Способ получения мелкодисперсного металлического порошка

Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой до образования суспензии. При перемешивании в суспензию вводят алмазный порошок. Воздействуют на суспензию ультразвуковыми колебаниями в режиме кавитации. Удаляют из суспензии алмазный порошок. Далее выделяют мелкодисперсную фракцию металлического порошка из суспензии. Обеспечивается повышение доли выхода мелкодисперсной фракции порошка, а также диспергирование немагнитопроводящих порошков и пластичных порошков, склонных к сегрегации. 4 з.п. ф-лы, 6 ил., 1 пр.

 

Изобретение относится к способам получения мелкодисперсных порошков и может быть использовано в порошковой металлургии, ядерной энергетике, аддитивных технологиях.

В настоящее время разработано и практикуется более двух десятков способов производства мелкодисперсных материалов, основными из которых являются механическое или ультразвуковое диспергирование, газофазный синтез, использование низкотемпературной плазмы, электрический взрыв проводников, катодное распыление и т.д. [Ультрадисперсные и наноразмерные порошки: создание, строение, производство и применение / под ред. акад. В.М. Бузника. - Томск: Изд-во НТЛ, 2009. - 192 с; Формирование структуры и свойств пористых порошковых материалов / Витязь П.А., Капцевич В.М., Косторнов А.Г. и др. - М.: Металлургия. 1993. - 240 с]. Однако их всех отличает различная трудозатратность, стоимость, эффективность, а порой и возможность в получении мелкодисперсных порошков с различными физико-химическими свойствами.

Одним из наиболее простых и доступных способов получения мелкодисперсных порошков является механическое диспергирование. Устройством для измельчения сыпучих материалов путем механического диспергирования является шаровая мельница [Авторское свидетельство СССР №1784274, B02C 15/08, опубл. 30.12.1992]. Недостатками механических способов диспергирования являются большой разброс получаемых частиц по размерам и загрязнение продуктов конструкционными материалами («натир»).

В технологии диспергирования материалов широко применяют низкочастотные (20 кГц ÷ 1 МГц) ультразвуковые колебания в режиме кавитации. Эффективность воздействия ультразвука определяется интенсивностью излучения, растущей пропорционально плотности среды и скорости звука в квадратичной зависимости от амплитуды и частоты колебаний, которая характеризует удельную плотность вводимой энергии. Измельчение твердых частиц происходит под действием возникающих при схлопывании пузырьков сферических ударных волн [Неорганические наноматериалы: учебное пособие / Раков Э.Г. - М.: БИНОМ. Лаборатория знаний, 2013. - 477 с.].

Наиболее близким по технической сущности к заявляемому способу является способ получения мелкодисперсного ферритового порошка, который включает механическое диспергирование ферритового материала, перемешивание смеси полидисперсного ферритового порошка с химически инертной к нему жидкостью до образования суспензии, воздействие на суспензию ультразвуковыми колебаниями в режиме кавитации и выделение мелкодисперсной фракции металлического порошка из суспензии [Патент РФ №2213620 С2, В03В 5/02, В03В 5/68, В03С 1/30, опубл. 10.10.2003]. В сосуде, выполненном из немагнитного материала, на осадочную часть суспензии воздействуют ультразвуковыми колебаниями и выделяют мелкодисперсную фракцию порошка. Плотность потока мощности ультразвуковых колебаний выбирают в пределах 1,1-1,5 плотности потока мощности, соответствующей кавитационному порогу для обрабатываемой суспензии, высоту столба суспензии выбирают в пределах (0,4-2,0)/α, где α - коэффициент затухания ультразвуковых колебаний в суспензии. Для выделения мелкодисперсной фракции ферритового порошка используют верхний слой суспензии глубиной не более четверти длины волны ультразвуковых колебаний в суспензии. На суспензию дополнительно могут воздействовать неоднородным постоянным или переменным магнитным полем, градиент напряженности которого направлен противоположно гравитационному полю Земли.

Недостатком указанного способа является то, что из всего объема обрабатываемого полидисперсного порошка можно выделить лишь первоначально содержащуюся мелкодисперсную фракцию. Кроме того, известный способ непригоден при диспергировании немагнитопроводящих порошков. Очевидно, что эффективность указанного способа становится еще меньше при попытке диспергирования пластичных порошков, склонных к сегрегации.

Задача и достигаемый при использовании изобретения технический результат - повышение доли выхода мелкодисперсной фракции порошка при обработке смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой ультразвуковыми колебаниями в режиме кавитации, а также возможность диспергирования немагнитопроводящих порошков и пластичных порошков, склонных к сегрегации.

Для решения поставленной задачи предложен способ получения мелкодисперсного металлического порошка, включающий механическое диспергирование металлического материала, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой до образования суспензии, воздействие на суспензию ультразвуковыми колебаниями в режиме кавитации и выделение мелкодисперсной фракции металлического порошка из суспензии, в котором согласно изобретению при перемешивании в суспензию вводят алмазный порошок, который удаляют перед выделением мелкодисперсной фракции.

Алмазный порошок вводят в суспензию в количестве 5÷15% от объема суспензии.

Удаление алмазного порошка из суспензии осуществляют путем расслоения суспензии в химически инертной к полидисперсному металлическому порошку жидкой среде.

Объем жидкой среды к объему полидисперсного металлического порошка выбирают в отношении (5÷7):1.

Отношение фракции полидисперсного металлического порошка к фракции алмазного порошка выбирают в отношении (5÷10):1.

Вышеприведенные соотношения и пропорции были определены экспериментально и являются оптимальными с точки зрения достижения технического результата. Они могут меняться в зависимости от способа кавитационного воздействия (конструктивного исполнения ультразвукового диспергатора, плотности потока мощности ультразвуковых колебаний и т.д.) и уточняться для каждого отдельного случая опытным путем.

В отличие от способа-прототипа, заявленный способ позволяет осуществить эффективное диспергирование немагнитопроводящих и пластичных полидисперсных металлических порошков, склонных к сегрегации.

Сущность заявленного изобретения иллюстрируется фигурами графических изображений и поясняется нижеследующим примером конкретного осуществления.

На фиг. 1 представлен снимок (увеличением 500 крат) сканированных частиц исходного полидисперсного металлического порошка стали 12X18H10T.

На фиг. 2 представлена гистограмма фракционного состава исходного полидисперсного металлического порошка стали 12X18H10T.

На фиг. 3 представлен снимок (увеличением 50.000 крат) сканированных частиц алмазного порошка.

На фиг. 4 представлен снимок (увеличением 500 крат) сканированных частиц выделенного из суспензии металлического порошка стали 12X18H10T, диспергированного в соответствии с заявленным способом.

На фиг. 5 представлена гистограмма фракционного состава выделенного из суспензии металлического порошка стали 12X18H10T, диспергированного в соответствии с заявленным способом.

На фиг. 6 представлен снимок (увеличением 50.000 крат) сканированных частиц алмазного порошка, удаленного из суспензии.

Пример осуществления способа

Для получения мелкодисперсного металлического порошка фракции 5÷50 мкм в качестве исходного материала использовали полидисперсный металлический порошок стали 12X18H10T фракции 10÷100 мкм (см. фиг. 1), склонный к сегрегации. Доля мелкодисперсного металлического порошка фракции 10÷50 мкм в исходном материале составляла порядка 20% (см. фиг. 2). Проводили механическое диспергирование полидисперсного металлического порошка массой 200 г (29,3 см3) в шаровой мельнице. Перемешивали диспергированный полидисперсный металлический порошок с жидкой средой, в качестве которой взяли 200 мл дистиллированной воды, в отношении 1,0:6,8 до образования суспензии. При перемешивании вводили алмазный порошок дисперсностью 1÷10 мкм (см. фиг. 3) в суспензию в количестве 30 г (13,3 см3), что составило 5,8% от объема суспензии. Воздействовали на суспензию ультразвуковыми колебаниями в режиме кавитации. Удаление алмазного порошка из суспензии осуществляли путем расслоения суспензии в дистиллированной воде. Выделение мелкодисперсной фракции полученного металлического порошка с дисперсностью частиц 5÷50 мкм (см. фиг. 4) из суспензии проводили путем испарения дистиллированной воды. Доля мелкодисперсного металлического порошка фракции 5÷50 мкм в выделенном из суспензии металлическом порошке стали 12X18H10T, диспергированного в соответствии с заявленным способом, составила порядка 75% (см. фиг. 5). Отработанная фракция алмазного порошка имеет субмикронный размер (см. фиг. 6), что позволяет произвести легкую сепарацию между диспергированным металлическим порошком и алмазным порошком.

Как видно из примера и снимков, представленных на фиг. 1-6, доля выхода мелкодисперсной фракции порошка при диспергировании существенно увеличилась, а также стало возможным диспергирование немагнитопроводящих и пластичных полидисперсных металлических порошков, склонных к сегрегации.

1. Способ получения мелкодисперсного металлического порошка, включающий механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой до образования суспензии, воздействие на суспензию ультразвуковыми колебаниями в режиме кавитации и выделение мелкодисперсной фракции металлического порошка из суспензии, отличающийся тем, что при перемешивании в суспензию вводят алмазный порошок, который удаляют перед выделением мелкодисперсной фракции.

2. Способ по п. 1, отличающийся тем, что алмазный порошок вводят в суспензию в количестве 5÷15% от объема суспензии.

3. Способ по п. 1, отличающийся тем, что удаление алмазного порошка из суспензии осуществляют путем расслоения суспензии в химически инертной к полидисперсному металлическому порошку жидкой среде.

4. Способ по п. 1, отличающийся тем, что объем жидкой среды к объему полидисперсного металлического порошка выбирают в отношении (5÷7):1.

5. Способ по п. 1, отличающийся тем, что отношение фракции полидисперсного металлического порошка к фракции алмазного порошка выбирают в отношении (5÷10):1.



 

Похожие патенты:

Изобретение относится к получению металлического порошка механической обработкой цилиндрической заготовки. Способ включает размещение заготовки соосно одной из абразивных головок, закрепленных в корпусе мелющего диска, приведение во вращение упомянутой заготовки и ее измельчение с получением металлического порошка путем истирания вращающимся мелющим диском.
Группа изобретений относится к получению цементированного карбида, который может быть использован для изготовления режущего инструмента. Способ включает стадии формирования шлама, содержащего жидкость для измельчения, порошки связующих металлов, первую порошковую фракцию и вторую порошковую фракцию, измельчение, сушку, прессование и спекание шлама.
Изобретение относится к получению композитного титан-ниобиевого порошка для аддитивных технологий. Способ включает механическую активацию смеси порошков титана и ниобия с добавлением противоагломерирующего компонента.

Изобретение может быть использовано для получения наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа.

Изобретение относится к получению высокочистого порошка ниобия гидридным методом. Способ включает активацию слитка ниобия нагреванием до 700-900°С, гидрирование его с использованием насыщенного гидрида титана в качестве источника водорода, измельчение полученного гидрида ниобия до заданной степени дисперсности и дегидрирование полученного порошка ниобия с использованием ненасыщенного гидрида титана.
Изобретение относится к модифицированию смазочных материалов, в частности к получению добавок к моторным маслам, и может быть использовано для повышения износостойкости трущихся деталей.

Изобретение относится к получению высокочистого порошка тантала гидридным методом. Способ включает активацию слитка тантала нагреванием до 700-900°С, гидрирование его с использованием насыщенного гидрида титана в качестве источника водорода, измельчение полученного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка тантала с использованием ненасыщенного гидрида титана.

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении.

Изобретение может быть использовано при электродуговой сварке для модифицирования металла сварного шва наноразмерными тугоплавкими частицами. Рубленую сварочную проволоку диаметром 1-2 мм и длиной 1-2 мм смешивают с модифицирующей добавкой диоксида титана с помощью высокоэнергетической планетарной мельницы с ускорением частиц не менее 20 g.
Изобретение относится к области нанотехнологии, а именно к композиционным материалам с металлической матрицей и наноразмерными упрочняющими частицами. Задачей изобретения является повышение прочностных характеристик композиционного материала при минимизации объемной доли упрочняющих частиц.

Группа изобретений относится к получению порошка из губчатого титана. Установка снабжена герметичной системой, состоящей из дозирующего устройства, роторной дробилки с патрубком для загрузки губчатого титана, патрубком для выгрузки порошка, патрубком для подачи аргона и патрубком для вывода пылевой смеси, циклона, соединенного с дробилкой и выполненного в виде бункера с верхним, боковым и нижним патрубками, и емкости для сбора порошка. Патрубок для вывода пылевой смеси из дробилки соединен с верхним патрубком бункера циклона, патрубок для выгрузки порошка из дробилки соединен с боковым патрубком циклона, нижний патрубок бункера циклона соединен с емкостью для сбора порошка. В дробилку подают аргон с обеспечением заполнения всей герметичной системы до избыточного давления, проводят выдержку, затем равномерно подают в дробилку губчатый титан для измельчения и осуществляют раздельную подачу полученных в дробилке порошка и пылевой смеси в циклон. Порошок титана улавливают в циклоне и выгружают в емкость для сбора порошка, а пылевую смесь осаждают на стенках циклона. Обеспечивается повышение производительности и снижение пожаро- и взрывоопасности. 2 н. и 8 з.п.ф-лы, 1 ил.

Изобретение относится к области порошковой металлургии. Для размола порошка обрабатывают исходный железосодержащий материал в мельнице. В мельницу загружают измельченный исходный железосодержащий материал и рабочие тела. Рабочие тела выполнены в виде стальных шариков. Предварительно в сосуд загружают исходный порошок и стальные шарики диаметром 6-22 мм в соотношении 10:1 соответственно. Заливают жидким азотом с добавлением этилового спирта. Помещают в камеру вибрационной мельницы. Герметизируют и создают вакуум 1 кгс/см2. Наполняют камеру газообразным аргоном и осуществляют помол в течение 1-4 часов с последующим анализом размера частиц. Изобретение упрощает процесс и увеличивает эффект измельчения. 1 з.п. ф-лы, 8 ил.

Изобретение может быть использовано в неорганической химии. Способ получения субмикронного порошка альфа-оксида алюминия включает обработку гидроксида алюминия, полученного способом Байера, в мельнице с затравочными частицами, сушку, прокаливание и дезагрегацию полученного порошка путем помола в органическом растворителе. В качестве затравки используют нанопорошок альфа-оксида алюминия с размером частиц менее 25 нм в количестве 1-5 масс. %. Смесь гидроксида алюминия с затравкой обрабатывают методом сухого помола в шаровой мельнице с добавлением 20-30 масс. % гексана. Затем проводят сушку на воздухе и прокаливание при 900-950°С в токе воздуха. Принудительный поток воздуха над прокаливаемым материалом имеет температуру в интервале 500-950°С. Скорость подъема температуры при прокаливании 300°С/час. Изобретение позволяет получить порошок, состоящий из частиц альфа-оксида алюминия сферической формы, слабоагрегированный, с узким распределением частиц по размерам, а именно от 0,1 до 0,3 мкм, пригодный для получения плотной алюмооксидной керамики при снижении энергозатрат. 2 з.п. ф-лы, 1 ил., 5 пр.

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в высокоскоростном дезинтеграторе. Проводят термическую обработку полученных после измельчения на молотковой дробилке частиц с обеспечением снятия закалочных напряжений. Измельчение в дезинтеграторе ведут с получением порошка 100-200 мкм. Из полученного порошка отсеивают 30 мас.% порошка для изготовления первого слоя композита. Ведут термическую обработку оставшегося порошка 100-200 мкм для образования нанокристаллических предвыделений с последующим размолом в дезинтеграторе с получением порошка 50-100 мкм. Отсеивают 50 мас.% полученного порошка для изготовления второго слоя композита. Ведут термическую обработку оставшегося порошка 50-100 мм с обеспечением образования нанокристаллической структуры, после чего его размалывают в дезинтеграторе и отсеивают с получением порошка 1-50 мкм для изготовления третьего слоя композита. Обеспечивается получение трех фракций порошка за один технологический цикл и повышение эффективности измельчения. 1 з.п. ф-лы, 1 ил., 1 табл., 2 пр.

Изобретение относится к области нанотехнологий, а именно к способам получения фотокатализаторов для разложения веществ, загрязняющих воздух и воду, и может быть использовано в химической, фармацевтической и биосинтетической промышленности. Способ заключается в том, что порошок ZnO подвергают интенсивной механической обработке в воздушной среде. При этом скорость измельчения в размольных барабанах планетарной шаровой мельницы составляет 250 оборотов в минуту, соотношение массы порошка и шаров 10:1, время измельчения 1 минута. Технический результат изобретения состоит в том, что за счет механоактивации порошков оксида цинка при заданных технологических параметрах увеличивается их фотокаталитическая активность. 3 ил.

Изобретение относится к получению композиционного порошкового материала плакированием. Способ включает смешивание плакируемого порошка железа и плакирующего порошка алюминия и низкочастотную термомеханическую обработку полученной смеси. Низкочастотную термомеханическую обработку смеси ведут при температуре 550-600°С в емкости с безокислительной атмосферой путем вертикальных колебаний емкости с частотой 30-50 Гц, амплитудой 7-10 мм в течение 5-10 мин с последующей выдержкой смеси в течение 30 с при температуре 710-730°С и указанных вертикальных колебаниях емкости. Обеспечивается адгезия покрытия не ниже предела прочности алюминия. 2 з.п. ф-лы, 1 табл.
Изобретение относится к PIM технологиям, а именно к способам получения металлических фидстоков. Способ включает механическое смешивание металлического порошка и связующего. При этом в качестве металлического порошка используют порошки на основе металла, выбранного из Fe, Ti, Аl, в количестве 95-97 мас.%, а в качестве связующего используют парафин и воск в количестве 3-5 мас.%, при этом парафин и воск берут в соотношении от 95:5 до 90:10. Технический результат заключается в получении металлического фидстока, изделия из которого обладают высокой однородностью по плотности, твердостью и прочностью. 2 з.п. ф-лы, 5 пр.

Изобретение относится к порошковой металлургии, связанной с изготовлением магнитов из порошковых материалов, в частности из сплавов редкоземельных металлов с кобальтом и железом, и может быть использовано при производстве металлокерамических и металлопластических постоянных магнитов с высокими величинами остаточной индукции и максимального энергетического произведения для машиностроительной, приборостроительной, электротехнической и других отраслей промышленности. Технический результат состоит в повышении плотности постоянных магнитов. Способ изготовления постоянных магнитов позволяет текстурованный в электромагните порошок, находящийся в эластичных матрицах, дополнительно текстурировать в импульсном магнитном поле в направлении, совпадающем с направлением поля электромагнита, затем прессовать в гидростате, после чего пресс-заготовки извлекают из эластичных матриц и отправляют на спекание. Контейнеры для спекания с загруженным текстурованным в электромагните порошком закрывают крышками, после чего порошки спекают непосредственно в контейнерах. 2 з.п. ф-лы, 3 табл., 3 ил.
Изобретение относится к получению бесшовного изделия из химически высокочистого иридия с чистотой не ниже 99,99 мас.%, имеющего изотропную структуру с размером зерен 100-300 нм. Проводят изостатическое прессование иридия в виде порошка с дисперсностью менее 100 нм с давлением 150-350 МПа при комнатной температуре и последующее спекание при температуре 1000-1350°С. Обеспечивается повышение прочности изделий. 2 пр.

Изобретение относится к порошковой металлургии. Способ получения металлического порошка включает выбор исходного сырья и его измельчение с контролем удельной поверхности полученного порошка, при этом определяют удельную поверхность исходного сырья, а выбор сырья и его измельчение производят в соответствии с условием: , где Sуд.с - удельная поверхность исходного сырья (м2/г), Sуд.п - удельная поверхность полученного порошка (м2/г). Обеспечивается повышение качества порошков, выражающееся в стабилизации гранулометрических свойств, уменьшении морфологического разнообразия частиц, увеличении насыпной плотности и улучшении прессуемости, снижении пирофорности и чувствительности к трению. 4 з.п. ф-лы, 2 табл., 4 ил., 6 пр.

Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой до образования суспензии. При перемешивании в суспензию вводят алмазный порошок. Воздействуют на суспензию ультразвуковыми колебаниями в режиме кавитации. Удаляют из суспензии алмазный порошок. Далее выделяют мелкодисперсную фракцию металлического порошка из суспензии. Обеспечивается повышение доли выхода мелкодисперсной фракции порошка, а также диспергирование немагнитопроводящих порошков и пластичных порошков, склонных к сегрегации. 4 з.п. ф-лы, 6 ил., 1 пр.

Наверх