Датчик физических свойств вещества

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, сыпучих веществ, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам. Измеряемыми параметрами также могут быть сплошность газо-жидкостного потока, концентрация частиц сыпучего материала в трубопроводе и др. Предлагаемый датчик физических свойств вещества, функционально связанных с его электрофизическими свойствами и включающих плотность, влагосодержание, концентрацию смеси веществ, концентрацию частиц сыпучего материала, содержит чувствительный элемент в виде объемного резонатора, заполняемого контролируемым веществом и являющегося отрезком круглого волновода с торцевыми отражателями электромагнитных волн, к которому подсоединен элемент связи, при этом волновод объемного резонатора содержит расположенную вдоль волновода и присоединенную перпендикулярно к его внутренней поверхности металлическую пластину длиной, равной длине волновода, а ширина пластины меньше диаметра волновода. На первом торце волновода торцевой отражатель электромагнитных волн выполнен в виде отрезка металлического трубопровода с тем же диаметром, внутри которого установлена в той же плоскости, что и пластина в волноводе, дополнительная металлическая пластина шириной, равной диаметру трубопровода, и соединена с пластиной волновода в области их контакта, а на втором торце волновода торцевой отражатель электромагнитных волн выполнен или идентичным ему на первом торце волновода с установленной дополнительной металлической пластиной, или в виде металлической стенки. Техническим результатом заявленного изобретения является расширение функциональных возможностей. Таким образом, предлагаемый датчик имеет широкую область применения, обеспечивая возможность измерения физических свойств веществ как перемещаемых по трубопроводу, так и находящихся в резервуарах. 3 ил.

 

Предлагаемое изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (плотности, концентрации смеси веществ, влагосодержания и др.) веществ (жидкостей, сыпучих веществ, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам. Измеряемыми параметрами также могут быть сплошность газо-жидкостного потока, концентрация частиц сыпучего материала в трубопроводе и др.

Известны различные устройства для измерения физических свойств веществ, основанные на измерении электрофизических параметров (диэлектрической проницаемости ε и(или), тангенса угла диэлектрических потерь tgδ (электропроводности σ)) веществ с применением датчиков, имеющих чувствительные элементы в виде объемных резонаторов и содержащих контролируемые вещества (монография: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963. Стр. 37-144). В зависимости от электрофизических параметров вещества, функционально связанных с его измеряемым физическим свойством, возможно, при проведении рассматриваемых в заявке резонаторных измерений с применением предлагаемого датчика, определение как ε (например, путем измерения резонансной частоты резонатора), так и(или) tgδ (например, путем измерения добротности резонатора). Недостатком таких измерительных устройств являются достаточно большие размеры чувствительных элементов в виде объемных резонаторов при проведении измерений на относительно низких частотах электромагнитных волн, что приводит к ограниченной области их применения.

Известно также техническое решение (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с. С. 175-176). Это техническое решение представляет собой датчик в виде объемного резонатора волноводного типа, предназначенный для измерений физических свойств веществ, перемещаемых по трубопроводу. Объемный резонатор выполнен проточным, подсоединенным к трубопроводу с помощью отверстий в его торцевых стенках. Диаметр волновода объемного резонатора больше диаметра трубопровода, а диаметр указанных отверстий в торцевых стенках волновода равен внутреннему диаметру трубопровода. В данном случае участки подсоединенного трубопровода являются торцевыми отражателями электромагнитных волн в волноводном объемном резонаторе и представляют собой запредельные волноводы для электромагнитных колебаний, возбуждаемых в данном объемном резонаторе. Волновод этого резонатора содержит размещенную вдоль его длины соосную диэлектрическую трубу, внутренний диаметр которой равен внутреннему диаметру трубопровода; тем самым образован сквозной канал без нарушения динамики потока вещества. Применение этого устройства рассмотрено для измерений физических свойств (влагосодержания) вещества, перемещаемого по трубопроводу.

Недостатком этого технического решения является ограниченная область его применения, зависящая от невысокой чувствительности датчика из-за наличия диэлектрической трубы в электромагнитном поле объемного резонатора. В частности, при измерении зависимости резонансной частоты от значения измеряемого физического свойства вещества и при выходе этого значения за пределы некоторого порогового значения устройство становится неработоспособным ввиду недостаточной его чувствительности.

Известно также техническое решение WO 99/63331 А2 (от 02.12.1999), которое содержит описание устройства, по технической сущности наиболее близкого к предлагаемому устройству и принятого в качестве прототипа. В этом техническом решении датчик содержит чувствительный элемент в виде проточного объемного резонатора, заполняемого контролируемым веществом и являющегося отрезком круглого волновода. К этому резонатору подсоединены элементы связи для возбуждения в резонаторе электромагнитных колебаний и съема электромагнитных колебаний. При этом волновод объемного резонатора содержит расположенную вдоль волновода и присоединенную перпендикулярно к его внутренней поверхности металлическую пластину длиной, равной длине волновода, а ширина пластины меньше диаметра волновода.

Недостатком этого технического решения являются его ограниченные функциональные возможности. При измерениях в сложных эксплуатационных условиях конструкция датчика должна быть более жесткой, геометрические и электрические параметры которого остаются стабильными при наличии различных возмущающих факторов (разного рода механических воздействий, вибраций и т.п.). Кроме этого, данное техническое решение неприменимо для измерения физических свойств веществ, находящихся в резервуарах.

Техническим результатом изобретения является расширение функциональных возможностей.

Технический результат достигается тем, что датчик физических свойств вещества, функционально связанных с его электрофизическими параметрами и включающих плотность, влагосодержание, концентрацию смеси веществ, концентрацию частиц сыпучего материала, содержащий чувствительный элемент в виде объемного резонатора, заполняемого контролируемым веществом и являющегося отрезком круглого волновода с торцевыми отражателями электромагнитных волн, к которому подсоединен элемент возбуждения и съема электромагнитных колебаний, при этом волновод объемного резонатора содержит расположенную вдоль волновода и присоединенную перпендикулярно к его внутренней поверхности металлическую пластину длиной, равной длине волновода, а ширина пластины меньше диаметра волновода, на первом торце волновода торцевой отражатель электромагнитных волн выполнен в виде отрезка металлического трубопровода с тем же диаметром, внутри которого установлена в той же плоскости, что и пластина в волноводе, дополнительная металлическая пластина шириной, равной диаметру трубопровода, и соединена с пластиной волновода в области их контакта, а на втором торце волновода торцевой отражатель электромагнитных волн выполнен или идентичным ему на первом торце волновода с установленной дополнительной металлической пластиной, или в виде металлической стенки.

Предлагаемое устройство поясняется чертежами.

На фиг. 1 показана конструкции датчика для измерений физических свойств вещества, перемещаемого по трубопроводу.

На фиг. 2 и фиг. 3 приведены варианты конструкции датчика для измерений физических свойств вещества в резервуаре.

На чертежах показаны: трубопровод 1, измерительный участок 2, фланцы 3 и 4, торцевые отражатели электромагнитных волн 5 и 6, металлическая пластина 7, элемент возбуждения и съема электромагнитных колебаний 8, металлическая стенка 9.

Устройство работает следующим образом.

Возможна реализация данного устройства - датчика физических свойств вещества - применительно к измерениям в трубопроводе и в резервуаре.

Для проведения измерений в данном устройстве организован запредельный режим для электромагнитных волн с обеих (при измерениях в трубопроводах) или одной из сторон (при измерениях в резервуарах) измерительного участка, являющегося чувствительным элементом в виде волноводного объемного резонатора.

На фиг. 1 приведен датчик, конструкция которого показана схематично и предназначена для измерений в трубопроводе 1, и установлен на его измерительном участке 2, ограниченном фланцами 3 и 4. Его чувствительный элемент является проточным объемным резонатором, образованным волноводом с торцевыми отражателями электромагнитных волн 5 и 6. Стенки этого волноводного резонатора не препятствуют прохождению контролируемого вещества по трубопроводу 1. Достигается это с применением торцевых отражающих элементов 5 и 6 в виде запредельных волноводов для тех резонансных (собственных) частот, на которых возбуждаются электромагнитные колебания в этом проточном резонаторе. Конструкция этого датчика имеет жесткую конструкцию. Здесь между отражающими торцевыми пластинами 5 и 6 расположена соединяющая их (области соединения показаны пунктиром) и расположенная в той же плоскости металлическая пластина 7 шириной, меньшей диаметра, в частности ширина пластины 7 может быть равной половине диаметра (т.е. радиусу) волновода. Совокупность этих пластин 5, 6 и 7 образует единую конструкцию. Элемент возбуждения и съема электромагнитных колебаний 8 (штырь) расположен на измерительном участке в той же плоскости, что и пластина 7, на незанятом ею участке. Возможно также применение раздельных элементов связи - элемента для возбуждения в резонаторе электромагнитных колебаний и элемента для съема электромагнитных колебаний (не показано).

На измерительном участке 2 при ширине пластины 7, равной радиусу R круглого волновода (трубопровода), критическая длина λкр волны в волноводе, образующем такой резонатор, соответствует значению λкр для эквивалентного прямоугольного волновода с волнами типа Н11: λкр=2πR. Эта величина λкр равна длине широкой стенки этого прямоугольного волновода, длина узкой стенки волновода равна R.

В экспериментах исследованы, в частности, такие резонаторы со следующими размерами: внутренний диаметр трубы d=123 мм; длины резонатора (т.е. длины пластин в резонаторе) l=200 мм; 250 мм. Ширина пластины в резонаторе равна радиусу d/2=61,5 мм трубопровода. В резонаторе возбуждаются высоко добротные колебания типов H11n, n=1, 2, …. Для l=250 мм имеем для колебаний типа Н111 расчетные значения: ƒp0=1,08 ГГц; для l=250 мм значение ƒp=0,98 ГГц, что совпадает с данными экспериментов. При заполнении полости резонаторов диэлектрической жидкостью с диэлектрической проницаемостью ε, равной 2, получено в первом случае ГГц, а во втором случае ƒp=0,69 ГГц. При наличии же торцевых пластин имеем при l=250 мм, ε=2 следующие значения: ƒp0=1,55 ТГц, ƒp=1,096 ГГц.

Конструкция датчика для измерений физических свойств вещества в резервуаре показана схематично на фиг. 2 и фиг. 3. На фиг. 2 конструкция датчика соответствует конструкции на фиг. 1, предназначенной для проведения измерений в трубопроводе. Но в данном случае один из торцевых отражателей электромагнитных волн (нижний на фиг. 2), которым ранее являлся запредельный волновод, содержащий пластину 6, заменен на металлическую стенку 9 - дно резервуара, которым является данный волноводный объемный резонатор.

Конструкция датчика на фиг. 3 также предназначена для проведения измерений в резервуаре. В данном случае одним (нижним) из торцевых отражателей электромагнитных волн является металлическая стенка 9 - дно резервуара, которым является данный волноводный объемный резонатор, а другой (верхний) не имеет дополнительной металлической пластины 5.

В датчиках с чувствительными элементами в виде резонаторов на фиг. 1, фиг. 2 и фиг. 3 чувствительность датчиков имеет максимально возможную величину, определяемую значением резонансной частоты ƒp резонатора, весь объем которого заполнен контролируемым веществом. Так, для диэлектрического вещества с диэлектрической проницаемостью ε, , где ƒp0 - значение, где ƒp при ε=1, т.е. в отсутствие вещества в полости объемного резонатора.

Таким образом, предлагаемый датчик имеет широкую область применения, обеспечивая возможность измерения физических свойств веществ как перемещаемых по трубопроводам, так и находящихся в резервуарах.

Датчик физических свойств вещества, функционально связанных с его электрофизическими параметрами и включающих плотность, влагосодержание, концентрацию смеси веществ, концентрацию частиц сыпучего материала, содержащий чувствительный элемент в виде объемного резонатора, заполняемого контролируемым веществом и являющегося отрезком круглого волновода с торцевыми отражателями электромагнитных волн, к которому подсоединен элемент возбуждения и съема электромагнитных колебаний, при этом волновод объемного резонатора содержит расположенную вдоль волновода и присоединенную перпендикулярно к его внутренней поверхности металлическую пластину длиной, равной длине волновода, а ширина пластины меньше диаметра волновода, отличающийся тем, что на первом торце волновода торцевой отражатель электромагнитных волн выполнен в виде отрезка металлического трубопровода с тем же диаметром, внутри которого установлена в той же плоскости, что и пластина в волноводе, дополнительная металлическая пластина шириной, равной диаметру трубопровода, и соединена с пластиной волновода в области их контакта, а на втором торце волновода торцевой отражатель электромагнитных волн выполнен или идентичным ему на первом торце волновода с установленной дополнительной металлической пластиной, или в виде металлической стенки.



 

Похожие патенты:

Изобретение относится к измерительной технике, может быть использовано для определения электрофизических параметров слоя полупроводника на поверхности диэлектрика и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев.

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами трехкомпонентного вещества, неподвижного или транспортируемого по трубопроводу.

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами двухфазного вещества, неподвижного или транспортируемого по трубопроводу.

Изобретение относится к области противодействия терроризму и может быть использовано в системах защиты объектов. Способ обнаружения осколочных взрывных устройств основан на методе нелинейной радиолокации и включает облучение СВЧ электромагнитным зондирующим полем и регистрацию новых составляющих в спектре отраженного сигнала.

Предлагаемый способ относится к области электрических измерений и может применяться для контроля изменений интегрального состава вещества в химической промышленности, добывающей промышленности, в системах контроля отработанных газов двигателей внутреннего сгорания, либо в аналогичных комплексных системах, где крайне важна задача мониторинга изменения интегрального состава вещества, находящегося в любом агрегатном состоянии. Контроль изменений интегрального состава вещества основан на измерении изменений набега фазы микроволнового сигнала при его многократном распространении через объем контролируемого вещества.

Одной из главнейших задач обеспечения безопасности работ в угледобывающих шахтах является контроль содержания в рудничной атмосфере опасных газов и смесей, среди которых наибольшую угрозу представляют метан и угольная пыль. Предлагаемый способ относится к области электрических измерений и может применяться для контроля изменения состава интегральной газовой среды в угледобывающих шахтах, в системах контроля отработанных газов, которые выделяются вследствие промышленной деятельности человека, либо в аналогичных комплексных системах, где крайне важна задача мониторинга концентрации вторичных взрыво- и пожароопасных продуктов производства. Контроль изменений интегрального состава газовой среды основан на измерении изменений набега фаз микроволнового сигнала при его многократном распространении по замкнутой волноводной структуре, через которую также пропускают воздух их окружающей среды.

Способ определения процентного содержания воды в смеси диэлектрик-вода при изменении содержания воды в смеси в широких пределах относится к области электрических измерений неэлектрических величин и может быть использован для контроля содержания воды в жидких смесях типа диэлектрик-вода, например жидких углеводородах (нефть, масло, мазут и т.п.) или во влажных смесях (цементно-песочная смесь и т.п.).

Датчик перманентного контроля сердечного ритма шахтера относиться к области обеспечения безопасности работ в горной промышленности и может использоваться для перманентного контроля сердечного ритма всего персонала в шахтах, как во время выполнения ими плановых работ, так и при возникновение чрезвычайных ситуаций, повлекших изоляцию персонала шахты за/под завалом горной породы. Новым в датчике перманентного контроля сердечного ритма шахтера является размещение датчика внутри корпуса аккумуляторного блока шахтерского фонаря со стороны его широкой стенки, обращенной к телу шахтера и изготовление датчика в виде автодинного генератора, совмещенного с микрополосковой антенной и содержащего кроме того датчик тока, узкополосный усилитель инфразвуковой частоты, микроконтроллер со встроенным аналого-цифровым преобразователем и получатель информации о сердечном ритме шахтера. Автодинный генератор состоит из полевого транзистора, блокировочного конденсатора и микрополосковой антенной на диэлектрической подложке с экранирующей пластиной, который начинает генерировать колебания при подаче на сток транзистора напряжения постоянного тока.

Способ контроля изменений интегрального состава газовой среды относится к области электрических измерений и может быть использован в составе аналитическо-измерительных комплексов непрерывного контроля за параметрами атмосферы в замкнутых пространствах, в шахтах и тоннелях, а также в системах автоматического управления технологическими процессами, системах непрерывного экологического мониторинга и метеорологии. Преимущество данного способа измерения, по сравнению с другими способами измерения заключается в защищённости датчиков от пыли, влаги, паров, малом времени измерения и возможности проведения контроля изменений интегрального состава газовой среды на протяжённых трассах и в больших объёмах рабочих пространств.

Использование: для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Сущность изобретения заключается в том, что одновременно излучают электромагнитные волны с частотой F1 и частотой в k раз выше kF1 в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ1 между принимаемой волной с частотой kF1 и волной с частотой F1, предварительно умноженной на k, после этого одновременно излучают электромагнитные волны с другой частотой F2 и частотой в k раз выше kF2 в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ2 между принимаемой волной с частотой kF2 и волной с частотой F2, предварительно умноженной на k, толщину диэлектрической пластины определяют по фазам φ1 и φ2.

Использование: для обнаружения потенциально опасных и/или взрывчатых веществ, скрытых под одеждой или в багаже. Сущность изобретения заключается в том, что путем излучения, отражения и регистрации микроволн можно получить трехмерное изображение интересующего объекта. На изображении будет присутствовать контур движущегося человека, а также диэлектрические объекты, скрытые на его теле. Путем измерения фазы и амплитуды микроволн, отраженных от диэлектрического объекта, можно определить длину оптического пути микроволн, прошедших через скрытый объект, что позволит получить трехмерное изображение области скрытого объекта. Одновременно можно использовать несколько излучателей и приемников, также возможно наложение на микроволновое изображение видеоизображения. Технический результат: повышение точности обнаружения потенциально опасных и/или взрывчатых веществ, скрытых под одеждой или в багаже. 2 н. и 15 з.п. ф-лы, 11 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ включает возбуждение электромагнитных волн в волноводе, размещение контролируемой жидкости в электромагнитном поле одного из торцевых участков волновода и идентичной жидкости с эталонным значением измеряемых физических свойств жидкости в электромагнитном поле другого торцевого участка волновода, при этом в волноводе возбуждают электромагнитные волны фиксированной частоты на одном из его торцов, частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, по которой судят о физических свойствах жидкости. Техническим результатом изобретения является расширение функциональных возможностей способа, повышение его надежности и стабильности измерений. 6 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или перекачиваются по трубопроводу. В предложенном способе для измерения физических свойств жидкости предварительно возбуждают электромагнитные колебания в волноводном резонаторе и измеряют резонансную частоту электромагнитных колебаний, при этом контролируемую жидкость помещают в коаксиальный резонатор, в котором одним из его торцевых участков является запредельный коаксиальный волновод с уменьшенным диаметром наружного проводника. В резонаторе возбуждают электромагнитные колебания типа Hm1p (m=1, 2, 3. …; р=1, 2, 3, …). Второй торцевой участок коаксиального резонатора идентичен первому торцевому участку или выполнен в виде металлической стенки волноводного резонатора. Расширение функциональных возможностей предложенного способа за счет проведения измерений физических свойств жидкости в широком диапазоне частот, в том числе на высоких частотах гигагерцового диапазона, что является техническим результатом изобретения. 2 ил.

Использование: для дистанционного досмотра багажа. Сущность изобретения заключается в том, что выполняют облучение контролируемой области пространства когерентным СВЧ-излучением на наборе частот, регистрацию сигнала после прохождения сигналом этой области с помощью нескольких каналов регистрации и обработку зарегистрированного сигнала, который несет информацию о диэлектрических объектах в багаже, при этом облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, а при обработке зарегистрированного сигнала определяют множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляют распределение плотности удлинения оптического пути в конкретной области пространства, выделяют непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути, затем для каждого выделенного участка вычисляют среднюю плотность удлинения ρ оптического пути, положение и размеры диэлектрического объекта, находящегося в багаже, в системе координат (x, y, z), диэлектрическую проницаемость ε диэлектрического объекта в сечении одной из плоскостей системы координат, причем диэлектрическую проницаемость вычисляют по заданной математической формуле, задают значения εниж и εверх, которые характерны для опасных диэлектрических объектов, и при εниж<ε<εверх констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства. Технический результат: обеспечение возможности выявления опасных диэлектрических объектов, а также обеспечение возможности определения положения выявленного объекта в пространстве и его размеров.

Изобретение относится к области СВЧ-техники и может быть использовано для определения концентраций веществ в водных растворах, в том числе для контроля влаги в углеводородных смесях, при контроле загрязнения водных сред, при контроле концентрации биологических клеток в суспензиях. Способ определения содержания воды в жидкостях заключается в повышении температуры при воздействии СВЧ-излучения на капиллярную трубку с исследуемой жидкостью в течение фиксированного промежутка времени и определении соответствующего изменения поглощения за этот промежуток времени, после чего на основании разности поглощения СВЧ-излучения жидкостью при различных температурах определяется концентрация воды в жидкости. Повышение точности измерений в условиях максимальной добротности резонатора является техническим результатом изобретения. 1 ил.

Изобретение относится к медицинской технике. Устройство для диагностики заболеваний бронхолегочной системы содержит управляемый генератор высокой частоты (3), аналого-цифровой преобразователь (9), блок управления (4), блок регистрации и отображения результатов измерений (2), блок генерации и измерения (1), основной (6), опорный (7) и приемный (8) каналы. В блоке генерации и измерения (1) в качестве генератора высокой частоты (3) использован синтезатор частот СВЧ диапазона, первый выход которого соединен с входом делителя мощности (5) для разделения мощности СВЧ сигнала между основным (6) и опорным (7) каналами. Основной канал (6) образован усилителем мощности (12) и передающей антенной-аппликатором (13), опорный канал (7) - аттенюатором (15) и измерителем коэффициента усиления (16), приемный канал (8) - приемной матрицей антенн-аппликаторов (19), блоком мультиплексирования (18) и усилителем мощности (17). Датчики нажима (14, 20) передающей антенны-аппликатора (13) и приемной матрицы антенн-аппликаторов (19) и оптический датчик положения (11) передающей антенны-аппликатора (13) соединены с блоком управления (4), который связан с электронно-вычислительной машиной (21) с помощью шины данных через устройство сопряжения (10). Достигается определение наличия изменений в бронхолегочной системе и их локализации у пациентов всех возрастных групп, в том числе детей раннего возраста, повышение достоверности, точности и информативности получаемых результатов обследования. 3 з.п. ф-лы, 1 ил.

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей. Техническим результатом изобретения является повышение достоверности обнаружения взрывчатых и наркотических веществ, размещенных на контролируемых объектах, путем точного и однозначного определения местоположения контролируемого объекта и его перемещения в пространстве. Устройство, реализующее предлагаемый способ, содержит приемопередающую антенну (1), антенный переключатель (2), передатчик (3), приемник (4), усилители (5, 21 и 29) высокой частоты, аналого-цифровой преобразователь (6), измерительное устройство (7), блок (8) памяти, блок (9) индикации, контролируемый объект (10), процессор (11), блок (12) сравнения, ключ (13), корреляторы (14), (22, 30 и 36), перемножители (15, 23, 31 и 37), фильтры (16, 24, 32 и 38) нижних частот, экстремальные регуляторы (17, 25, 33 и 39), блоки (18, 26, 34 и 40) регулируемой задержки, индикатор (19) дальности, приемные антенны (20 и 28), индикатор (35) угла места, индикатор (41) угла ориентации. 2 н.п. ф-лы, 2 ил.

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого вдоль его продольной оси пропущен диэлектрический трубопровод с контролируемым диэлектрическим веществом, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок, при этом волноводный резонатор выполнен в виде прямоугольного волноводного резонатора, в котором возбуждены колебания типа H10n, n=1, 2, …, и в котором у каждой из его узких стенок установлена диэлектрическая вставка с тем же поперечным размером, что и у прямоугольного резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Технический результат: обеспечение возможности повышения точности измерения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Техническим результатом является повышение точности и упрощение процесса определения состояния поверхности дороги. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, возбуждаемыми в волноводе, размещаемом под контролируемой поверхностью, с одного из его торцевых участков, который встраивают в поверхностный слой контролируемого участка дороги, и определяют одну из характеристик стоячей волны в волноводе. С другого торцевого участка волновода зондируют электромагнитными волнами поверхность, идентичную участку поверхности дороги с эталонными значениями ее состояния, соответствующими отсутствию покрывающего слоя на поверхности дороги. В качестве поверхности, зондируемой с другого торцевого участка волновода, может быть использован участок поверхности дороги с эталонными значениями ее состояния, соответствующими отсутствию покрывающего слоя на поверхности дороги, а данный торцевой участок волновода встраивают в поверхностный слой этого участка поверхности дороги. 1 з.п. ф-лы, 3 ил.

Использование: для обнаружения диэлектрических взрывчатых веществ, скрытых под одеждой на теле человека и в носимом багаже. Сущность изобретения заключается в том, что выполняют облучение контролируемой области когерентным СВЧ-излучением на N частотах, регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, с помощью одного или более параллельных каналов регистрации и когерентную обработку зарегистрированного сигнала, причем регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, осуществляют после прохождения сигналом этой области, затем определяют зависимость заданной функции от х - координаты по оси, соединяющей регистратор и источник СВЧ-излучения, при этом определяют значение хmax, при котором функция F имеет максимальное значение Fmax, устанавливают F0 - пороговое значение, и при Fmax<F0 констатируют присутствие проводящего объекта в контролируемой области пространства, при Fmax>F0 и xmax>xпороговое, где xпороговое - установленное минимальное значение размеров объекта, констатируют присутствие диэлектрического объекта в контролируемой области пространства, а при Fmax>F0 и xmax<xпороговое констатируют отсутствие объектов в контролируемой области пространства. Технический результат: повышение точности и достоверности результатов дистанционного обнаружения скрытых объектов, а также возможность осуществления досмотра цели при отсутствии достаточной освещенности контролируемой области.
Наверх