Способ повышения эффективности диагностики дисков авиационных газотурбинных двигателей

Способ повышения эффективности диагностики развития трещины в диске работающего авиационного газотурбинного двигателя, который реализуется совместным анализом интегрального вибросигнала, регистрируемого на корпусе двигателя из-за импульсного высвобождения энергии при ступенчатом развитии трещины при выходе двигателя на максимальные обороты в рабочем цикле, и составляющих спектра вибрации, зарегистрированных одновременно с интегральным вибросигналом. Изобретение позволяет повысить эффективность метода диагностики дисков по импульсному колебанию корпуса двигателя при развитии трещины в диске.

 

Изобретение относится к области газотурбинного двигателестроения.

Известны случаи разрушения дисков роторов авиационных газотурбинных двигателей от малоцикловой усталости при циклической нагрузке, возникающей при выходе двигателей на максимальные рабочие обороты. Малоцикловая усталость часто определяет ресурс двигателя в связи с многократным повторением циклов выхода на рабочие режимы и останова (см., например, И.А. Биргер, Р.Р. Мавлютов. Сопротивление материалов, М.: Наука, 1986, с. 102).

Эти разрушения происходили при отсутствии способа диагностики диска, когда наличие трещины в нем, несмотря на длительный характер ее развития, можно было определить только на разобранном двигателе.

В настоящее время способ диагностики дисков на работающем двигателе известен (См., например, «Способ диагностирования образования и развития трещины в дисках авиационного газотурбинного двигателя при циклической нагрузке», патент РФ на изобретение №2570938, кл. G01M 15/14, 2014 г.). Он основан на использовании в качестве диагностического признака развития трещины в диске, которое носит ступенчатый характер, импульсного колебания, вызываемого энергией, высвобождаемой при образовании очередной «ступеньки». Это колебание, которое можно регистрировать на корпусе двигателя датчиком вибрации, имеет кратковременный характер и накладывается на вибрацию двигателя, возбуждаемую неуравновешенными силами ротора (или роторов многовальных двигателей).

Недостатком данного способа является то, что случайное кратковременное повышение вибраций двигателя может быть вызвано другой причиной, даже просто сбоем в электроцепи, а идентифицировано как импульсное колебание от развития трещины. В таком случае возможно необоснованное отстранение двигателя от эксплуатации или от испытаний.

Задачей, на решение которой направлено настоящее изобретение, является повышение эффективности метода диагностики диска путем разложения интегрального вибросигнала, регистрируемого на корпусе двигателя при развитии трещины в диске, на спектральные составляющие, которые соответствуют резонансным частотам колебаний отдельных элементов двигателя (см., например, И.А. Биргер, Н.И. Котеров Колебания системы ротор-корпус ГТД, Справочник Вибрации в технике, М., Машиностроение, 1981, т. 3, с. 298) и их исследовании совместно с интегральным вибросигналом.

Поставленная задача достигается за счет того, что ведется регистрация вибраций с вибродатчика на корпусе двигателя аппаратурой, позволяющей выявлять как интегральный вибросигнал вибрации, в том числе в момент кратковременного колебания корпуса при ступенчатом развитии трещины, так и производить спектральный анализ составляющих этого вибросигнала.

Анализ интегрального сигнала вибраций, импульсное увеличение которого является диагностическим признаком развития трещины в диске, следует вести одновременно с анализом составляющих вибрации в спектральном ряду.

При анализе составляющих вибрации спектрального ряда следует использовать сведения о резонансных режимах системы ротор-опоры-корпус двигателя, полученные расчетным или экспериментальным путем.

На современных авиационных ГТД из-за стремления максимально облегчить конструкцию резонансы роторов могут проявляться в диапазоне рабочих оборотов. Чтобы отстроиться от этих резонансов на двигателях применяются опоры роторов с упругими элементами, позволяющими снизить резонансные частоты роторов с рабочих оборотов на проходные, иногда даже ниже оборотов малого газа (см., например, Хронин Д.В. Колебания в двигателях летательных аппаратов. М., Машиностроение, 1980, с. 133). На максимальных рабочих оборотах, на которых циклическая нагрузка в диске достигает своего предельного значения и может приводить к ступенчатому развитию трещины, в случае отсутствия трещины проявляются только вибрации нерезонансного характера с частотой оборотов ротора (роторов).

Но при ступенчатом развитии трещины в диске в результате мощного импульса высвобождаемой энергии происходит возбуждение резонансов системы двигателя, в том числе с частотами ниже максимальных рабочих оборотов. Сумма величин вибросигналов от этих резонансов обеспечивает кратковременный рост интегрального сигнала вибрации, являющийся диагностическим признаком наличия и развития трещины в диске.

Появление же в спектре вибраций с частотами, отличными от максимальных рабочих, дает дополнительную информацию о развитии трещины и повышает эффективность диагностики диска. Наличие этих резонансных составляющих вибраций с частотами, отличными от максимальных рабочих, является дополнительным диагностическим признаком трещины в диске.

Так как с наработкой трещина в диске увеличивается в размерах, то увеличивается и количество высвобождаемой энергии при образовании очередной «ступеньки».

Величина высвобождаемой при развитии трещины энергии, отнесенная к единице времени, может быть рассчитана по формуле

,

где

t - ширина очередной «ступеньки» развивающейся трещины;

- длина вновь образовавшейся «ступеньки»;

σb - предел прочности материала диска;

V - скорость развития трещины (см., например, В.З. Партон, В.Г. Борисковский. Динамика хрупкого разрушения, М., Машиностроение, 1988, с. 153).

С развитием трещины увеличивается длина каждой следующей «ступеньки», так как трещина растет и вширь. Поэтому увеличивается величина высвобождаемой энергии. С увеличением величины импульса высвобождаемой энергии увеличиваются интегральная вибрация, замеряемая с использованием полосового фильтра, и отдельные составляющие спектра вибрации с частотами, отличными от максимальных роторных, регистрируемые при развитии трещины.

Если в диапазоне оборотов ротора до максимального режима в системе ротор-опоры-корпус расчетным или экспериментальным способом выявлены n резонансов с частотами колебаний fi, где i=1…n, то при развитии трещины в диске на максимальном рабочем режиме под воздействием мощного импульса высвобождаемой энергии проявятся дискретные вибросигналы с указанными частотами с величинами Bi, где i=1…n (fi и Bi - частота колебаний и величина вибросигнала, соответствующие i-му резонансу системы ротор-опоры-корпус двигателя).

При отсутствии трещины в диске величина вибросигнала на режиме максимальных рабочих оборотов определяется только вынужденными колебаниями ротора - Bp с частотой, соответствующей оборотам ротора.

При возникновении и развитии трещины в диске величина интегрального вибросигнала будет равна

При этом величина Bp, характеризующая вынужденные колебания ротора, остается неизменной, так как при развитии трещины в диске за исключением момента разрушения массово-инерционные свойства диска остаются также практически неизменными. А рост интегрального вибросигнала ВΣ определяется возбуждением, высвобождаемым импульсом энергии дискретных резонансных колебаний В1…Bn с частотами f1…fn и их суммированием.

Совместный анализ интегрального вибросигнала и его спектральных составляющих, регистрируемых на корпусе двигателя на максимальных рабочих режимах, позволит повысить эффективность диагностики дисков ГТД.

Способ повышения эффективности диагностики образования и развития трещины в диске авиационного газотурбинного двигателя от циклической нагрузки при выходе двигателя на максимальные обороты, отличающийся тем, что совместно анализируются интегральный вибросигнал от импульсного колебания, вызванного высвобождаемой энергией при ступенчатом развитии трещины в диске, и зарегистрированные одновременно спектральные составляющие интегрального вибросигнала.



 

Похожие патенты:

Изобретение относится к области оборудования для проведения испытаний и может быть использовано для проведения приемосдаточных и других испытаний газотурбинных двигателей различного назначения.
Изобретение относится к области авиадвигателестроения, а именно, к способам испытаний газотурбинных двигателей. Способ испытания авиационного газотурбинного двигателя, включающий приработку деталей и узлов на стационарных и переходных режимах в процессе предъявительских испытаний двигателя.

Изобретение относится к способам испытаний турбореактивных двигателей (ТРД) и может быть использовано при испытаниях стационарных газотурбинных двигателей. В способе приведение параметров к стандартным атмосферным условиям производят с учетом влажности атмосферного воздуха, при этом предварительно проводят испытания двигателя при различной влажности атмосферного воздуха, измеряют параметры двигателя при различной влажности атмосферного воздуха, вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от влажности атмосферного воздуха, а при приведении параметров к стандартным атмосферным условиям умножают приведенные значения параметров на коэффициенты, учитывающие отклонение влажности атмосферного воздуха от стандартного.

Изобретение может быть использовано в машиностроении, авиа-, двигателестроении и других областях. В качестве датчиков звукового давления используется ряд технических микрофонов с узкой диаграммой направленности, установленных в заданном секторе исследуемой детали.

Изобретение относится к испытательной технике, а именно к стендам для температурных испытаний авиационной техники. Стенд для температурных испытаний содержит устройство нагрева рабочей среды, основание, размещенные на нем камеру для испытуемого изделия, трубопровод и защитное устройство в виде компенсатора температурного расширения трубопровода.

Способ эксплуатации предназначен для использования в управлении периодичностью профилактического технического обслуживания объектов. Способ включает определение начальной периодичности технического обслуживания объекта по наработке и допустимой интенсивности отказов по отношению к наработке, проведение технического обслуживания по наработке и фиксацию величины интенсивности отказов до обслуживания, сравнение величины интенсивности отказов с допустимой и, при ее величине больше допустимой, проведение очередного обслуживания при наработке объекта, пропорциональной отношению допустимой интенсивности отказов к фиксированной.

Изобретение относится к области турбостроения, а именно - к испытаниям газогенераторов турбореактивных двухконтурных двигателей на стенде. Стенд для испытания газогенераторов турбореактивных двухконтурных двигателей имеет воздуховод с установленными по тракту заслонками и турбореактивный двухконтурный двигатель.

Изобретение относится к энергетике. Система тестирования показателя работы паровой турбины включает по меньшей мере одно компьютерное устройство, включающее нейронную сеть, сформированную с использованием динамической термодинамической модели паровой турбины и предварительных данных, собранных от паровой турбины; устройство тестирования сети для тестирования упомянутой нейронной сети с использованием данных тестирования; вычислитель текущего показателя работы для вычисления текущего показателя работы упомянутой паровой турбины на основе эксплуатационных данных паровой турбины; и вычислитель прогнозируемого показателя работы для вычисления прогнозируемого показателя работы паровой турбины на основе текущего показателя работы.

Объектом изобретения является устройство моделирования попадания скоплений льда в двигатель, содержащее главную емкость, образующую полость для топлива и соединенную с входом двигателя через трубопровод, систему впрыска, содержащую орган впрыска, расположенный в трубопроводе, вспомогательную емкость, образующую полость для топлива и соединенную с системой впрыска через орган выбора, и бак, соединенный, с одной стороны, с водяным резервом и, с другой стороны, с системой впрыска через орган выбора, в котором орган выбора выполнен с возможностью избирательного установления сообщения между системой впрыска и вспомогательной емкостью или баком с целью впрыска в двигатель определенного количества воды.

Изобретение относится к области авиационного двигателестроения, а именно испытаний и эксплуатации газотурбинных двигателей. В способ определения мощности газогенератора в качестве средства преобразования аэродинамического сопротивления используют сопло, в качестве параметров, характеризующих энергию, - тягу сопла и температуру заторможенного потока перед соплом, при этом мощность газогенератора определяют по формуле: где GB - расход воздуха на входе в газогенератор,GT - расход топлива в камеру сгорания,R - тяга сопла,ϕс - коэффициент скорости сопла,ТT* - температура газа на входе в сопло, которая определяется в зависимости от относительного расхода топлива при стандартном значении теплотворной способности топлива и температуры наружного воздуха,КГ - показатель изоэнтропы,RГ - газовая постоянная,g - 9,81 м/с2 .

Изобретение относится к области испытаний и эксплуатации газотурбинных двигателей. Техническим результатом является повышение надежности работы подшипника и двигателя в целом, снижение трудоемкости и затратности при реализации способа за счет сохранения неизменной материальной части, расширение области использования способа, включая эксплуатацию двигателей. В способе определения режимов работы газотурбинного двигателя, соответствующих минимальным значениям осевой силы, действующей на радиально-упорный подшипник, при котором измеряют сигнал с датчика, установленного на опору подшипника, и определяют режимы работы двигателя, предварительно определяют частоту вращения сепаратора подшипника и частоты, кратные ей в целое число раз, не превышающее число тел качения, измеряют динамический сигнал, в спектре которого наблюдают за появлением составляющей на одной из предварительно определенных частот, определяют режимы работы двигателя, соответствующие появлению этой составляющей, и делают их переходными. 3 з.п. ф-лы, 3 ил.

Изобретение относится к технике отбора образцов проб воздуха, отбираемых от компрессора авиационных газотурбинных двигателей (ГТД) для исследования степени загрязнения воздуха продуктами, поступающими вместе с воздухом в систему кондиционирования воздуха (СКВ), а также определения состава вредных примесей, опасных концентраций в воздухе газов и паров. Устройство содержит диффузор с внутренним соплом, ориентированным по направлению потока отбираемого от газотурбинного двигателя воздуха, тройник, электромагнитные клапаны, пробоотборники с встроенными концентраторами и вакуумированные емкости. Сопло диффузора выполнено с одним внутренним выходом, соединенным с плоским тройником, находящимся в одной плоскости с диффузором. Электромагнитные клапаны установлены непосредственно на входные патрубки пробоотборников таким образом, что входной патрубок соответствующего пробоотборника для уменьшения потерь компонентов пробы ввинчен в переходник, закрепленный в корпусе электромагнитного клапана и зафиксирован на выходе к корпусу клапана контргайкой. Внутренний выход переходника выполнен переходящим в седловину для установки электромагнитного клапана непосредственно на входной патрубок соответствующего пробоотборника, а вход контактирует с поршнем клапана, взаимосвязанным с электромагнитом. Корпус электромагнитного клапана выполнен в виде расширительной камеры, в торцах которой установлены подводящее отбираемый воздух от двигателя расширительное сопло и в противоположной стороне корпуса выходной патрубок для сброса избытка воздуха через жиклер. При этом его проходное сечение выполнено с возможностью регулирования температуры внутри расширительной камеры во избежание конденсации примесей в ней. Электромагнитный клапан, установленный на поверхности расширительной камеры, выполнен с возможностью открывать во время отбора воздуха и перекрывать поршнем с резиновым клапаном пробоотборник после отбора воздуха при летных испытаниях авиационных газотурбинных двигателей. Обеспечивается уменьшение габаритов устройства без ухудшения его метрологических характеристик для возможности установки на летающую лабораторию и снижение погрешности измерения концентраций примесей в воздухе ГТД, отбираемого на нужды СКВ летательного аппарата, за счет уменьшения фонового загрязнения. 1 ил.
Изобретение относится к области испытания и регулировки топливной аппаратуры дизельных двигателей внутреннего сгорания (ДВС). Предложен способ контроля технического состояния дизельной топливной аппаратуры, заключающийся в том, что обеспечивают при стендовых испытаниях дизельной топливной аппаратуры сначала постоянный, а затем переменный характер изменения скорости вращения приводного вала топливного насоса (ТНВД). Скорость вращения приводного вала ТНВД изменяют по гармоническому закону, не нарушая связи исполнительного механизма регулятора частоты вращения с рейкой ТНВД. Измеряют величины цикловой подачи топлива, полученные за заданное количество циклов при постоянном и переменном характере изменения скорости вращения приводного вала ТНВД. По результатам сравнения разности этих величин оценивают техническое состояние испытываемой дизельной топливной аппаратуры. Изобретение позволяет повысить достоверность оценки технического состояния топливной аппаратуры дизельных ДВС.

Изобретение относится к области стендовых испытаний поршневых двигателей внутреннего сгорания и может быть использовано для определения индикаторной мощности многоцилиндровых двигателей. Способ определения индикаторной мощности при стендовых испытаниях многоцилиндровых двигателей внутреннего сгорания с газотурбинным наддувом, заключающийся в том, что при работе на заданном режиме определяют эффективную мощность двигателя Ne при всех работающих цилиндрах, затем определяют эффективную мощность двигателя Ne' при работе двигателя на части цилиндров, и по разнице Ne - Ne' определяют величину индикаторной мощности, при этом при работе на заданном режиме для определения эффективной мощности двигателя Ne при всех работающих цилиндрах дополнительно измеряют давление воздуха перед компрессором, давление отработавших газов после турбины, расход воздуха двигателем и давление наддувочного воздуха, при работе двигателя на части цилиндров для определения эффективной мощности двигателя Ne' дополнительно измеряют те же параметры, затем переходят на заданный режим работы двигателя со всеми включенными цилиндрами и изменяют значения давления воздуха перед компрессором и давление отработавших газов после турбины до совпадения значений расхода воздуха двигателем и давления наддувочного воздуха при работе двигателя на всех цилиндрах со значениями расхода воздуха двигателем и давления наддувочного воздуха при работе двигателя на части цилиндров, и с учетом этого определяют значение эффективной мощности, которое используют для расчета индикаторной мощности. 1 табл.

Изобретение относится к устройствам для измерения параметров систем двигателя внутреннего сгорания и может быть использовано для диагностирования двигателей внутреннего сгорания. Технический результат направлен на расширение числа диагностируемых параметров систем двигателя. Технический результат достигается тем, что в анализатор работы систем двигателя внутреннего сгорания дополнительно введены трансформатор с двумя вторичными обмотками и осциллографическое устройство, причем первичная обмотка трансформатора соединена с выходом генератора синусоидального напряжения, одна вторичная обмотка соединена с входами обмотки возбуждения диагностируемого генератора, а вторая - с входом развертки осциллографического устройства, сигнальный вход осциллографического устройства соединен с выходом диагностируемого генератора. 3 ил.

Группа изобретений относится к газотурбинной системе, содержащей блок термодинамической модели, генерирующий вычисленный эксплуатационный параметр на основе механической модели газотурбинного двигателя и на основе термодинамической модели газотурбинного двигателя. Блок тестовой последовательности генерирует данные тестовой последовательности. Система сбора данных генерирует тестовые управляющие данные на основании данных тестовой последовательности, при этом система сбора данных связана с управляющим блоком для предоставления тестовых управляющих данных, так что газотурбинный двигатель является управляемым на основании тестовых управляющих данных. Блок сравнения связан с системой сбора данных, так что измеренный эксплуатационный параметр, измеряемый сенсорным устройством, сравнивается с вычисленным эксплуатационным параметром. Описан также способ работы газотурбинной системы. Технический результат изобретений – обеспечение автоматического тестирования промышленного газотурбинного двигателя в условиях реального времени. 2 н. и 10 з.п. ф-лы, 1 ил.

Изобретения относятся к системе и способу контроля и диагностики аномалий выходных характеристик газовой турбины. Способ включает также прием входных данных реального времени и входных данных за прошлые периоды времени из системы контроля состояния, связанной с газовой турбиной, при этом входные данные относятся к параметрам, влияющим на характеристики газовой турбины, периодическое определение текущих значений параметров, сравнение исходных значений с соответствующими текущими значениями, определение ухудшения во времени по меньшей мере одного из следующего: КПД компрессора газовой турбины, выходная мощность газовой турбины, удельный расход тепла на газовую турбину и потребление топлива газовой турбиной, на основе упомянутого сравнения, и рекомендацию оператору газовой турбины набора корректирующих воздействий для корректировки этого ухудшения. Технический результат изобретения – повышение эффективности и надежности эксплуатации газовой турбины. 2 н. и 8 з.п. ф-лы, 8 ил.

Изобретение может быть использовано для измерения амплитуд и фаз вибрации при балансировке роторов турбин и компрессоров в машиностроении, авиастроении и других областях. Способ определения динамического дисбаланса ротора ГТД, включает установку датчиков вибрации на корпус двигателя под углом 90° друг к другу, обработку полученных вибросигналов путем многоуровневой фильтрации, выделение в полученном вибросигнале рабочего поля частот ротора. Затем определяют мгновенное положение амплитуды и фазы колебаний ротора и получают синтезированные орбиты из перемещения системы ротор - корпус в плоскостях сечениях опор ротора, а сравнение производят с эталонной орбитой ротора и определяют дисбаланс ротора. Изобретение позволяет определить дисбаланс двигателя в сборе на рабочих частотах вращения роторов. 2 ил.

Изобретение относится к области энергомашиностроения и предназначено для осуществления испытаний энергоустановок с последующим проведением контроля параметров и состава продуктов сгорания. Способ испытания энергоустановок, основанный на управлении процессом испытания, включающем в себя поэтапную подачу компонентов топлива в камеру сгорания, их сжигание и смешение с балластировочной средой, контроль параметров энергоустановки, согласно изобретению продукты сгорания направляют в емкость с химически нейтральным газом, затем осуществляют контроль параметров и состава продуктов сгорания, в том числе полноты сгорания горючего, причем перед началом и по завершении подачи компонентов топлива в камеру сгорания осуществляют продувку полостей, магистралей энергоустановки, а также наддув емкости химически нейтральным газом, создавая в ней избыточное давление, а отбор пробы продуктов сгорания на анализ проводят из емкости без ограничения времени анализа. При запуске и остановке энергоустановки продукты сгорания сбрасываются в атмосферу, а забор продуктов сгорания в емкость с химически нейтральным газом, из которой проводят отбор пробы, проводят на стационарном режиме работы энергоустановки. Рассмотрен стенд для реализации способа. Изобретение обеспечивает повышение экологичности энергоустановки за счет снижения выброса вредных веществ в продуктах сгорания, предотвращения накопления в системах утилизации продуктов сгорания энергоустановки непрореагировавших компонентов топлива с целью обеспечения пожаровзрывобезопасности, а также повышение надежности работы энергоустановок. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к автоматизированному способу неразрушающего контроля тканой заготовки, предназначенной для производства части турбомашины и содержащей множество первых маркирующих нитей, пересекающихся со вторыми маркирующими нитями, первые и вторые нити имеют свойства отражения света, отличные от свойств нитей заготовки, и сотканы с нитями заготовки таким образом, чтобы образовывать поверхностную сетку на заданной зоне заготовки. Способ заключается в определении координат в пространстве пересечений первых и вторых маркирующих нитей посредством нескольких последовательных этапов. Технический результат изобретения - упрощение способа и повышение точности измерений. 10 з.п. ф-лы, 13 ил.

Способ повышения эффективности диагностики развития трещины в диске работающего авиационного газотурбинного двигателя, который реализуется совместным анализом интегрального вибросигнала, регистрируемого на корпусе двигателя из-за импульсного высвобождения энергии при ступенчатом развитии трещины при выходе двигателя на максимальные обороты в рабочем цикле, и составляющих спектра вибрации, зарегистрированных одновременно с интегральным вибросигналом. Изобретение позволяет повысить эффективность метода диагностики дисков по импульсному колебанию корпуса двигателя при развитии трещины в диске.

Наверх