Раздвижное сопло ракетного двигателя

Изобретение относится к области ракетостроения и может быть использовано при разработке и изготовлении ракетных двигателей с соплами большой степени расширения для верхних ступеней ракет и космических аппаратов. Раздвижное сопло ракетного двигателя содержит стационарный раструб и сдвигаемые насадки, цилиндрические оболочки внутри каждого насадка, кольцевой выступ на наружной поверхности и установленное на законцовке подвижное фиксирующее кольцо. Каждая цилиндрическая оболочка состыкована со сдвигаемым насадком по цилиндрической поверхности со стороны меньшего диаметра и имеет в зоне стыковки меридиональные разрезы. Внутренний диаметр цилиндрической поверхности насадка равен и внутреннему диаметру цилиндрической оболочки. На внутренней поверхности насадка, в зоне перехода цилиндрической поверхности в коническую, выполнена кольцевая проточка, в которой размещена законцовка цилиндрической оболочки с кольцевым выступом. Ширина проточки от начала конической поверхности насадка выполнена таким образом, что при выдвинутом положении насадка законцовка цилиндрической оболочки находится за срезом неподвижного раструба. Подвижное фиксирующее кольцо установлено внутри законцовки цилиндрической оболочки. Наружный диаметр подвижного фиксирующего кольца равен внутреннему диаметру цилиндрической оболочки. Изобретение позволяет уменьшить зазор в стыке неподвижного раструба и сдвигаемого насадка и снизить массу сопла. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к области ракетостроения и может быть использовано при разработке и изготовлении ракетных двигателей с соплами большой степени расширения для верхних ступеней ракет и космических аппаратов.

Известны сопла с изменяемой геометрией раструба, имеющие укороченную длину в транспортном положении (режиме «пассажира») и увеличенную длину раструба с выдвинутым телескопическим насадком (насадками) в рабочем положении.

Известны раздвижные сопла, в которых внутри сдвигаемых насадков установлены сбрасываемые цилиндрические оболочки, обеспечивающие центрирование сдвигаемых насадков при холодной (до начала работы двигателя) раздвижке, а в случае горячей (во время работы двигателя) раздвижки еще и обеспечивают появление дополнительной газодинамической силы трения, которая способствует более быстрой раздвижке насадков. Организованный сброс цилиндрических оболочек обеспечивается при помощи различных механизмов.

Известно раздвижное сопло (патент РФ №2180405, взято за прототип), содержащее стационарную часть (неподвижный раструб) и сдвигаемые насадки. В каждом насадке имеются цилиндрические оболочки, имеющие меридиональные разрезы и на наружной поверхности профильный кольцевой выступ, входящий в соответствующий кольцевой паз сдвигаемого насадка. Фиксация цилиндрической оболочки в насадке и ее последующий регламентированный сброс при раздвижке насадка обеспечиваются установкой упругоподжатого П-образного кольца, взаимодействующего с внутренней стороной законцовки цилиндрической оболочки в месте профильного кольцевого выступа и с цилиндрическим участком сдвигаемого насадка. При завершении процесса раздвижки П-образное кольцо упирается в выступ и, сдвигаясь, освобождает законцовку цилиндрической оболочки с профильным выступом, которая выскальзывает в зазор между цилиндрическим участком сдвигаемого насадка и наружным диаметром стационарного раструба.

Основным недостатком этой конструкции сопла является большой зазор между цилиндрическим участком сдвигаемого насадка и наружным диаметром стационарного раструба (в реальной конструкции до 3,5 мм) для выхода законцовки цилиндрической оболочки, что требует формирования еще одной посадочной поверхности для обеспечения соосности раструба и насадка и ведет к потерям удельного импульса двигателя.

Наличие упругого элемента (поджимающего П-образное кольцо) требует дополнительной энергии при раздвижке для его сжатия (усилие в реальной конструкции составляет более 1000 кгс), кроме того, малые размеры сечения и достаточно сложный профиль П-образного кольца при его относительно большом диаметре делают проблематичным его изготовление из композиционного материала. Увеличенная энергия раздвижки и необходимость изготовления металлического П-образного кольца влекут за собой необходимость металлической арматуры в насадке и стационарном раструбе (как это видно из иллюстраций к вышеуказанному патенту) и, соответственно, увеличение массы.

Задачей предлагаемого изобретения является устранение указанных недостатков конструкции, то есть снижение массы конструкции и уменьшение зазоров в стыке стационарного раструба и сдвигаемого насадка.

Технический результат достигается тем, что в раздвижном сопле ракетного двигателя, содержащем стационарный раструб и сдвигаемые насадки, цилиндрические оболочки внутри каждого насадка, состыкованные с ним по цилиндрической поверхности со стороны меньшего диаметра и имеющие в зоне стыковки с насадком продольные разрезы, кольцевой выступ на наружной поверхности и установленное на законцовке подвижное фиксирующее кольцо, внутренние диаметры цилиндрической поверхности насадка и цилиндрической оболочки равны, на внутренней поверхности насадка в зоне перехода цилиндрической поверхности в коническую выполнена кольцевая проточка, в которой размещена законцовка цилиндрической оболочки с кольцевым выступом. При этом ширина проточки от начала конической поверхности выполнена таким образом, что при выдвинутом положении насадка законцовка цилиндрической оболочки находится за срезом стационарного раструба, а подвижное фиксирующее кольцо вставлено внутрь законцовки цилиндрической оболочки, при этом наружный диаметр подвижного фиксирующего кольца совпадает с внутренним диаметром цилиндрической оболочки.

Поверхность кольцевого выступа цилиндрической оболочки, обращенная в сторону среза сопла может быть выполнена конической, при этом угол полураствора конуса β удовлетворяет условию Ctgβ>kт, где kт - коэффициент трения между материалом цилиндрической оболочки и материалом насадка.

В цилиндрической оболочке и подвижном фиксирующем кольце могут быть выполнены соосные отверстия, причем в отверстие цилиндрической оболочки установлен фиксатор, частично утопленный в подвижное фиксирующее кольцо, в отверстие подвижного фиксирующего кольца установлен упирающийся в фиксатор толкатель, высота которого равна толщине подвижного фиксирующего кольца, а часть наружной поверхности стационарного раструба выполнена эквидистантно внутренней поверхности подвижного фиксирующего кольца с минимальным зазором.

За счет вывода законцовки цилиндрической оболочки в раздвинутом положении сопла за срез стационарного раструба получаем практически нулевой зазор между цилиндрическим участком сдвигаемого насадка и наружным диаметром стационарного раструба, а отказ от упругого поджимного элемента (с соответствующим снижением энергии раздвижки) и упрощение формы фиксирующего кольца позволят отказаться от металлической арматуры в насадке и стационарном раструбе и, соответственно, снизить массу сопла.

При последующем описании приняты следующие условности и упрощения:

1. Условно не показан привод раздвижки, при этом считаем, что цилиндрические оболочки с ним соединены и отстыковываются от насадков его усилием. Фактически, при всех схемах холодной раздвижки с отстыковкой цилиндрических оболочек до начала работы двигателя привод раздвижки с ними механически связан, а при горячей раздвижке цилиндрические оболочки сами являются частью привода раздвижки, поскольку на них реализуется газодинамическая сила от реактивной струи двигателя, выдвигающая насадки.

2. Учитывая то, что в процессе раздвижки сопла каждый сдвигаемый насадок для последующего выполняет роль стационарного раструба, в описании будет показываться работа только одного насадка.

3. Кольцевой выступ на законцовке цилиндрической оболочки не обязательно должен быть выполнен по всему периметру. Необходимый суммарный периметр кольцевого выступа определяется нагрузками, действующими в паре сдвигаемый насадок-цилиндрическая оболочка, поэтому, с целью снижения энергии раздвижки, он может выполняться только на части лепестков законцовки цилиндрической оболочки, образованных меридиональными разрезами, при этом остальные лепестки без кольцевого выступа не входят в зацепление с насадком, а только обеспечивают геометрию цилиндрической оболочки.

На фиг. 1 изображен общий вид раздвижного сопла с двумя сдвигаемыми насадками в сложенном положении.

На фиг. 2 показан выносной элемент А в более крупном масштабе в трех положениях: в начале процесса раздвижки (а), промежуточном положении при выдвижении насадка (б) и при выдвинутом зафиксированном положении насадка при начале отстыковки цилиндрической оболочки (в).

На фиг. 3 показан кольцевой выступ на законцовке цилиндрической оболочки, его профиль (п. 2 формулы изобретения) и силы, действующие на законцовку в момент отстыковки от насадка.

На фиг. 4 показан выносной элемент Б с механической фиксацией исходного положения подвижного кольца (п. 3 формулы изобретения) в более крупном масштабе в трех положениях: в начале процесса раздвижки (а), промежуточном положении при выдвижении насадка (б) и при выдвинутом зафиксированном положении насадка при начале отстыковки цилиндрической оболочки (в).

Раздвижное сопло (фиг. 1) содержит стационарный раструб 1, внутренний 2 и наружный 3 сдвигаемые насадки, внутри которых установлены цилиндрические оболочки 4 и 5, соответственно, при этом внутренний диаметр цилиндрического участка насадка D1 равен внутреннему диаметру цилиндрической оболочки D2. Цилиндрические оболочки опираются на наружный диаметр стационарного раструба (предыдущего сдвигаемого насадка) и при раздвижке скользят по нему. На законцовке цилиндрической оболочки выполнен кольцевой выступ 6, а сама законцовка с выступом размещена в кольцевой проточке 7 насадка в зоне перехода внутренней цилиндрической поверхности в коническую. Чтобы законцовки оболочек могли подгибаться внутрь, на оболочке выполнены меридиональные разрезы 8 и 9. В сложенном положении и в процессе раздвижки законцовки 6 зафиксированы в кольцевых проточках 7 насадков подвижными фиксирующими кольцами 10 и 11, наружный диаметр которых совпадает с внутренним диаметром соответствующей цилиндрической оболочки D2. Раздвижное сопло содержит также фиксаторы 12 сложенного положения насадков (показаны условно), фиксаторы разложенного положения, в данном случае цанги 13, 14 и демпферы-уплотнители 15.

Работает раздвижное сопло следующим образом. При подаче команды на раздвижку снимаются фиксаторы 12 сложенного положения (фиг. 2-а) и сдвигаемый насадок 3 вместе с цилиндрической оболочкой 5 начинает движение относительно неподвижного раструба (на данном выносном элементе - предыдущего выдвигаемого насадка 2). При подходе к выдвинутому положению (фиг. 2-б) подвижное фиксирующее кольцо 11 упирается в стационарный раструб и освобождает законцовку цилиндрической оболочки 5 с кольцевым выступом 6, но при этом цилиндрическая оболочка не выходит из зацепления со сдвигаемым насадком 3, потому что продолжает двигаться по наружному диаметру стационарного раструба, который не дает лепесткам законцовки цилиндрической оболочки отклониться внутрь и выйти из кольцевой проточки 7. В полностью раздвинутом положении (фиг. 2-в) сдвигаемый насадок 3 фиксируется на цангах 14, демпфер-уплотнитель 15 деформируется и обеспечивает поджатие насадка к цангам. Ширина b1 кольцевой проточки 7 в насадке выбрана такой, чтобы при раздвинутом положении насадка законцовка цилиндрической оболочки полностью выходила за срез 16 стационарного раструба, при этом лепестки законцовки цилиндрической оболочки с кольцевым выступом 6, образованные меридиональными разрезами, отгибаются внутрь, выходят из зацепления с насадком и цилиндрическая оболочка отделяется от сопла.

Для того чтобы лепестки законцовки выходили из зацепления с насадком, можно выполнять их предварительно подогнутыми внутрь и упруго деформировать при фиксации в кольцевой проточке подвижным кольцом. Однако более надежным будет формирование на кольцевом выступе законцовки цилиндрической оболочки профиля, обеспечивающего гарантированный выход лепестков законцовки из зацепления с насадком под действием вытягивающей силы, приложенной к цилиндрической оболочке.

На фиг. 3 показан кольцевой выступ 6 на законцовке цилиндрической оболочки 5, размещенный в кольцевой проточке 7 сдвигаемого насадка 3. Поверхность 17 выступа, обращенная в сторону среза сопла, выполнена конической с углом полураствора конуса β, при этом вершина конуса также направлена в сторону среза сопла. При раздвижке сопла на цилиндрическую оболочку действует тянущая сила Fт со стороны привода раздвижки (или газодинамическая сила), которая выдвигает насадок, при этом к насадку сила передается через поверхность 17 кольцевого выступа. Нормальная к поверхности 17 составляющая FN тянущей силы Fт прижимает кольцевой выступ к насадку и обуславливает силу трения Fтp между кольцевым выступом и насадком. Направленная вдоль поверхности 17 составляющая Fc тянущей силы стремится отклонить лепестки законцовки цилиндрической оболочки внутрь и вывести их из зацепления с насадком. В процессе раздвижки этому противодействует подвижное фиксирующее кольцо 11 (или 12 на фиг. 1) и наружный диаметр стационарного раструба, по которому скользит цилиндрическая оболочка вместе с насадком. При фиксации насадка в раздвинутом положении законцовка цилиндрической оболочки выходит за срез стационарного раструба и под действием силы Fc лепестки законцовки отгибаются, принимая положение 18, и выходят из насадка.

В этот момент отгибу лепестков законцовки с выходом их из зацепления с насадком под действием силы Fc ничего не препятствует, кроме силы трения Fтр. Таким образом, для обеспечения надежной расстыковки цилиндрической оболочки и сдвигаемого насадка необходимо выполнение условия Fc>Fтр.

С учетом того, что

Fc=Fт×Cosβ,

Fтр=kтр×FN=kтр×Fт×Sinβ,

необходимое условие принимает вид:

Ctg β>kтр,

где kтр - коэффициент трения между материалом насадка и материалом цилиндрической оболочки.

При сложенном положении сопла и в начальный период раздвижки подвижное фиксирующее кольцо должно быть зафиксировано на своем месте - на законцовке цилиндрической оболочки. Наиболее надежной и обеспечивающей минимальные потери энергии при раздвижке сопла будет механическая фиксация подвижного фиксирующего кольца с цилиндрической оболочкой, снимаемая в процессе раздвижки перед тем, как подвижное фиксирующее кольцо упирается в стационарный раструб. Данное решение показано на фиг. 4.

В подвижном фиксирующем кольце 11 и в цилиндрической оболочке 4 открываются соосные (при исходном положении кольца) отверстия, в которые устанавливается фиксатор 19, проходящий через всю толщину цилиндрической оболочки и часть толщины подвижного фиксирующего кольца. Под фиксатором в этом же отверстии в подвижном фиксирующем кольце установлен толкатель 20, который частично выступает за внутреннюю поверхность 21 подвижного фиксирующего кольца. Отверстие в подвижном фиксирующем кольце выполнено ступенчатым, чтобы толкатель не «проваливался» сквозь кольцо. Фиксатор 19 и толкатель 20 поджаты в отверстии, в данном случае, плоской пружиной 22, соединенной с цилиндрической оболочкой 4. Таким образом, в сложенном положении сопла и при начале раздвижки (фиг. 4-а) исходное положение подвижного фиксирующего кольца 11 на цилиндрической оболочке 4 жестко зафиксировано. Чтобы обеспечить расфиксацию подвижного фиксирующего кольца 11 перед занятием сдвигаемым насадком окончательного (разложенного) положения, высота hт толкателя 20 выполнена равной толщине sк подвижного кольца 11. Часть наружной поверхности 23 стационарного раструба 1, на которую надвигается подвижное фиксирующее кольцо 11, выполнена эквидистантно внутренней поверхности 21 подвижного фиксирующего кольца с минимальным зазором. При подходе сдвигаемого насадка 2 к выдвинутому положению (фиг. 4-б) подвижное фиксирующее кольцо 11 вместе с толкателем 20 надвигается на поверхность 23, при этом толкатель поднимается и выталкивает фиксатор 19 за наружный диаметр подвижного фиксирующего кольца (с учетом того, что hт=sк), после чего подвижное фиксирующее кольцо 11 получает возможность смещаться вдоль цилиндрической оболочки 4 и внутренней поверхности цилиндрического участка насадка 2. Когда насадок зафиксируется в выдвинутом положении, лепестки законцовки цилиндрической оболочки с кольцевым выступом отгибаются внутрь, выходят из зацепления с насадком и цилиндрическая оболочка отделяется от сопла вместе с фиксатором, а толкатель остается внутри подвижного фиксирующего кольца.

Таким образом, предлагаемая конструкция раздвижного сопла ракетного двигателя позволяет уменьшить зазор в стыке неподвижного раструба и сдвигаемого насадка за счет вывода законцовки цилиндрической оболочки в раздвинутом положении сопла за срез стационарного раструба, отказ от упругого поджимного элемента (с соответствующим снижением энергии раздвижки) и упрощение формы подвижного фиксирующего кольца позволят отказаться от металлической арматуры в насадке и стационарном раструбе и, соответственно, снизить массу сопла.

1. Раздвижное сопло ракетного двигателя, содержащее стационарный раструб и сдвигаемые насадки, цилиндрические оболочки внутри каждого насадка, состыкованные с ним по цилиндрической поверхности со стороны меньшего диаметра и имеющие в зоне стыковки с насадком меридиональные разрезы, кольцевой выступ на наружной поверхности и установленное на законцовке подвижное фиксирующее кольцо, отличающееся тем, что внутренние диаметры цилиндрической поверхности насадка и цилиндрической оболочки равны, на внутренней поверхности насадка в зоне перехода цилиндрической поверхности в коническую выполнена кольцевая проточка, в которой размещена законцовка цилиндрической оболочки с кольцевым выступом, при этом ширина проточки от начала конической поверхности насадка выполнена таким образом, что при выдвинутом положении насадка законцовка цилиндрической оболочки находится за срезом неподвижного раструба, а подвижное фиксирующее кольцо установлено внутри законцовки цилиндрической оболочки, при этом наружный диаметр подвижного фиксирующего кольца равен внутреннему диаметру цилиндрической оболочки.

2. Раздвижное сопло ракетного двигателя по п. 1, отличающееся тем, что поверхность кольцевого выступа цилиндрической оболочки, обращенная в сторону среза сопла, выполнена конической, при этом угол полураствора конуса β удовлетворяет условию Ctgβ>kт, где kт - коэффициент трения между материалом цилиндрической оболочки и материалом насадка.

3. Раздвижное сопло ракетного двигателя по п. 1, отличающееся тем, что в цилиндрической оболочке и подвижном фиксирующем кольце выполнены соосные отверстия, в отверстие цилиндрической оболочки установлен фиксатор, частично утопленный в подвижное фиксирующее кольцо, в отверстие кольца установлен упирающийся в фиксатор толкатель, высота которого равна толщине подвижного фиксирующего кольца, а часть наружной поверхности неподвижного раструба выполнена эквидистантно внутренней поверхности подвижного фиксирующего кольца с минимальным зазором.



 

Похожие патенты:

Изобретение относится к артиллерийской технике, в частности к ракетным двигателям снарядов, запускаемых из ствола орудия или миномета. Ракетный двигатель активно-реактивного снаряда содержит камеру сгорания с зарядом твердого топлива, сопло, инициатор и сопловую заглушку.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя с раздвижным соплом. Сопло ракетного двигателя содержит раструб, первый насадок, наружный телескопический насадок, механизмы раздвижки, обеспечивающие перевод сопла из сложенного положения в рабочее, а также приводы раздвижки.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя с раздвижным соплом. Сопло ракетного двигателя с механизмом раздвижки, обеспечивающим перевод сопла из сложенного положения в рабочее, содержит раструб и складной насадок, образованный лепестками с элементами кинематической связи лепестков с раструбом.

Изобретение относится к ракетной технике, в частности к устройству жидкостного ракетного двигателя с выдвижным многосекционным соплом. Жидкостный ракетный двигатель с выдвижным соплом, содержащий камеру с соплом из двух частей, одна из которых, смонтированная неподвижно с камерой сгорания, снабжена механизмом выдвижения в виде привода, исполнительного механизма и узлов направления и фиксации в конечном положении, а вторая - выполнена с возможностью перемещения вдоль оси сопла из двух частей, связанных телескопически друг с другом с возможностью взаимного кинематического взаимодействия и с узлами направления и фиксации, по цилиндрическому контуру на периферии неподвижной обечайки сопла выполнены профильные многозаходные винтовые направляющие, по одинаковым по окружности равноотстоящим друг от друга и продольной оси двигателя винтовым траекториям, а на корпусе выдвижной максимального диаметра части сопла с возможностью вращения и с осевой фиксацией установлена кольцевая обечайка, снабженная двумя группами направленных к продольной оси сопла и в другую от нее сторону цапф со сферическими подшипниками, одной - взаимодействующей своими подшипниками с внутренними профилями винтовых направляющих, и второй - группой цапф, снабженной сферическими подшипниками, через шатуны с группой цапф, размещенной с внешней части сопла максимального диаметра.

Изобретение относится к ракетной технике, в которой создание жидкостных ракетных двигателей с донной тепловой защитой, предназначенной для уменьшения теплового и газодинамического воздействия продуктов сгорания работающих двигателей, является актуальной задачей.

Изобретение относится к ракетно-космической технике. Компоновка маршевой многокамерной двигательной установки двухступенчатой ракеты-носителя с составным сопловым блоком, оснащенной ракетными блоками первой и второй ступеней, соединенными и работающими по параллельной схеме, содержащая охлаждаемые камеры жидкостных ракетных двигателей (ЖРД) первой ступени, расположенные вокруг укороченного центрального тела общего для этих камер штыревого сопла, и камеры сгорания второй ступени, расположенные во внутренней полости этого укороченного центрального тела около их общего круглого тарельчатого сопла, соединенные разъемными узлами силовой связи с разделяемыми ракетными блоками ступеней.

Сопло ракетного двигателя с механизмом раздвижки, обеспечивающим перевод сопла из сложенного положения в рабочее, содержит раструб и складной насадок, образованный лепестками с элементами кинематической связи лепестков с раструбом.

Изобретение относится к ракетной технике. Раструб сопла ракетного двигателя с тепловой изоляцией выполнен из композиционного материала, который представляет собой армированную углеродными волокнами керамическую матрицу.

Изобретение относится к ракетной технике, а более конкретно к устройству жидкостного ракетного двигателя с выдвижным соплом. В жидкостном ракетном двигателе исполнительный механизм выполнен в виде двух соосных, с неподвижным соплом и между собой одной неподвижной и другой, выполненной с возможностью вращения относительно неподвижной, обечаек, с расположенными между обечайками подшипниками и узлом ограничения взаимного осевого перемещения вдоль продольной оси сопла, а на второй обечайке, связанной кинематически с приводом вращательного перемещения через кинематический узел, и на наружной части смонтированной с возможностью перемещения части сопла равномерно по окружности расположены цапфы с установленными на их концах сферическими подшипниками, соединенными шатунами.

Развертываемое сопло для ракетного двигателя содержит неподвижную расширяющуюся секцию и подвижную расширяющуюся секцию, которая коаксиальна неподвижной расширяющейся секции и выполнена с возможностью перемещения вдоль неподвижной расширяющейся секции из втянутого положения в развернутое положение.

Изобретение относится к ракетным двигателям, в которых используется центральное тело с расположенными вокруг него индивидуальными камерами сгорания. Жидкостной ракетный двигатель (ЖРД) состоит из рамы, центрального тела с профилированной поверхностью, расположенной коаксиально продольной оси двигателя, и нескольких индивидуальных камер сгорания с профилированными сверхзвуковыми соплами, расположенными вокруг центрального тела, и закрепленных на двигательной раме. Согласно изобретению между индивидуальными камерами сгорания в районе сверхзвуковых сопел установлены выполненные из углерод-углеродного композиционного материала и прикрепленные к двигательной раме обтекатели, боковые поверхности которых являются продолжением профилированных поверхностей сверхзвуковых сопел индивидуальных камер сгорания, при этом с наружной стороны обтекатели имеют цилиндрическую поверхность с радиусом, равным радиусу наружной поверхности двигателя, а с внутренней стороны ограничены профилированной поверхностью центрального тела. Изобретение обеспечивает увеличение тяги двигателя и повышение его эффективности за счет увеличения удельного импульса тяги. 3 ил.

Изобретение относится к ракетным двигателям, в которых для управления вектором тяги в полете используются различные органы управления, расположенные у среза сопла или внутри него. ЖРД содержит камеру с охлаждаемой сверхзвуковой частью сопла, рулевые агрегаты и раму, на наружной поверхности охлаждаемой сверхзвуковой части сопла в районе среза выполнено четыре сектора со сферической наружной поверхностью с центром, расположенным на оси камеры, и боковыми стенками, соединяющими сферические поверхности секторов, с наружной поверхностью охлаждаемой сверхзвуковой частью сопла, на которые установлены части дефлектора, выполненные из углерод-углеродного композиционного материала (УУКМ), наружные и внутренние поверхности которого, эквидистантные наружной поверхности секторов, закреплены к сферическим секторам с помощью фасонных кронштейнов, расположенных по бокам частей дефлектора и имеющих эквидистантные внутренние поверхности относительно наружных поверхностей дефлектора, имеющих зазор между собой для крепления кронштейна, расположенного на наружной поверхности частей дефлектора, при этом все эквидистантные поверхности сферических секторов, частей дефлектора и кронштейнов имеют графитовое покрытие. Изобретение обеспечивает повышение эффективности, ресурса работы и получения большей величины бокового управляющего усилия и уменьшения усилия на рулевых органах. 3 ил.

Изобретение относится к жидкостным ракетным двигателям, работающим на первой и второй ступенях ракетоносителя. Камера жидкостного ракетного двигателя с регулируемым соплом содержит охлаждаемую часть сопла и неохлаждаемый насадок из углерод-углеродного композиционного материала, рулевые агрегаты и раму, согласно изобретению в неохлаждаемом насадке выполнены ниши, в которых расположены несколько секций разъемного земного сопла, имеющих валы вращения, расположенные по касательным в районе стыка неохлаждаемого насадка с охлаждаемой частью сопла, установленные в кронштейны, закрепленные на охлаждаемой части сопла и соединенные рулевыми агрегатами с рамой двигателя. Изобретение обеспечивает повышение эффективности и надежности работы ЖРД по всей траектории полета ракеты. 3 ил.

Изобретение относится к жидкостным ракетным двигателям, работающим на первой и второй ступенях ракетоносителя. Камера жидкостного ракетного двигателя с регулируемым соплом содержит охлаждаемую часть сопла и неохлаждаемый насадок из углерод-углеродного композиционного материала, рулевые агрегаты и раму, согласно изобретению в неохлаждаемом насадке выполнены ниши, в которых расположены несколько секций разъемного земного сопла, имеющих валы вращения, расположенные по касательным в районе стыка неохлаждаемого насадка с охлаждаемой частью сопла, установленные в кронштейны, закрепленные на охлаждаемой части сопла и соединенные рулевыми агрегатами с рамой двигателя. Изобретение обеспечивает повышение эффективности и надежности работы ЖРД по всей траектории полета ракеты. 3 ил.

Изобретение относится к ракетной технике и может быть использовано при разработке поворотных управляющих сопел изменяемой геометрии для ракетных двигателей. Поворотное управляющее сопло ракетного двигателя состоит из соединенных узлом качания неподвижной и подвижной частей, с расположенным на срезе раструба подвижной части раскладным сопловым насадком и механизмом его разложения, выполненным в виде нескольких равномерно расположенных вокруг сопла раздвижных телескопических штанг. Сопловой насадок образован раструбом из гибкого композиционного материала и опорными кольцами, установленными с интервалами вдоль оси сопла и соединенными с помощью шарниров с механизмом разложения насадка. Ближайшее к срезу раструба подвижной части сопла опорное кольцо закреплено в зоне максимального сечения раструба подвижной части сопла таким образом, что оно образует продолжение подвижной части. Опорные кольца в сложенном состоянии размещены так, что своими максимальными сечениями образуют зону, подобную по форме переднему днищу предыдущей ступени. Изобретение позволяет повысить баллистическую эффективность ракеты за счет уменьшения общей длины ракеты при наличии габаритных ограничений, сокращения длины и массы межступенных отсеков или за счет увеличения длины и массы топливного заряда ракетного двигателя при сохранении общей длины ракеты. 1 з.п. ф-лы, 2 ил.

Изобретение относится к ракетной технике и может быть использовано при разработке поворотных управляющих сопел изменяемой геометрии для ракетных двигателей. Поворотное управляющее сопло ракетного двигателя состоит из соединенных узлом качания неподвижной и подвижной частей, с расположенным на срезе раструба подвижной части раскладным сопловым насадком и механизмом его разложения, выполненным в виде нескольких равномерно расположенных вокруг сопла раздвижных телескопических штанг. Сопловой насадок образован раструбом из гибкого композиционного материала и опорными кольцами, установленными с интервалами вдоль оси сопла и соединенными с помощью шарниров с механизмом разложения насадка. Ближайшее к срезу раструба подвижной части сопла опорное кольцо закреплено в зоне максимального сечения раструба подвижной части сопла таким образом, что оно образует продолжение подвижной части. Опорные кольца в сложенном состоянии размещены так, что своими максимальными сечениями образуют зону, подобную по форме переднему днищу предыдущей ступени. Изобретение позволяет повысить баллистическую эффективность ракеты за счет уменьшения общей длины ракеты при наличии габаритных ограничений, сокращения длины и массы межступенных отсеков или за счет увеличения длины и массы топливного заряда ракетного двигателя при сохранении общей длины ракеты. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области ракетной техники, в частности к ракетным двигателям активно-реактивных снарядов, запускаемых из ствола артиллерийского орудия, и заключается в способе повышения дальности полета активно-реактивного снаряда. На траектории полета снаряда зажигают заряд твердого топлива продуктами сгорания воспламенителя, расположенного в предсопловом объеме и инициируемого продуктами сгорания замедлителя. Зажигание зарядов замедлителя осуществляют продуктами сгорания пиропатронов, срабатывающих при вылете снаряда из ствола орудия и размещенных в замкнутой полости, образуемой перфорированной диафрагмой, разделяющей предсопловой объем и диффузор сопла, и срезаемой крышкой сопла, расположенной в его выходном сечении. Заряды замедлителя выполнены в форме усеченных конусов, основания которых направлены в сторону выходного сечения сопла, и герметично размещены через термоизолирующие прокладки в перфорациях диафрагмы. Высоту зарядов замедлителя определяют по алгебраической формуле, включающей оптимальное значение времени задержки зажигания заряда твердого топлива, которое предварительно определяют из серии внешнебаллистических расчетов дальности полета конкретного активно-реактивного снаряда. Изобретение позволяет обеспечить увеличение дальности полета активно-реактивного снаряда и надежное зажигание его заряда твердого топлива. 1 з.п. ф-лы, 5 ил., 3 табл.

Изобретение относится к области ракетной техники, в частности к ракетным двигателям активно-реактивных снарядов, запускаемых из ствола артиллерийского орудия, и заключается в способе повышения дальности полета активно-реактивного снаряда. На траектории полета снаряда зажигают заряд твердого топлива продуктами сгорания воспламенителя, расположенного в предсопловом объеме и инициируемого продуктами сгорания замедлителя. Зажигание зарядов замедлителя осуществляют продуктами сгорания пиропатронов, срабатывающих при вылете снаряда из ствола орудия и размещенных в замкнутой полости, образуемой перфорированной диафрагмой, разделяющей предсопловой объем и диффузор сопла, и срезаемой крышкой сопла, расположенной в его выходном сечении. Заряды замедлителя выполнены в форме усеченных конусов, основания которых направлены в сторону выходного сечения сопла, и герметично размещены через термоизолирующие прокладки в перфорациях диафрагмы. Высоту зарядов замедлителя определяют по алгебраической формуле, включающей оптимальное значение времени задержки зажигания заряда твердого топлива, которое предварительно определяют из серии внешнебаллистических расчетов дальности полета конкретного активно-реактивного снаряда. Изобретение позволяет обеспечить увеличение дальности полета активно-реактивного снаряда и надежное зажигание его заряда твердого топлива. 1 з.п. ф-лы, 5 ил., 3 табл.

Изобретение относится к области ракетостроения и может быть использовано при создании конструкций ракетных двигателей различного назначения. Фланец поворотного сопла содержит конический корпус с утопленной в двигатель частью с опорной поверхностью на эластичный шарнир в условиях применения с одной стороны и присоединительным шпангоутом для каркаса поворотного сопла с другой, а также силовой опорный пояс между ними, имеющий присоединительные отверстия для присоединения к фланцу двигателя, конструктивно отделяющий утопленную часть конического корпуса. Утопленная часть конического корпуса имеет дополнительную силовую оболочку, преимущественно из однонаправленного композиционного материала. Силовая оболочка непосредственно установлена на утопленной части конического корпуса с упором в силовой опорный пояс и с защемлением на нем и имеет с утопленной частью конического корпуса общую опорную поверхность на эластичный шарнир. Силовой опорный пояс выполнен из композиционного материала с оребрением со стороны, противоположной фланцу двигателя, с образованием ниш для размещения элементов крепления к нему или металлическим. Изобретение позволяет обеспечить компактность и жесткость конструкции. 3 ил.

Изобретение относится к области ракетостроения и может быть использовано при разработке и изготовлении ракетных двигателей с соплами большой степени расширения для верхних ступеней ракет и космических аппаратов. Раздвижное сопло ракетного двигателя содержит стационарный раструб и сдвигаемые насадки, цилиндрические оболочки внутри каждого насадка, кольцевой выступ на наружной поверхности и установленное на законцовке подвижное фиксирующее кольцо. Каждая цилиндрическая оболочка состыкована со сдвигаемым насадком по цилиндрической поверхности со стороны меньшего диаметра и имеет в зоне стыковки меридиональные разрезы. Внутренний диаметр цилиндрической поверхности насадка равен и внутреннему диаметру цилиндрической оболочки. На внутренней поверхности насадка, в зоне перехода цилиндрической поверхности в коническую, выполнена кольцевая проточка, в которой размещена законцовка цилиндрической оболочки с кольцевым выступом. Ширина проточки от начала конической поверхности насадка выполнена таким образом, что при выдвинутом положении насадка законцовка цилиндрической оболочки находится за срезом неподвижного раструба. Подвижное фиксирующее кольцо установлено внутри законцовки цилиндрической оболочки. Наружный диаметр подвижного фиксирующего кольца равен внутреннему диаметру цилиндрической оболочки. Изобретение позволяет уменьшить зазор в стыке неподвижного раструба и сдвигаемого насадка и снизить массу сопла. 2 з.п. ф-лы, 4 ил.

Наверх