Способ обработки расплава чугуна наносекундными электромагнитными импульсами (нэми)


C21D1/04 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2623390:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет" (RU)

Изобретение относится к металлургии и может быть использовано для получения отливок из чугунов, обладающих высокой абразивной стойкостью и жаростойкостью. В способе осуществляют нагрев расплава до температуры 1500°С, выдержку его при этой температуре в течение 5 мин, а затем охлаждают расплав до температуры 1350°С, при которой проводят электромагнитную обработку расплава наносекундными электромагнитными импульсами. После нагрева до 1500°С в расплав добавляют 8 мас. % хрома в виде феррохрома марки ФХ025, затем после охлаждения и электромагнитной обработки в течение 15…20 мин вводят кремнийсодержащий магниевый модификатор ФСМг7 в количестве 0,25 мас. % с последующим охлаждением расплава до твердого состояния. Изобретение позволяет повысить абразивную стойкость и жаростойкость чугуна. 2 табл., 2 пр.

 

Изобретение относится к литейному производству и может быть использовано для получения отливок из чугунов, обладающих высокой абразивной стойкостью и жаростойкостью.

Известны способы обработки расплавов вакуумом, электрическим током, ультразвуком и вибрацией [1-4], снижающие газонасыщенность в алюминиевых и чугунных отливках, что должно способствовать увеличению их свойств. Также существует способ обработки расплавов защитно-восстановительными флюсами, снижающими газонасыщенность в отливках [4], что также приводит к увеличению их свойств.

Недостатками приведенных выше способов обработки расплавов являются использование дорогостоящего оборудования и ухудшение санитарно-гигиенических условий труда при использовании флюсов.

Все вышеперечисленные способы не позволяют увеличивать абразивную стойкость и жаростойкость.

Наиболее близким по технической сущности и достигаемому результату является способ обработки расплава чугуна, заключающийся в нагреве расплава до температуры 1500°С, выдержке его при этой температуре в течение 5 мин, а затем охлаждении расплава до температуры 1350°С, при которой проводят электромагнитную обработку расплава наносекундными электромагнитными импульсами [5].

Недостатки этого способа заключаются в том, что:

- электромагнитное поле накладывают с частотой 6-15 Гц и напряженностью (1,5-2)⋅103 Э;

- не рассматривается влияние электромагнитного поля на абразивную стойкость и жаростойкость чугуна;

- не изучена зависимость изменения свойств от объема обрабатываемого металла.

Технической задачей, на решение которой направлено данное изобретение, является повышение абразивной стойкости и жаростойкости чугуна.

При пропускании через расплавленный металл мощных электромагнитных импульсов тока в некоторые моменты времени возникают электромагнитные поля с очень высокой напряженностью до 108-1010 В/м. Эти поля приводят к изменению структуры и свойств расплавленного и затвердевшего металла.

Технический результат - получение хромистого чугуна с повышенными свойствами: износостойкостью и жаростойкостью при обработке его жидкой фазы наносекундными электромагнитными импульсами (НЭМИ) с последующим модифицированием.

Технический результат изобретения достигается тем, что в способе обработки расплава чугуна, заключающемся в нагреве расплава до температуры 1500°С, выдержке его при этой температуре в течение 5 мин, а затем охлаждении расплава до температуры 1350°С, при которой проводят электромагнитную обработку расплава наносекундными электромагнитными импульсами, согласно изобретению после нагрева до 1500°С в расплав добавляют 8 мас. % Cr в виде феррохрома марки ФХ025 (ГОСТ 4757-91), затем после охлаждения и электромагнитной обработки наносекундными электромагнитными импульсами в течение 15…20 минут вводят кремнийсодержащий магниевый комплексный модификатор ФСМг7 (ТУ 14-5-134-86) в количестве 0,25 мас. % с последующим охлаждением до твердого состояния.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлена схема установки, где 1 - генератор электромагнитных импульсов; 2 - кожух печи; 3 - тигель; расплав металла; 5 - электроды; 6 - алундовые чехлы; 7 - соединительные провода; на фиг. 2 приведены графики влияния времени обработки НЭМИ жидкой фазы на износостойкость и жаростойкость хромистого чугуна.

В ходе работы применяют чугун следующего состава, мас. %: 2,7 С; 1,67 Si; 0,33 Mn; 0,05 S; 0,23 Р.

Схема установки, методика облучения расплавов и основные характеристики применяемого генератора НЭМИ (ГНИ-01-1-6) приведены в описании патента [6].

Характеристики оборудования, используемого для обработки жидкой фазы наносекундными электромагнитными импульсами, методы определения жаро- и износостойкости:

1. Генератор НЭМИ (ГНИ-01-1-6) имеет следующие характеристики: полярность импульсов - положительная; амплитуда импульсов на нагрузке 50 Ом - 6000 В; длительность импульсов на половинном уровне - 0,5 нс; максимальная допустимая частота следования генерируемых импульсов - 1 кГц; задержка выходного импульса запуска - 120 нс; максимальный ток, потребляемый генератором во всем диапазоне питающих напряжений, не более 1,7 А при частоте 61 кГц.

2. Исследования жаростойкости проводились термогравиметрическим методом, заключающимся в измерении прироста массы образцов при нагреве. Использовалась установка дериватограф Q-1000 фирмы МОП при атмосферном давлении в воздушной среде и скорости нагрева 10 град/мин до температуры ~1000°С. Ошибка измерения температуры не превышала ±1°С. В качестве эталона выступал порошок алунда Al2O3. [7]

3. Исследование износостойкости проводилось согласно ГОСТ 23.208-79 «Метод испытания материалов на износостойкость о нежестко закрепленные абразивные частицы» [8]. Для испытаний применялась установка, которая при помощи абразивных частиц производила износ образцов из исследуемого и эталонного материалов при одинаковых условиях.

4. Для полного растворения феррохрома и равномерного распределения по отливке разработан температурно-временной режим плавки чугуна, заключающийся в его нагреве до 1500°C с выдержкой при этой же температуре в течение 5 минут [9, 10].

Пример 1

Нагревают чугун до 1500°С, после пятиминутной выдержки добавляют в расплав 8 мас. % Cr в виде ФХ025 (ГОСТ 4757-91) охлаждают до температуры 1350°С, модифицируют комплексным модификатором ФСМг7 (ТУ 14-5-134-86) и обрабатывают его НЭМИ в течение 5, 10, 15 и 20 мин. После отключения генератора расплав кристаллизуют со скоростью 20…50°С/мин.

Как видно из фиг. 2, жаростойкость чугуна изменяется от продолжительности обработки расплава НЭМИ по экспоненциальной зависимости с минимумом прироста массы при 20-минутной обработке. Жаростойкость возрастает более чем в 8,0 раз по сравнению с необработанным НЭМИ и модифицированием чугуном.

Пример 2

Как видно из фиг. 2, износостойкость чугуна изменяется от продолжительности обработки расплава НЭМИ по экстремальной зависимости с максимумом при 15-минутной обработке. Износостойкость возрастает более чем в 1,5 раза по сравнению с необработанным НЭМИ чугуном и модифицированием чугуном.

В вышеуказанных примерах при оптимальной продолжительности обработки расплава НЭМИ наблюдаются максимумы износостойкости и жаростойкости чугуна.

Таким образом, добавление 8 мас. % Cr в виде феррохрома марки ФХ025 (ГОСТ 4757-91) и затем охлаждение и электромагнитная обработка наносекундными электромагнитными импульсами в течение 15…20 минут с последующим введением кремнийсодержащего магниевого комплексного модификатора ФСМг7 (ТУ 14-5-134-86) в количестве 0,25 мас. % приводит к повышению абразивной стойкости и жаростойкости чугуна.

Источники информации

1. Справочник «Чугун». Под редакцией А.Д. Шермана и А.Н. Жукова. - М.: Металлургия, 1991, с. 92.

2. Справочник по чугунному литью. Изд-е 3-е, переработанное и дополненное. Под редакцией Н.Г. Гиршовича. - Л.: Машиностроение, 1978, с. 59-60.

3. М.В. Мальцев. Металлография промышленных цветных металлов и сплавов. 2-е издание, переработанное и дополненное. - М.: Металлургия, 1970, с. 129-130.

4. Муравьев В.И., Якимов В.И., Ри Хосен и др. Изготовление литых заготовок в авиастроении. - Владивосток: Дальнаука, 2003, 611 с.

5. Патент РФ на изобретение №2354496, B22D 27/20, опубл. 10.05.2009, Бюл. №13.

6. Патент РФ 2287605 С1. Способ обработки расплава меди и ее сплавов наносекундными электромагнитными импульсами (НЭМИ) для повышения их теплопроводности. 21.03.2005 Авторы: Ри Э.Х., Ри Хосен, Белых В.В.

7. Уэнланд У. Термические методы анализа / У. Уэнланд. - М.: Мир, 1978. - 526 с.

8. ГОСТ 23.209-79. Метод испытания материалов на износостойкость о нежестко закрепленные абразивные частицы. - М.: Изд-во стандартов, 1980. - 6 с.

9. Ри Хосен, Худокормов Д.Н., Тазиков Э.Б. Выбор температурных режимов обработки расплавов чугуна на основе анализа структурно-чувствительных свойств. Литейное производство. 1982 г., №5.

10. Авт. св. СССР 954425 от 21.05.1980 г. Способ легирования чугуна. Ри Хосен, Клочнев Н.И., Тейх В.А. и др.

Способ обработки расплава чугуна, включающий нагрев расплава до температуры 1500°С, выдержку его при этой температуре в течение 5 мин, а затем охлаждение расплава до температуры 1350°С, при которой проводят электромагнитную обработку расплава наносекундными электромагнитными импульсами, отличающийся тем, что после нагрева до 1500°С в расплав добавляют хром в количестве 8 мас. % в виде феррохрома марки ФХ025, а после охлаждения и электромагнитной обработки в течение 15…20 мин вводят кремнийсодержащий магниевый модификатор ФСМг7 в количестве 0,25 мас. % с последующим охлаждением расплава до твердого состояния.



 

Похожие патенты:

Изобретение относится к области термической обработки. Для обеспечения однородной температуры по всей поверхности стального листа способ включает в себя стадию термической обработки листа (1) при его перемещении путем погружения его по меньшей мере в одну ванну (5, 16) с расплавленными окислами, при этом ванна (5, 16) с расплавленными окислами имеет вязкость ниже 3·10-1 Па⋅с, поверхность ванны (5, 16) находится в контакте с неокислительной атмосферой, расплавленные окислы являются инертными по отношению к железу, разница между температурой ферросплавного листа (1) на входе в ванну (5, 16) и температурой ванны (5, 16) находится между 25°С и 900°С, а остатки окислов, остающиеся на поверхностях ферросплавного листа (1) на выходе из ванны (4, 16), удаляют.

Изобретение относится к устройству и способу лазерной обработки листа электротехнической стали с ориентированной структурой для снижения размера магнитного домена.

Изобретение относится к машиностроению, в частности к области термической обработки сталей, и может быть использовано на машиностроительных заводах в инструментальном производстве при изготовлении режущего и штампового инструмента.

Изобретение относится к импульсному электронно-пучковому полированию поверхности металлических изделий, полученных селективным спеканием порошка. На поверхность изделия с исходной шероховатостью воздействуют импульсным пучком в вакууме при давлении (2-5)⋅10-2 Па, энергии электронов 15-25 кэВ, длительности импульсов 150-200 мкс и плотности энергии в импульсе 40-60 Дж/см2.

Изобретение относится к области металлургии и может быть использовано при термической обработке режущих инструментов. Для повышения надежности и долговечности протяжек с плоскими гранями её подвергают трехступенчатому нагреву, при этом на первой ступени нагревают не менее 1 часа в камерной печи с температурой менее 600°С, но превышающей 560°С, на второй ступени - в соляном расплаве с температурой свыше 850°С, но не превышающей 900°С, в течение времени, определяемого из соотношения 15-25 секунд на миллиметр ширины корпуса протяжки, на третьей ступени - в соляном расплаве с температурой ниже 1270°С, но не менее 1160°С, в течение времени, определяемого из соотношения 10-15 секунд на миллиметр ширины корпуса протяжки, проводят охлаждение на воздухе до 980-1020°С, а затем в минеральном масле в течение 45-60 с до 590-610°С, определяют величину и направление продольного прогиба протяжки, укладывают горячую протяжку выпуклой гранью на поверочную плиту и совершают перемещения протяжки по поверочной плите до снижения ее прогиба до заданной величины, затем протяжку охлаждают в подвешенном положении до температуры мартенситного превращения металла протяжки.

Изобретение относится к лакокрасочным покрытиям на металлических поверхностях и может быть использовано при формировании лакокрасочного покрытия на изделиях из древесины и древесных материалах.

Изобретение относится к области термической обработки. Для увеличения долговечности рельса согласно настоящему изобретению устройство термической обработки для снятия напряжений рельса, который сварен, содержит катушку индукционного нагрева, которую размещают на боковой поверхности шейки рельса на расстоянии от центра сварного шва рельса от 20 до 300 мм в продольном направлении рельса.

Изобретение относится к области металлургии и может быть использовано при термической обработке литых изделий, предназначенных для работы при низких температурах до -60°С в районах Сибири и Крайнего Севера.

Изобретение относится к области металлургии. Для обеспечения равномерного нагрева листа из холоднокатаной электротехнической стали, улучшения качества формы листа стали и его магнитных свойств в линии непрерывного отжига листов стали, содержащей зону нагрева, зону выдержки и зону охлаждения, последовательно в передней половине зоны нагрева расположены два или более устройств индукционного нагрева, а в температурной зоне, где температура листа стали между двумя или более устройствами индукционного нагрева составляет от 250°C до 600°C, выполнена область остановки нагрева длиной 1-30 м или область медленного нагрева со скоростью от более 0°C/с до 10°C/с.

Изобретение относится к упрочняющей обработке металлов с использованием концентрированных потоков энергии, в частности к получению на техническом титане ВТ1-0 поверхностных слоев с градиентной многофазной структурой, которые могут быть использованы для повышения ресурса работы деталей машин и механизмов, работающих в условиях многоциклового усталостного разрушения.

Изобретение относится к области металлургии и может быть использовано для создания рафинирующих и модифицирующих смесей для производства ответственных изделий из чугуна и стали.

Изобретение относится к металлургии и литейному производству, в частности к способам получения высокопрочного чугуна с шаровидной формой графита, и может быть использовано при производстве средних и крупногабаритных отливок с толщиной стенки 50 мм и выше.

Изобретение относится к области металлургии и может быть использовано в литейном производстве как добавка в сплав при изготовлении отливок из стали и чугуна с повышенными механическими и служебными свойствами.
Изобретение относится к области металлургии и может быть использовано для обработки расплавов медных сплавов и чугуна. Модифицирующая смесь содержит, мас.%: углекислый барий 40-50, кальцинированную соду 10-20, карбонат стронция 40-45.

Изобретение относится к области металлургии и может быть использовано для модифицирования серого чугуна или чугуна с шаровидным графитом. Способ включает создание плазменной дуги между поверхностью указанного сплава и катодом плазменной горелки прямого действия, установленной в литейном распределителе, находящемся перед линией литейных форм, причем указанная плазменная горелка прямого действия содержит анод, частично погруженный в упомянутый литейный чугунный сплав, и катод, находящийся на высоте от поверхности упомянутого сплава для создания плазменной дуги между катодом и поверхностью упомянутого сплава, причем анод, или катод, или они оба содержат графит, который предоставляет затравку кристаллизации для упомянутого сплава.

Изобретение относится к металлургии, в частности к внепечной обработке расплавов стали, чугуна и цветных металлов. Состав включает материал, содержащий карбонаты кальция, бария и стронция, при этом он содержит компоненты в следующем соотношении, мас.%: СаО 16,0-40,0, ВаО 10,0-24,0, SrO 2,5-11,5, СО2 18,0-30,0, SiO2 2,0-15,0.

Предлагаемое изобретение относится к области химического аффинажа в цикле производства ядерного топлива и может найти применение в области получения чистых солей и окислов ядерно-активных химических элементов из концентратов.

Изобретение относится к области металлургии, в частности к созданию сплава с цирконием и титаном для рафинирования, микролегирования и раскисления стали и чугуна. .

Изобретение относится к черной металлургии, конкретнее к обработке металлического расплава рафинирующим шлаком. .

Изобретение относится к области металлургии, в частности к смесям для микролегирования и модифицирования высокопрочных чугунов, работающих в условиях абразивного и фрикционного изнашивания, используемых для изготовления литых деталей механизмов трения.

Изобретение относится к литейному производству и может быть использовано в авиационной технике и автомобилестроении. Способ литья включает сборку газифицируемых моделей отливки и элементов литниковой системы, при этом в газифицируемой модели литниковой системы создают полость, в которую засыпают наноструктурированный алмазный порошок (НАП), предварительно обработанный в поле электрического разряда напряженностью 800…1200 В/м.
Наверх