровня плоскости управления управляет радиоконтроллером 22а для включения блока 21 связи.

Контроллер 22b уровня плоскости управления регистрирует местоположение путем выполнения процедуры Присоединения NAS, как обозначено стрелкой А23. Контроллер 22b уровня плоскости управления выполняет DRX в коротком цикле DRX для выполнения измерения и отслеживание сигнала поискового вызова.

Контроллер 22b уровня плоскости управления передает информацию о событии базовой станции 11 в виде данных UL и выполняет процедуру Отсоединения NAS, как обозначено стрелкой А24. Затем контроллер 22b уровня плоскости управления выключает питание блока 21 связи.

После этого, когда контроллером 22с прикладного уровня обнаружено событие, контроллер 22b уровня плоскости управления выполняет такую же операцию, как это было описано выше.

Фиг. 22 объясняет операции процедуры Присоединения NAS и процедуры Отсоединения NAS.

(Этап S81) Контроллер 22b уровня плоскости управления радиотерминала 12 передает «Запрос Присоединения NAS» базовой станции 11.

(Этап S82) Контроллер 42b уровня плоскости управления базовой станции 11 передает. «Присоединени NAS Принято» радиотерминалу 12.

(Этап S83) Контроллер 22b уровня плоскости управления радиотерминала 12 передает «Присоединение NAS Завершено» базовой станции 11.

(Этап S84) Контроллер 22b уровня плоскости управления радиотерминала 12 передает «Запрос Отсоединения NAS» базовой станции 11.

(Этап S85) Контроллер 42b уровня плоскости управления базовой станции 11 передает «Отсоединение NAS Принято» радиотерминалу 12.

Фиг.23 является блок-схемой последовательности операций радиотерминала.

(Этап S91) Включается питание радиотерминала 12.

(Этап S92) Контроллер 22b уровня плоскости управления выполняет процедуру Присоединения NAS и процедуру Отсоединения NAS. Например, контроллер 22b уровня плоскости управления выполняет то, что обозначено стрелкой А21 и что обозначено стрелкой А22, изображенными на фиг. 21.

(Этап S93) Контроллер прикладного уровня 22с ожидает событие.

(Этап S94) Контроллер 22с прикладного уровня определяет, произошло ли событие. В случае, когда событие произошло, контроллер 22с прикладного уровня переходит к этапу S95. В случае, когда событие не произошло, контроллер 22с прикладного уровня переходит к этапу S93.

(Этап S95) Радиоконтроллер 22а включает блок 21 связи в соответствии с управлением контроллера 22b уровня плоскости управления.

(Этап S96) Контроллер 22b уровня плоскости управления вызывает выполнение DRX.

(Этап S97) Контроллер 22b уровня плоскости управления выполняет процедуру Присоединения NAS.

(Этап S98) Блок 21 связи передает информацию о событии по UL базовой станции 11.

(Этап S99) Контроллер 22b уровня плоскости управления выполняет процедуру Отсоединения NAS.

Фиг. 24 является блок-схемой последовательности операций базовой станции.

(Этап S101) Контроллер 42b уровня плоскости управления выполняет процедуру Присоединения NAS.

(Этап S102) Контроллер 42b уровня плоскости управления осуществляет связь с радиотерминалом 12 через радиоконтроллер 42а и блок 41 связи.

(Этап S103) Контроллер 42b уровня плоскости управления выполняет процедуру Отсоединения NAS. Вышеописанная обработка является одинаковой до и после события.

Как было описано выше, контроллер 42b уровня плоскости управления управляет радиоконтроллером 22а для выполнения DRX в сочетании с обнаружением события контроллером 22с прикладного уровня. Благодаря этому радиотерминал 12 может уменьшить потребление энергии до того, как произойдет событие.

Описанное выше лишь иллюстрирует принципы изобретения. Кроме того, специалист в области техники может сделать различные модификации и изменения, и настоящее изобретение не ограничивается точными конфигурациями и прикладными примерами, показанными и объясненными выше, и считается, что все соответствующие примеры модификаций и их эквиваленты находятся в рамках настоящего изобретения в соответствии с прилагаемой формулой изобретения и ее эквивалентами.

СПИСОК УСЛОВНЫХ ОБОЗНАЧЕНИЙ

1 радиотерминал
1a блок связи
1b контроллер

1. Радиотерминал, который осуществляет радиосвязь с базовой станцией, содержащий:

блок связи, выполненный с возможностью выполнять радиоизмерения и отслеживание сигнала поискового вызова базовой станции; и

блок управления, выполненный для обеспечения возможности управления блоком связи так, чтобы конфигурировать первый отрезок времени и второй отрезок времени, принимать информацию, относящуюся к первому отрезку времени и второму отрезку времени, с помощью сообщения Уровня без доступа (NAS) от базовой станции, и выполнять радиоизмерения и отслеживание во время первого отрезка времени, но не выполнять радиоизмерения и отслеживание во время второго отрезка времени после первого отрезка времени, при этом

блок управления дополнительно выполнен с возможностью управлять так, чтобы возобновлять радиоизмерения и отслеживание посредством завершения второго отрезка времени, чтобы передавать данные восходящей линии связи, которые создаются радиотерминалом во время второго отрезка времени.

2. Радиотерминал по п. 1, в котором

периоды времени сообщаются, чтобы выполнять первый отрезок времени и второй отрезок времени, с помощью «Присоединение Уровня без доступа (NAS) Принято».

3. Система радиосвязи, содержащая:

радиотерминал и

базовую станцию, которая осуществляет радиосвязь с радиотерминалом, при этом

радиотерминал включает в себя:

блок связи, выполненный с возможностью выполнять радиоизмерения и отслеживание сигнала поискового вызова базовой станции; и

блок управления, выполненный для обеспечения возможности управления блоком связи так, чтобы конфигурировать первый отрезок времени и второй отрезок времени, принимать информацию, относящуюся к первому отрезку времени и второму отрезку времени, с помощью сообщения Уровня без доступа (NAS) от базовой станции, и

выполнять радиоизмерения и отслеживание во время первого отрезка времени, но не выполнять радиоизмерения и отслеживание во время второго отрезка времени после первого отрезка времени, при этом

блок управления дополнительно выполнен с возможностью управлять так, чтобы возобновлять радиоизмерения и отслеживание путем завершения второго отрезка времени, чтобы передавать данные восходящей линии связи, которые создаются радиотерминалом во время второго отрезка времени.

4. Базовая радиостанция, которая осуществляет радиосвязь с радиотерминалом, который конфигурирует первый отрезок времени и второй отрезок времени, следующий за первым отрезком времени, причем базовая станция содержит:

блок связи, выполненный с возможностью передавать информацию, которая относится к первому отрезку времени и второму отрезку времени, с помощью сообщения Уровня без доступа (NAS) в радиотерминал, при этом

первый отрезок времени является отрезком времени, в котором радиотерминал управляет связью так, чтобы выполнять радиоизмерения и отслеживание сигнала поискового вызова базовой станции, а второй отрезок времени является отрезком времени, в котором радиотерминал может управлять связью так, чтобы не выполнять радиоизмерения и отслеживание, причем второй отрезок времени должен быть завершен для того, чтобы радиотерминал мог возобновить радиоизмерения и отслеживание, чтобы передавать данные восходящей линии связи, которые создаются радиотерминалом во время второго отрезка времени.

5. Способ радиосвязи для радиотерминала, который осуществляет радиосвязь с базовой станцией, содержащий этапы, на которых:

выполняют радиоизмерения и отслеживание сигнала поискового вызова базовой станции;

конфигурируют первый отрезок времени и второй отрезок времени, принимают информацию, относящуюся к первому отрезку времени и второму отрезку времени, с помощью сообщения Уровня без доступа (NAS) от базовой станции, и выполняют измерения и отслеживание во время первого отрезка времени, но не выполняют радиоизмерения и отслеживание во время второго отрезка времени после первого отрезка времени; и

дополнительно управляют так, чтобы возобновлять радиоизмерения и отслеживание посредством завершения второго отрезка времени, чтобы передавать данные восходящей линии связи, которые создаются радиотерминалом во время второго отрезка времени.



 

Похожие патенты:

Изобретение относится к способу и устройству для предоставления отчета о трафике, а также способу и устройству для измерения сетевого трафика. Технический результат заключается в обеспечении получения данных о сетевом трафике.

Изобретение относится к сетям и системам радиосвязи декаметрового диапазона длин волн (ДКМВ) с использованием отражения радиоволн от ионосферного слоя F2. Технический результат заключается в увеличении кратности одновременного повторного использования ограниченного частотного ресурса при организации прямых связей между абонентами в зоне обслуживания узла радиодоступа диапазона ДКМВ.

Изобретение относится к беспроводной связи. Техническим результатом является сокращение перегрузки сети.

Изобретение относится к технике связи и может использоваться в мобильных системах связи. Технический результат состоит в повышении пропускной способности радиотерминала в условиях, когда радиотерминал обменивается данными с различными базовыми радиостанциями для UL и DL, другой базовой радиостанции, которая отличается от подключенной базовой радиостанции, принимать данные из этого радиотерминала.

Изобретение относится к беспроводной связи. Технический результат заключается в возможности избежать задержек, возникающих после приема пользовательским оборудованием отклонения запроса на обслуживание и последующим инициированием процедуры запроса на подключение.

Изобретение относится к области мониторинга каналов распространения сигналов, а именно к обнаружению состояния сетевого канала. Техническим результатом является обеспечение решения проблемы доступа интеллектуального устройства к IoT за счет отображения текущего состояния сетевого канала.

Изобретение относится к беспроводной связи. Технический результат заключается в предоставлении большего интервала ожидания станции, работающей в режиме экономии энергии.

Изобретение относится к беспроводной связи. Техническим результатом является передача данных с использованием сетей LTE типа сравнительно недорогими и несложными устройствами.

Изобретение относится к способу мобильной связи и узлу управления мобильной связью. Технический результат заключается в обеспечении возможности избегать передачи ненужного сигнала поискового вызова.

уюобретение относится к области связи. Технический результат заключается в том, что за счет обработки таймеров опережения по времени базовой станцией или терминалом таймер опережения по времени, которому соответствует диапазон, где расположена PCell, истекает последним, тем самым предотвращая прерывание связи терминала вследствие опережающего истечения таймера опережения по времени, которому соответствует диапазон, где расположена PCell.

Изобретение относится к области связи и раскрывает способ и устройство для извещения относительно индикатора качества канала и схемы модуляции и кодирования, которые позволяют выбирать схему модуляции, более высокую, чем 64QAM, для повышения производительности системы связи. Способ включает в себя: изучение терминалом первого индекса CQI согласно первой таблице CQI; отправку первого индекса CQI на базовую станцию; прием базовой станцией первого индекса CQI, отправленного оконечным UE; определение первого индекса MCS согласно первой таблице CQI, первой таблице MCS и принятому первому индексу CQI; отправку определенного первого индекса MCS на UE; прием терминалом первого индекса MCS, отправленного базовой станцией; и определение порядка модуляции и размера кодового блока согласно первой таблице MCS и принятому первому индексу MCS; причем первая таблица CQI включает в себя записи, в которых схемы модуляции выше, чем 64QAM, и первая таблица MCS включает в себя записи, в которых схемы модуляции выше, чем 64QAM. 4 н. и 19 з.п. ф-лы, 12 ил.

Изобретение относится к технологии проекта долгосрочного развития систем связи (LTE) и предназначено для повышения защищенности системы LTE от помехи со стороны дальномерного оборудования (DME). Описанный способ включает в себя: на стороне пользовательского оборудования (UE) получение результата помехи DME на уровне символов и отправку сообщения планирования согласно полученному результату помехи DME на уровне символов или согласно полученному результату помехи DME на уровне символов и состоянию планирования физического совместно используемого канала нисходящей линии связи (PDSCH) текущего подкадра; на стороне усовершенствованного узла В (eNB) LTE способ включает в себя: обнаружение принятого сообщения планирования и планирование подкадра согласно принятому сообщению планирования. 6 н. и 12 з.п. ф-лы, 10 ил.

Изобретение относится к области связи. Техническим результатом является передача сообщений об изменении конфигурации между точкой доступа и станцией, функционирующей в асинхронном режиме. Способ включает в себя этап, на котором передают кадр из станции на точку доступа. Кадр маяка включает в себя порядковый номер маяка, относящийся к конфигурации точки доступа. Способ также включает в себя, в ответ на передачу кадра, этап, на котором принимают кадр обновления из точки доступа. Кадр обновления указывает по меньшей мере одно изменение в конфигурации точки доступа. 12 н. и 27 з.п. ф-лы, 6 ил.

Изобретение относится к области соединения беспроводных терминалов связи с внешними устройствами, а именно к системе и способу передачи, хранения, приема и/или извлечения идентификационной информации или данных и/или информации совмещения или данных для аксессуаров или сопутствующих продуктов и интеллектуальных электронных устройств на определенный сервер или запоминающий носитель или с определенного сервера или запоминающего носителя. Техническим результатом является обеспечение возможности замещающему или новому интеллектуальному электронному устройству устанавливать/поддерживать соединение со всеми предыдущими вспомогательными устройствами, даже когда указанное замещающее или новое интеллектуальное электронное устройство никогда ранее не было связано с указанными предыдущими вспомогательными устройствами, без необходимости заново проводить процесс совмещения. Для этого программно-аппаратное или программное приложение ("APP") в интеллектуальном электронном устройстве позволяет контролировать возможности совмещения интеллектуального электронного устройства для получения любой или всей информации ID или совмещения, которую указанное интеллектуальное электронное устройство приняло от и/или извлекло из любого вспомогательного или сопутствующего продукта, и позволяет передавать или сохранять любую или всю информацию ID или совмещения, которая была получена от указанного интеллектуального электронного устройства, на сервер или запоминающие носители. 3 н. и 25 з.п. ф-лы, 2 ил.

Изобретение относится к средствам моделирования сетей связи. Техническим результатом изобретения является повышение адекватности моделирования путем учета нагрузки, создаваемой неоднородными абонентами, принадлежащими разным системам управления, и определение параметров модели, при которых обеспечивается обслуживание абонентов с заданным качеством. Способ целенаправленной трансформации параметров модели реального фрагмента сети связи заключается в том, что формируют исходные данные для моделирования сети связи, задают количество разнородных абонентов, их распределение по узлам сети связи, нагрузку от каждого пользователя и закон ее распределения, закон формирования матрицы информационных направлений между пользователями, требуемую вероятность обслуживания для каждого информационного направления между абонентами, моделируют функционирование сети связи с учетом нагрузки от пользователей, рассчитывают вероятность обслуживания на каждом информационном направлении между абонентами и сравнивают с требуемой вероятностью, изменяют параметры модели до тех пор, пока вероятность обслуживания на информационном направлении между абонентами будет меньше требуемой. 5 ил.
Наверх