Способ флотационного разделения минералов тяжелых металлов



Способ флотационного разделения минералов тяжелых металлов
Способ флотационного разделения минералов тяжелых металлов
Способ флотационного разделения минералов тяжелых металлов
Способ флотационного разделения минералов тяжелых металлов

 


Владельцы патента RU 2623851:

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" (RU)

Изобретение относится к способу флотационного разделения минералов тяжелых металлов. В способе используется селективный собиратель М-ТФ, представляющий собой смесь дитиофосфата и тионокарбамата с переменным в нем соотношении дитиофосфата и тионокарбамата в зависимости от долей пирита и пирротина в сульфидной руде, от соотношений сульфидов меди и разновидностей сфалерита в коллективном концентрате и операциях селективной флотации. В исследуемых пробах сульфиды меди представлены первичными и вторичными минералами, а также минералами группы блеклых руд. В способе для флотационного разделения минералов пирротин-пиритсодержащих руд в качестве собирателей применяется сочетание бутилового ксантогената и реагента М-ТФ при переменном соотношении долей компонентов собирателя М-ТФ в различных циклах флотации. Техническим результатом предлагаемого изобретения является снижение флотируемости пирита, пирротина, повышение при этом флотоактивности основных минералов меди - халькопирита, борнита и создание условий активной флотации теннантита, а также минеральных ассоциаций золота. 3 табл.

 

Изобретение относится к области флотационного обогащения медных, медно-цинковых, полиметаллических, свинецсодержащих и других руд цветных металлов.

Наибольшие трудности для флотационного разделения сульфидов меди, цинка и свинца создают вторичные сульфиды меди, минералы группы блеклых руд - теннантит и тетраэдрит, природоактивированный сфалерит, высокожелезистый сфалерит-марматит, корродированные и коломорфные разновидности пирита, многофазный пирротин, хрупкий и легкошламующийся галенит, часто покрытый пленками церрусита. При этом в отсутствие «жестких депрессоров», селективных собирателей и при применении извести сульфидные минералы приобретают практически равные флотационные свойства. Проблема разделения сульфидов осложняется неравномерной тонкодисперсной вкрапленностью, широким спектром крупности от наноразмерных свободных зерен до полиминеральных сростковых ассоциаций и агрегатных образований, раскрытие которых при измельчении происходит с временным интервалом в определенной естественной последовательности и с различным содержанием вновь образованных свободных и готовых к флотации легко-труднофлотируемых одних и легко- труднодепрессируемых других минералов.

Применение способа селективной флотации разработано для руд с однородным вещественным составом.

Известен способ флотации, по которому пульпу после измельчения и классификации флотируют собирателями ДМДК (диметилдитиокарбамат) в сочетании с ксантогенатом [Острожная Е.Е., Храмцова И.Н. О совместном применении диалкилдитиокарбамата и бутилового ксантогената при флотации пирротинсодержащих руд // Цветные металлы, 1999, №5, с. 14-15].

Известен способ, по которому измельченные полиметаллические, медно-молибденовые, медно-цинковые руды флотируют собирателями серии «Берафлот 3026» (смесь диалкилдитиофосфата и диалкилсульфида в разном соотношении) с получением коллективного сульфидного концентрата, в который извлекают минералы меди, молибдена, цинка, свинца, частично пирит и благородные металлы [Чантурия В.А., Недосекина Т.В., Манцевич М.И. и др. Влияние диметилдитиокарбамата на процесс взаимодействия пирротина с бутиловым ксантогенатом // Цветные металлы, 2002, №10, с. 19-21].

Известны способы флотации руд цветных металлов, содержащих золото и серебро, по одному из которых в качестве собирателей применяют ксантогенаты, дитиофосфаты, меркаптаны [Фишман М.А. и др. Практика обогащения руд цветных и благородных металлов. М.: Недра, 1967, с. 23-32].

Известен способ [А.С. СССР №306679, кл. В03D 1/02, 1969], в котором используют алифатические эфиры никотиновой кислоты.

Известен способ [А.С. СССР №547685, кл. В03D 1/02, 1976], в котором применяют смеси ксантогената и органические фракции перегонки нефти.

Известен способ [Игнаткина В.А., Бочаров В.А., Милович Ф.О. и др. Новые подходы к изучению механизма действия сульфгидрильных собирателей при флотации сульфидов // Сборник материалов Конгресса обогатителей стран СНГ, 2015, М.: МИСиС, Outotec, т. II, с. 475-482], в котором диизобутиловый дитиофосфинат самостоятельно или в сочетании с ксантогенатами проявляет высокую реакционную активность, сопоставимую с ксантогенатами, но обладает меньшей селективностью в сравнении с дитиофосфатами.

Известен способ флотации пиритной медно-цинковой руды с использованием сочетания дитиофосфатов, тионокарбаматов и бутилового ксантогената в соотношении 3:4,5:1 для флотации сульфидов меди и сфалерита [В.А. Бочаров, В.А. Игнаткина и др. Способ флотации медно-цинково-пиритной руды. Патент №2433866, зарегистрирован 20.11.2011, заявка №2009141930. Приоритет от 16.11.2009]. Этот способ пригоден только для руды однородного состава. Показатели снижаются на руде, в которой в сульфидах железа доля пирротина значительно повышается.

Вышеперечисленные способы малоэффективны, так как применяемые в них собиратели также активно флотируют многие разновидности основных сульфидных минералов цветных металлов и железа. Применяемые собиратели, обладая высокой сорбционной способностью, имеют недостаточную селективность по отношению к сульфидам железа - пириту, пирротину, сфалериту - и, кроме того, не создают условия для повышения флотоактивности минералов группы блеклых руд - теннантита, а также не учтены особенности последовательного раскрытия и флотации модификаций минералов - корродированного пирита, многофазного пирротина, вторичных минералов меди, высокомышьяковистого теннантита, легкоокисляющихся в процессе разрушения минеральных сростков при измельчении, в связи с чем необходимо применить интенсивный режим последовательного раскрытия и быстрого вывода из цикла измельчения на флотацию, подбирая схему селективного дозирования сочетаний собирателей с разным переменным соотношением компонентов в комбинации собирателей в различных операциях флотации, и не оптимизирован режим регулирования и стабилизации процесса окисления сульфидов железа, теннантита и вторичных минералов меди, активирующих флотацию сфалерита, пирита, пирротина при флотации сульфидов меди. Принятые в режиме разделения минералов значения pH среды не способствуют снижению флотоактивности пирита, пирротина, повышению флотируемости минералов меди, особенно теннантита, что является одной из причин снижения качества готовых концентратов и низкой флотируемости теннантита.

В качестве прототипа принят способ флотации с применением композиций изобутилового дитиофосфата и тионокарбамата - реагент серии М-ТФ, представляющий собой смесь дитиофосфата и тионокарбамата в малых соотношениях от 20-60% до 80-40% соответственно [Игнаткина В.А., Бочаров В.А., Пунцукова Б.Т. и др. Исследования селективного действия сочетаний ксантогената и дитиофосфата с тионокарбаматами // ФТПРПИ, 2010, №3].

Совместное использование М-ТФ и бутилового ксантогената обеспечивает высокие показатели в коллективной флотации при массовом соотношении 3÷4:0÷1, а в цинковой флотации - при «зеркальном» соотношении 0÷4:3÷4. Отличительным признаком прототипа от известных способов является применение определенных мольных соотношений компонента селективного собирателя М-ТФ в сочетании с бутиловым ксантогенатом в оптимальном соотношении для каждого цикла флотации. Основной недостаток прототипа - широкий диапазон концентрации св. CaO - не ниже 800-1000 мг/л - и отсутствие конкретной зависимости концентрации св. CaO и флотации разновидности сульфидного минерала.

Техническим результатом предлагаемого изобретения является снижение флотируемости пирита, пирротина, повышение при этом флотоактивности основных минералов меди - халькопирита, борнита - и создание условий активной флотации теннантита, а также минеральных ассоциаций золота.

Способ флотационного разделения упорных колчеданных медно-цинковых руд включает измельчение и флотацию с сульфгидрильными собирателями - ксантогенатами - в сочетании с дитиофосфатами и тионокарбаматами в щелочной среде с получением коллективного концентрата и последующим его разделением с использованием в качестве депрессоров сфалерита и сульфидов железа, сульфида натрия, сульфата цинка и извести, отличающийся тем, что проводят измельчение с последовательным раскрытием минералов и в межцикловые операции медной флотации в качестве собирателей вводят собиратель М-ТФ, представляющий собой смесь дитиофосфата и тионокарбамата с соотношением композиции компонентов дитиофосфат-тионокарбамат 2:1, в сочетании с бутиловым ксантогенатом при соотношении долей М-ТФ и ксантогената 3÷4:1 при значениях pH в первой медной флотации 7,0-8,0. В коллективную медно-цинковую флотацию вводят собиратель М-ТФ при соотношении в нем долей дитиофосфат-тионокарбамат 1:1,5 в сочетании с бутиловым ксантогенатом 1:1÷2 при pH=9,0-10,0. В цинковую рудную флотацию вводят собиратель М-ТФ при соотношении долей дитиофосфата и тионокарбата 1:1,5 в сочетании с бутиловым ксантогенатом при соотношении 1:2÷3 при pH>10,0-11,0. В селекцию коллективного концентрата вводят собиратель М-ТФ, в котором массовая доля тионокарбамата и дитиофосфата находится в соотношениях 1,5÷2:1 при pH=7,5-8,5.

Технический результат заключается в том, что собиратель М-ТФ при pH=7,2-7,5 селективно сорбируется на свободных участках поверхности сульфидов меди, минеральных форм золота в большей степени, чем на сфалерите, сульфидах железа, и закрепляется только на свободных участках поверхности минералов, не занятых другими соединениями. При последующей подаче с малым расходом более сильного собирателя - бутилового ксантогената - свободных участков для его закрепления осталось значительно меньше, и для сорбции требуется значительно больший во времени контакт, при котором в условиях гидродинамического режима работы флотационного аппарата возможна десорбция слабого собирателя. В связи с этим кондиционирование при оптимальном режиме депрессии подавляемых минералов и оптимальной концентрации депрессируемых ионов сульфидных пульп и значениях pH должно быть кратковременным с обеспечением активной флотации извлекаемых минералов меди при малой продолжительности. В коллективной флотации при увеличении pH (св. CaO) до значений, необходимых для флотации основной части сульфидов меди и активации сфалерита, подается тройная смесь собирателей с увеличением доли сильного собирателя - ксантогената в сочетании.

Технический результат достигается, во-первых, применением экспериментально установленных оптимальных переменных сочетаний и соотношений компонентов в композициях собирателя М-ТФ с разной молекулярной структурой и их многоточечного дозирования в операциях технологической схемы; во-вторых, регулированием различных значений pH (св. CaO) по операциям флотации, создавая при этом условия для стабилизации и степени окисления сульфидных минералов, особенно сульфидов железа, поддерживая необходимую оптимальную концентрацию депрессирующих ионов для подавления флотации сульфидов железа и сфалерита, активируя флотацию всех сульфидов меди при разделении медно-цинкового концентрата значениями pH среды, расходом собирателя М-ТФ с переменным соотношением долей компонентов в разных циклах флотации, расходом депрессоров; в-третьих, организацией последовательного раскрытия сростков минералов и их модификаций при измельчении с выводом на флотацию свободных от сростков зерен разновидностей минералов оптимальной крупности в разных операциях.

Сущность предлагаемого способа флотационного разделения сульфидных минералов колчеданной руды или концентратов заключается в том, что полиминеральная колчеданная руда цветных металлов измельчается с известью (pH=7,2-7,5), классифицируется по классу -0,074 мм 55-75% с возвратом песков в рудную мельницу первой стадии и с направлением сливной фракции на флотацию освободившихся от сростков минералов меди (вторичных сульфидов меди, теннантита и частично первичных минералов в свободных зернах), в качестве собирателей в цикл измельчения и в стадиальную флотацию при pH=7-8 дозируют собиратель М-ТФ при соотношении долей тионокарбамата и дитиофосфата 2:1. Для снижения флотоактивности сульфидов железа и сфалерита перед подачей смеси собирателей во избежание и стабилизации концентрации депрессирующих ионов S-2, , , образующихся при окислении пирита, в мельницу добавляют сульфат цинка и сульфид натрия при соотношении 3:1 в количестве 50-100 г/т суммарно; пенный продукт флотации является первым черновым медным концентратом, камерный продукт флотации поступает на вторую стадию измельчительного цикла для последующего раскрытия минералов меди и цинка от сростков с другими компонентами при крупности измельчения до 80-85% кл. -0,074 мм. Измельченную пульпу флотируют с выделением в пенный продукт коллективного медно-цинкового концентрата. Флотация проводится в известковой среде при pH=8,5-10,0 смесью дитиофосфата, тионокарбамата и бутилового ксантогената при соотношении 1:1,5:1÷2; пенный продукт поступает на флотационное разделение минералов меди и цинка по режиму предлагаемого способа. Из камерного продукта коллективной флотации после кондиционирования с известью при pH≥10-11 и сульфатом меди флотируют неактивированную разновидность сфалерита смесью собирателей бутилового ксантогената и М-ТФ при соотношении 2÷3:1 с выделением чернового цинкового концентрата.

Из коллективного концентрата после классификации по кл. -0,074-90-95% и доизмельчения песковой фракции флотируют минералы меди с предварительным кондиционированием с сульфидом натрия и сульфатом цинка при соотношении 1:3÷4 при pH=7,5-8,5 и в качестве собирателей в медную флотацию дозируют М-ТФ с соотношением долей тионокарбамата и дитиофосфата 1,5÷2:1 с получением в пенном продукте второго чернового медного концентрата, а камерный продукт является или черновым цинковым концентратом, или исходным питанием цинковой рудной флотации. Черновые медные и цинковые концентраты подвергают доводочным операциям по известным классическим схемам и технологическому режиму.

Предлагаемый способ разделения колчеданных полиметаллических руд и концентратов цветных металлов опробован на технологических рудных пробах месторождений цветных металлов Уральского региона. В таблицах 1, 2 приведены результаты коллективной флотации пиритных медно-цинковых руд с различным содержанием пирита и примесным соотношением меди к цинку 1:1,5÷4 по режиму в соответствии с заявленным проектом изобретения.

В таблице 3 приведены результаты разделения коллективного медно-цинкового концентрата.

Приведенные технологические результаты показывают, что использование отличительных признаков изобретения позволяет в сравнении с прототипом получить более высокие результаты разделения как по извлечению металлов, так и по качеству концентратов. Извлечение меди в медный концентрат выше на 3,5%; а извлечение цинка в цинковый концентрат - на 7%; извлечение золота в коллективный концентрат - на 12,5%.

Способ флотационного обогащения упорных колчеданных медно-цинковых руд, включающий измельчение и флотацию с сульфгидрильными собирателями - ксантогенатами в сочетании с дитиофосфатами и тионокарбаматами в щелочной среде с получением коллективного концентрата и последующим его разделением с использованием в качестве депрессоров сфалерита и сульфидов железа, сульфида натрия, сульфата цинка и извести, отличающийся тем, что проводят циклическое измельчение с последовательным раскрытием минералов и в межцикловые периоды проводят сначала первую медную флотацию и в качестве собирателей вводят собиратель М-ТФ, представляющий собой смесь дитиофосфата и тионокарбамата с соотношением компонентов дитиофосфат-тионокарбамат 2:1, в сочетании с бутиловым ксантогенатом при соотношении долей М-ТФ и ксантогената 3÷4:1 при значениях рН в первой медной флотации 7,0-8,0 с получением первого чернового медного концентрата, затем в коллективную медно-цинковую флотацию вводят собиратель М-ТФ при соотношении в нем долей дитиофосфат-тионокарбамат 1:1,5 в сочетании с бутиловым ксантогенатом при соотношении 1:1÷2 при рН=9,0-10,0 с выделением коллективного медно-цинкового концентрата, далее в цинковую флотацию вводят собиратель М-ТФ при соотношении долей дитиофосфата и тионокарбата 1:1,5 в сочетании с бутиловым ксантогенатом при соотношении 1:2÷3 при рН>10,0-11,0 с выделением чернового цинкового концентрата, затем в селекцию коллективного концентрата вводят собиратель М-ТФ, в котором массовая доля тионокарбамата и дитиофосфата находится в соотношениях 1,5÷2:1 при рН=7,5-8,5, с получением второго чернового медного концентрата.



 

Похожие патенты:

Изобретение относится к cпособу извлечения ионов кадмия и цинка из природных и сточных вод. Способ включает сорбцию с использованием сорбента и элюирование сорбированных ионов.

Изобретение может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков. Способ переработки цинкового кека включает сульфатизацию олеумом с последующим выщелачиванием сульфатного спека раствором серной кислоты с образованием пульпы.
Изобретение относится к способу селективного извлечения оксида железа и оксида цинка из шламов и пылей газоочисток металлургических агрегатов. Шлам или пыль, техническую воду, щелочь и активные тела в соотношении 4:7:2:3 подают в виде пульпы в реактор агрегата вихревого слоя (ABC) и обрабатывают магнитным полем с заданной частотой и напряженностью.

Изобретение относится к цветной металлургии, в частности к способу извлечения цветных и редких металлов из перерабатываемых производственных отходов, в частности к способу извлечения металлов из вельц-окислов.

Изобретение относится к способу экстракции ионов металлов из водных растворов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.
Изобретение относится к гидрометаллургической переработке труднообогатимых свинцово-цинковых руд. Сущность способа состоит в направлении рудного материала на отсадку с получением первого готового свинцового концентрата, хвостов и промпродукта отсадки, который после измельчения обогащают на концентрационных столах с выделением второго готового свинцового концентрата, отвальных хвостов и промпродукта столов.
Изобретение относится к цветной металлургии. Способ переработки полупродуктов свинцового производства, содержащих свинец, медь и цинк, включает загрузку в шахтную печь упомянутых полупродуктов, кокса в качестве восстановителя, сульфидизатора и кварцевой руды в качестве флюса и их плавку при подаче кислородсодержащего дутья с получением чернового свинца, медного штейна и цинксодержащего шлака.

Изобретение относится к способам отделения цинка от сырьевого материала, содержащего смесь металлов и соединений металлов. Осуществляют выщелачивание цинксодержащего сырьевого материала концентрированным неорганическим раствором для образования суспензии, содержащей нерастворенные вещества и маточный раствор с растворенными в нем веществами, отделение нерастворимых веществ от маточного раствора и осаждение оксида цинка из маточного раствора.

Изобретение относится к переработке отходов, содержащих цветные металлы (цинк и кадмий), агломерационного, доменного, прокатного, сталеплавильного производств и может быть использовано в черной и цветной металлургии.

Изобретение относится к способу селективного извлечения ионов Fe(III) и Zn(II) из водных растворов смеси их солей экстракцией трибутилфосфатом (ТБФ). Способ включает обработку раствора и экстрагента, контакт раствора и экстрагента.
Изобретение относится к гидрометаллургии, конкретно к способу выделения оксидов цинка и меди из водно-аммиачного раствора, содержащего растворимые соединения цинка и меди, а также 4-10% аммиака, и образующегося в процессе водно-аммиачной обработки вторичного сырья, содержащего соединения цинка и меди, например в мельнице мокрого помола, при кучном или чановом выщелачивании.

Изобретение относится к утилизации отработанных медно-аммиачных растворов травления печатных плат. Способ включает обработку отработанного концентрированного медно-аммиачного раствора раствором соляной или серной кислоты до рН 5,5-6,5 для отделения ионов меди в виде осадка гидроксида меди.
Изобретение относится к способу получения пергидро(1,3,5-дитиазин)-5-ил-метана, являющегося сорбентом при извлечении благородных металлов из растворов. Способ включает взаимодействие формальдегида, сульфида натрия и аминосоединения.

Изобретение относится к области металлургии цветных и благородных металлов, в частности к способам переработки шламов электролитического рафинирования меди. Способ включает выщелачивание сурьмы и свинца из медеэлектролитного шлама в растворе, содержащем 50-200 г/дм3 глицерина, 50-100 г/дм3 щелочи и восстановитель, в количестве, обеспечивающем окислительно-восстановительный потенциал системы положительнее +0,8 В при температуре 70-90°С в течение 2-3 часов.

Изобретение относится к способу очистки никелевого электролита от примесей ионов Fe (III), Со (III) и Cu (II) экстракцией с селективным извлечением указанных ионов из электролита в органическую фазу.

Изобретение может быть использовано в обогащении меди и серебра для переработки сульфидно-окисленных медных руд. Перед подачей на кислотное выщелачивание при перемешивании коллективного концентрата, полученного из сульфидно-окисленной медной руды, осуществляют стадиальную коллективную флотацию с использованием добавки сульфида натрия.

Изобретение относится к гидрометаллургическим способам переработки растворов, содержащих цветные металлы, осаждением гидратов цветных металлов с помощью магнийсодержащего осадителя.
Изобретение относится к способу переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана. Способ включает отгонку тетрахлорида титана из медно-ванадиевой пульпы с получением кубового остатка .

Изобретение относится к получению медного порошка из отходов электротехнической медной проволоки. Отходы, содержащие не менее 99,5% меди, подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 28-100 Гц, напряжении на электродах 150-220 В и емкости разрядных конденсаторов 25,5-55,5 мкФ.

Изобретение относится к металлургии благородных металлов, в том числе золота, может быть использовано при переработке как низкопробного, так и высокопробного первичного и вторичного сырья с получением на каждой стадии выщелачивания высококонцентрированных продуктов.

Изобретение относится к способу обессеривания железной руды. Согласно способу, железную руду, содержащую серу в количестве свыше 0,08%, но не более 2%, подвергают флотации, с получением железной руды, в которой содержание серы было снижено до 0,08% или менее.
Наверх