Способ производства биметаллического материала с плакирующим слоем из коррозионно-стойкой износостойкой стали

Изобретение относится к области металлургии, а именно к способам производства высокопрочного износостойкого биметаллического конструкционного материала с основным слоем из низколегированной стали и плакирующим слоем из коррозионно-стойкой стали, предназначенного для применения в изделиях нефтяного и химического машиностроения, а также других отраслях, где необходимо применение коррозионно-стойких в агрессивных средах элементов конструкций и аппаратов. На основной слой наносят плакирующий слой из коррозионно-стойкой износостойкой аустенитно-ферритной стали электрошлаковой наплавкой расходуемыми электродами. Электроды изготовлены из стали следующего состава, мас.%: углерод 0,010-0,035, кремний 0,5-1,0, марганец 0,7-2,0, хром 21-25, никель 4,5-7,5, молибден 2,5-4,5, титан не более 0,005, алюминий не более 0,03, азот 0,01-0,20, сера 0,0025-0,0035, фосфор 0,010-0,020, железо и неизбежные примеси остальное, а глубина проплавления основного слоя при наплавке составляет не более 5 мм. Затем осуществляют горячую прокатку и термическую обработку. Повышается коррозионная стойкость, в том числе стойкость к питтинговой коррозии, прочностные характеристики и износостойкость биметаллических конструкционных материалов, а также снижается себестоимость биметалла. 1 табл.

 

Изобретение относится к области металлургии, в частности к способам производства высокопрочного износостойкого биметаллического конструкционного материала с основным слоем из низколегированной стали и плакирующим слоем из коррозионно-стойкой стали, предназначенного для применения в изделиях нефтяного и химического машиностроения, а также других отраслях, где необходимо применение коррозионно-стойких в агрессивных средах элементов конструкций и аппаратов.

Традиционно в качестве материала плакирующего слоя используют ферритную или аустенитную сталь, реже двухфазную аустенитно-ферритную сталь. Требования к свойствам современных сталей постоянно растут, в частности для биметаллических материалов это касается высокой прочности, износостойкости и коррозионной стойкости к питтинговой коррозии в агрессивных водных средах при обеспечении высоких показателей прочности соединения слоев и качества поверхности.

Известен способ изготовления двухслойных листов, при котором получают биметалл с использованием метода вертикальной электрошлаковой наплавки с основным слоем из низколегированной стали 09Г2С и плакирующим слоем из аустенитной коррозионно-стойкой стали 08X13. Способ производства двухслойного коррозионно-стойкого листового проката композиции 09Г2С+08X13 включает следующие операции: получение исходных составляющих биметалла, а именно расходуемых электродов в виде сортового проката из стали 08X17 и слябов основного слоя из стали 09Г2С, получение методом электрошлаковой наплавки двухслойных слябов, прокатку слябов на стане 2000 на раскаты промежуточной толщины, порезку раскатов на заготовки промежуточного размера, прокатку заготовок на листы конечного сечения на стане 2800, термическую обработку листов в проходных печах, удаление окалины с поверхности плакирующего слоя. По своим основным техническим характеристикам полученные двухслойные листы соответствовали требованиям ГОСТ 10885-85, а по прочности сцепления слоев, которая составляла 400-500 Н/мм2, превосходили установленный в ГОСТ 10885-85 минимальный предел прочности 147 Н/мм2 примерно в 3 раза. Способ обеспечивает высокую чистоту плакирующего слоя по сере, что позволяет данной композиции биметаллического материала обеспечивать хорошую стойкость к общей коррозии плакирующего слоя, представляющего собой коррозионно-стойкую сталь ферритного класса, однако имеет недостаточно высокий уровень питтингостойкости в водных средах, содержащих ионы хлора.

(Коррозионно-стойкие биметаллы с прочным сцеплением слоев для нефтехимической промышленности и других отраслей. И.Г. Родионова, А.А. Павлов и др. ЗАО «Металлургиздат» М.: 2011, стр. 241-242).

Наиболее близким аналогом заявленного изобретения является способ изготовления двухслойных горячекатаных листов с плакирующим слоем из коррозионно-стойкой стали, включающий получение двухслойных заготовок методом электрошлаковой наплавки, их последующую горячую прокатку в листы, при этом электрошлаковую наплавку ведут расходуемыми электродами из коррозионно-стойкой стали, содержащей, мас.%:

Углерод 0,02-0,12
Кремний 0,2-0,8
Марганец 1,3-2,5
Фосфор Не более 0,040
Сера Не более 0,015
Хром 20-23
Никель 10-14
Ниобий не более 1,5
Азот не более 0,04
Железо и неизбежные примеси Остальное

В способе регламентируются содержание ниобия в зависимости от содержания углерода и режим нагрева заготовок под горячую прокатку в зависимости от толщины двухслойной заготовки. Недостатком данного способа является отсутствие ограничения по содержанию титана и алюминия, что приводит к поверхностным дефектам плакирующего слоя, а также высокое содержание никеля, что способствует увеличению себестоимости биметаллического листа.

(Патент RU 2255848, МПК B23K 20/04, C21D 8/02, опубликован 10.07.2005 - прототип).

Техническим результатом изобретения является повышение коррозионной стойкости, в том числе стойкости к питтинговой коррозии, прочностных характеристик и износостойкости биметаллических конструкционных материалов, а также снижение себестоимости биметалла.

Технический результат достигается тем, что в способе изготовления биметаллического конструкционного материала с основным слоем из низколегированной стали, включающим нанесение плакирующего слоя из коррозионно-стойкой стали электрошлаковой наплавкой расходуемыми электродами, горячую прокатку, термическую обработку, согласно изобретению, расходуемые электроды изготавливают из износостойкой двухфазной аустенитно-ферритной стали, легированной азотом и молибденом, следующего состава, мас.%:

Углерод 0,010-0,035
Кремний 0,5-1,0
Марганец 0,7-2,0
Хром 21-25
Никель 4,5-7,5
Молибден 2,5-4,5
Титан Не более 0,005
Алюминий Не более 0,03
Азот 0,01-0,20
Сера 0,0025-0,0035
Фосфор 0,010-0,020
Железо и неизбежные примеси Остальное,

при этом глубина проплавления основного слоя при наплавке составляет не более 5 мм.

Сущность изобретения заключается в следующем.

Для обеспечения требуемого комплекса свойств конструкционного биметалла при его производстве в качестве плакирующего слоя применяют двухфазную аустенитно-ферритную сталь определенного состава, которая получается путем использования при электрошлаковой наплавке расходуемых электродов из двухфазной аустенитно-ферритной стали. При этом глубина проплавления при электрошлаковой наплавке составляет не более 5 мм. Заявленный химический состав расходуемых электродов обеспечивает необходимый состав стали плакирующего слоя при глубине проплавления не более 5 мм.

В качестве расходуемых электродов используют нержавеющую сталь аустенитно-ферритного класса с низким содержанием углерода, дополнительно легированную азотом в количестве 0,01-0,20% и молибденом в количестве 2,5-4,5%, одновременно ограничивая содержание титана и алюминия.

Легирование азотом и молибденом в заявленных количествах обеспечивает повышение прочности и износостойкости, а также сопротивление локальным видам коррозии, в частности стойкость к питтингообразованию.

В отличие от углерода азот не образует с хромом соединений, аналогичных по кинетике зарождения и роста карбида Cr23C6, что благоприятно сказывается на сопротивлении коррозии. Также азот является γ-стабилизатором, что также улучшает сопротивление локальным видам коррозии. Кроме того, легирование азотом положительно влияет и на другие параметры, такие как прочность, пластичность, износостойкость.

Легирование молибденом приводит к измельчению зерна, а также вызывает твердорастворное упрочнение, обеспечивая упрочнение сталей после термической обработки. Молибден также снижает склонность нержавеющей стали к точечной (питтинговой) коррозии.

Легирование азотом и молибденом, элементами, снижающими расход дорогостоящего никеля, позволяет снизить себестоимость биметалла.

Титан и алюминий при электрошлаковой наплавке переходят в шлак и изменяют свойства шлака, что приводит к ухудшению качества поверхности биметаллической заготовки. Ограничение содержания титана и алюминия до 0,005% и до 0,030%, соответственно, обеспечивает необходимое качество поверхности плакирующего слоя биметаллической заготовки.

Примеры конкретного выполнения способа

Двухслойный листовой прокат с основным слоем из стали 09Г2С (химический состав по ГОСТ 19281-2014) и 3 вариантами стали плакирующего слоя. На заготовку основного слоя методом электрошлаковой наплавки с помощью расходуемых электродов различного состава наносили плакирующий слой, при этом толщина проплавления во всех вариантах была не больше 5 мм. Полученные биметаллические заготовки прокатывали в полосу на реверсивном стане горячей прокатки по одинаковым режимам с последующим высоким отпуском: нагрев до 680°C, выдержка 2 часа, охлаждение на воздухе. После травления полученных полос из них изготавливались образцы для определения механических характеристик, а также для проведения ускоренных испытаний на стойкость к питтинговой коррозии по ГОСТ 9.912-89.

Были опробованы следующие варианты сталей расходуемых электродов.

Вариант 1: 0,003% углерода, 0,6% кремния, 1,4% марганца, 22,0% хрома, 6,0% никеля, 3,0% молибдена, 0,004% титана, 0,025% алюминия, 0,090% азота, 0,003% серы, 0,014% фосфора, железо и примеси - остальное (вариант 1 по химическому составу расходуемых электродов соответствует формуле изобретения).

Вариант 2: 0,028% углерода, 0,6% кремния, 1,2% марганца, 23,0% хрома, 6,5% никеля, 3,5% молибдена, 0,065% титана, 0,050% алюминия, 0,085% азота, 0,003% серы, 0,013% фосфора, железо и примеси - остальное (вариант 2 по содержанию титана и алюминия не соответствует формуле изобретения).

Вариант 3: 0,003% углерода, 0,7% кремния, 1,4% марганца, 23,0% хрома, 6,5% никеля, 0,5% молибдена, 0,004% титана, 0,025% алюминия, 0,005% азота, 0,003% серы, 0,012% фосфора, железо и примеси - остальное (вариант 3 по содержанию азота и молибдена не соответствует формуле изобретения).

Механические свойства двухслойных образцов определяли при испытаниях по ГОСТ 1497-84 (временное сопротивление разрыву при испытаниях на растяжение) и по ГОСТ 10885-85 (прочность соединения плакирующего и основного слоев при испытании на срез). Коррозионные испытания проводили по ГОСТ 9.912-89, определяя стойкость к питтинговой коррозии электрохимическим методом в водной среде, содержащей 16,5 г/дм3 хлорида натрия. Условием обеспечения требуемой стойкости к питтинговой коррозии является высокий уровень значений коррозионных показателей, а именно базисов питтингостойкости. Чем выше базисы питтингостойкости ΔЕп.о. и ΔЕр.п., тем сталь является более коррозионно-стойкой.

Результаты испытаний исследованных образцов представлены в таблице.

Видно, что вариант 1, соответствующий формуле изобретения, обеспечивает максимальные значения как прочностных, так и коррозионных показателей. Превышение содержания титана и алюминия (вариант 2) приводит к образованию поверхностных дефектов плакирующего слоя, что является абсолютно недопустимым. При понижении содержания азота и молибдена (вариант 3) снижается коррозионная стойкость к питтинговой коррозии, одновременно несколько ухудшаются механические характеристики.

Таким образом, использование настоящего изобретения существенно повышает прочностные характеристики, следовательно, износостойкость, а также стойкость к питтинговой коррозии при обеспечении качества поверхности плакирующего слоя, получаемого путем электрошлаковой наплавки расходуемыми электродами из двухфазной аустенитно-ферритной стали.

Способ изготовления биметаллического конструкционного материала с основным слоем из низколегированной стали, включающий нанесение на основной слой плакирующего слоя из коррозионно-стойкой стали электрошлаковой наплавкой расходуемыми электродами, горячую прокатку и термическую обработку, отличающийся тем, что расходуемые электроды изготавливают из коррозионно-стойкой износостойкой двухфазной аустенитно-ферритной стали, легированной азотом и молибденом, следующего состава, мас.%:

углерод 0,010-0,035
кремний 0,5-1,0
марганец 0,7-2,0
хром 21-25
никель 4,5-7,5
молибден 2,5-4,5
титан не более 0,005
алюминий не более 0,03
азот 0,01-0,20
сера 0,0025-0,0035
фосфор 0,010-0,020
железо и неизбежные примеси остальное,

при этом глубина проплавления основного слоя при наплавке составляет не более 5 мм.



 

Похожие патенты:

Изобретение относится к металлургии, а именно низколегированной высокопрочной, не содержащей карбиды бейнитной стали. Сталь имеет следующий химический состав, мас.%: 0,10-0,70 C; 0,25-4,00 Si; 0,05-3,00 Al; 1,00-3,00 Mn; 0,10-2,00 Cr; 0,001-0,50 Nb; 0,001-0,025 N; не более 0,15 P; не более 0,05 S; остальное - железо с обусловленными плавкой примесями при необязательной добавке одного или нескольких элементов: Mo, Ni, Со, W, Ti или V, а также Zr и редкие земли.

Изобретение относится к области металлургии, а именно к окалиностойкой стали, используемой для изготовления закаленных деталей. Сталь имеет следующий химический состав, мас.%: С 0,04-0,50, Μn 0,5-6,0, Al 0,5-3,0, Si 0,05-3,0, Cr 0,05-3,0, Ni менее 3,0, Cu менее 3,0, Ti 0,010-0,050, В 0,0015-0,0040, Ρ менее 0,10, S от более 0,01 до 0,05, N менее 0,020, остальное железо и неизбежные примеси.

Изобретение относится к области металлургии, а именно к деформационно-термической обработке аустенитных высокомарганцевых сталей с TWIP-эффектом, и может быть применено в автомобилестроении для производства несущих конструкций автомобиля.

Изобретение относится к области металлургии, а именно к металлу сварного шва, используемому для сварной конструкции. Металл сварного шва содержит, мас.%: С от 0,02 до 0,12, Si от 0,18 до 2,00, Mn от 0,90 до 2,5, Ni от 1,0 до 3,5, Cr от 0,3 до 2,0, Al 0,030 или менее (за исключением 0), N 0,015 или менее (за исключением 0), О 0,050 или менее (за исключением 0), железо и неизбежные примеси остальное.

Изобретение относится к области металлургии, а именно к разработке аустенитной нержавеющей стали, используемой в химической промышленности. Сталь содержит, мас.%: С: не более 0,050, Si: 0,01-1,00, Mn: 1,75-2,50, Р: не более 0,050, S: не более 0,010, Ni: 20,00-24,00, Cr: 23,00-27,00, Мо: 1,80-3,20, N: 0,110-0,180, остальное - Fe и неизбежные примеси.

Изобретение относится к области черной металлургии. Для повышения прочности проката при одновременном повышении прокаливаемости, пластичности и ударной вязкости выплавляют сталь, содержащую, мас.%: углерод 0,04÷0,05, марганец 1,9÷2,0, кремний 0,22÷0,25, ниобий 0,07÷0,09, титан 0,02÷0,025, алюминий 0,025÷0,03, азот 0,005÷0,007, сера 0,001÷0,002, фосфор 0,006÷0,008, бор 0,0015÷0,002, железо - остальное, осуществляют непрерывную разливку стали в слябы, аустенизацию при 1050÷1100°С, черновую прокатку с деформацией 12÷20% в области температур рекристаллизации аустенита, чистовую - в области температур полного торможения рекристаллизации с общей степенью деформации 70÷80%, ускоренное охлаждение при температуре его завершения 350÷450°С и индукционный отпуск при температуре 620±10°С.

Сталь // 2615936
Изобретение относится к области черной металлургии, а именно к составам сталей, используемых в машиностроении. Сталь содержит, мас.%: углерод 0,05-0,1; кремний 0,15-0,3; марганец 5,0-11,0; хром 16,0-22,0; никель 13,0-18,0; ванадий 0,5-1,5; РЗМ 0,15-0,2; кальций 0,005-0,01; барий 0,05-0,08; титан 0,4-0,8; медь 1,0-1,5; железо остальное.

Изобретение относится к области металлургии. Для обеспечения механической прочности более или равной 600 МПа и удлинения при разрыве более или равного 20% изготавливают катаный стальной лист, химический состав которого содержит, мас.%: 0,10≤C≤0,30, 6,0≤Mn≤15,0, 6,0≤Al≤15,0, и, необязательно, один или несколько элементов, выбранных из числа следующих: Si≤2,0, Ti≤0,2, V≤0,6 и Nb≤0,3, железо и неизбежные при переработке примеси – остальное, при выполнении условия: отношение массы марганца к массе алюминия .

Изобретение относится к области металлургии, а именно к толстостенным стальным трубам, которые могут быть использованы для бурения или транспортировки нефти и природного газа.

Изобретение относится к области металлургии и может быть использовано при горячей прокатке конструкционных низколегированных марок стали на реверсивных станах.

Изобретение относится к области металлургии, а именно к получению аустенитной нержавеющей нанодвойникованной TWIP стали. Выплавляют аустенитную нержавеющую сталь, содержащую, мас.%: не более чем 0,018 C, 0,25-0,75 Si, 1,5-2 Mn, 17,80-19,60 Cr, 24,00-25,25 Ni, 3,75-4,85 Mo, 1,26-2,78 Cu, 0,04-0,15 N, остальное – Fe и неизбежные примеси.

Изобретение относится к области металлургии, а именно к плакирующему материалу для стального листа, используемого в морских конструкциях, устройствах опреснения морской воды.

Изобретение относится к области металлургии, а именно к составам высокопрочных нержавеющих сталей, используемых для изготовления бесшовных труб для нефтяных скважит.

Изобретение относится к области металлургии, а именно к низколегированным сталям повышенной теплоустойчивости, применяемым при производстве плавниковых труб, предназначенных для паровых котлов, труб пароперегревателей, трубопроводов и коллекторных установок высокого давления, деталей цилиндров газовых турбин, различных деталей, работающих при температуре до +480-500°C, воротниковых фланцев, штуцеров, колец, патрубков, тройников для энергооборудования и трубопроводов тепловых электростанций.

Изобретение относится к области металлургии, а именно к созданию высокопрочной коррозионно-стойкой стали, используемой для изготовления изделий, работающих при высоких растягивающих и изгибающих нагрузках, преимущественно проволоки малого диаметра, используемой в авиационной промышленности и машиностроении.

Изобретение относится к области черной металлургии, а именно к низколегированным сталям повышенной жаропрочности и хладостойкости, применяемым при производстве корпусов и внутренних элементов аппаратуры нефтеперерабатывающих заводов и крекинговых труб, задвижек, деталей насосов, спецкрепежа труб, трубопроводной арматуры, деталей трубопроводов, коммуникационных и печных труб, используемых в тепловых сетях и энергомашиностроении.

Изобретение относится к области металлургии, а именно к составам коррозионно-стойких немагнитных (аустенитных) сталей повышенной прочности и к изделиям, выполненным из нее, для работы в окислительных и восстановительных средах средней и высокой агрессивности.

Изобретение относится к области черной металлургии, а именно к получению сталей, применяемых в серийном и массовом производстве ответственных деталей машин. Сталь имеет следующий химический состав, мас.%: углерод 0,37-0,43, кремний 0,17-0,37, марганец 0,50-0,80, хром 0,60-0,90, никель 0,70-1,10, молибден 0,15-0,25, висмут 0,08-0,13, кальций 0,002-0,003, алюминий 0,005-0,015, железо - основа.

Изобретение относится к высокопрочной высокопластичной легированной стали и изделиям, изготавливаемым из нее. Сталь содержит компоненты в следующем соотношении, мас.%: С 0,30-0,47, Mn 0,8-1,3, Si 1,5-2,5, Cr 1,5-2,5, Ni 3,0-5,0, Mo+½W 0,7-0,9, Cu 0,70-0,90, Со до 0,01, V+(5/9)×Nb 0,10-0,25, Ti до 0,005, Al до 0,015, Fe и примеси остальное.

Изобретение относится к области черной металлургии, а именно к получению сталей, применяемых в серийном и массовом производстве ответственных деталей машин. Сталь имеет следующий химический состав, мас.%: углерод 0,18-0,23, кремний 0,17-0,37, марганец 0,70-1,10, хром 0,40-0,70, никель 0,40-0,70, молибден 0,15-0,25, висмут 0,08-0,13, кальций 0,002-0,003, алюминий 0,005-0,015, железо - основа.

Изобретение относится к изготовлению металлических проводников и касается способа получения трехслойной электропроводящей проволоки. Осуществляют расплавление алюминиевого сплава заявленного состава и литье сердечника из алюминиевого сплава.

Изобретение относится к области металлургии, а именно к способам производства высокопрочного износостойкого биметаллического конструкционного материала с основным слоем из низколегированной стали и плакирующим слоем из коррозионно-стойкой стали, предназначенного для применения в изделиях нефтяного и химического машиностроения, а также других отраслях, где необходимо применение коррозионно-стойких в агрессивных средах элементов конструкций и аппаратов. На основной слой наносят плакирующий слой из коррозионно-стойкой износостойкой аустенитно-ферритной стали электрошлаковой наплавкой расходуемыми электродами. Электроды изготовлены из стали следующего состава, мас.: углерод 0,010-0,035, кремний 0,5-1,0, марганец 0,7-2,0, хром 21-25, никель 4,5-7,5, молибден 2,5-4,5, титан не более 0,005, алюминий не более 0,03, азот 0,01-0,20, сера 0,0025-0,0035, фосфор 0,010-0,020, железо и неизбежные примеси остальное, а глубина проплавления основного слоя при наплавке составляет не более 5 мм. Затем осуществляют горячую прокатку и термическую обработку. Повышается коррозионная стойкость, в том числе стойкость к питтинговой коррозии, прочностные характеристики и износостойкость биметаллических конструкционных материалов, а также снижается себестоимость биметалла. 1 табл.

Наверх