Способ получения наполнителей для строительных материалов

Изобретение относится к получению наполнителя для строительных материалов. Соль алюминия в количестве от 40 до 100 г/л растворяют в кипящем водном 10-50 мас.% растворе углевода, добавляют разрыхлитель в виде 5-50 мас.% раствора нитрата алюминия с обеспечением содержания алюминия в растворе до 70-350 г/л, затем раствор упаривают до образования коричневой массы вязкой консистенции, полученную массу помещают в тигель и прогревают в муфельной печи на воздухе при температуре 250-400°С до прекращения потери массы, после чего поднимают температуру до 800-1200°С и прокаливают ее до полного выгорания углевода. В качестве соли алюминия может быть использован оксихлорид, ацетат и сульфат алюминия, а в качестве углевода - тростниковый сахар. Обеспечивается получение наполнителя для строительных материалов в виде порошка оксида алюминия, обладающего низкой насыпной плотностью, низким значением теплопроводности и высокой пористостью. 2 з.п. ф-лы, 3 пр., 3 ил.

 

Изобретение относится к области порошкового материаловедения с использованием химических процессов, в частности к методу синтеза порошков оксидов металлов - наполнителей для строительных материалов с низкой насыпной плотностью, низкой теплопроводностью и высокой пористостью.

Возросший интерес к порошкам оксидов металлов с низкой насыпной плотностью и низкой теплопроводностью объясняется широким спектром применения таких материалов.

Так, использование порошков оксидов металлов с низкой насыпной плотностью позволяет изготавливать из них изделия, сочетающие в себе высокую пористость и хорошие прочностные характеристики [Андреевский Р.А. Порошковое материаловедение. - М.: Металлургия, 1991, RU 2553041].

Использование порошков с низкой теплопроводностью позволяет использовать их в качестве добавок к металлам, краскам и сухим смесям, бетонам и другим строительным материалам для увеличения их теплоизоляционных свойств [RU 94039976]. Известно, что теплопроводность бетона в значительной мере определяется видом используемого наполнителя. В настоящее время в строительстве широко используются легкобетонные стеновые панели. Расчетная теплопроводность (ватт на метр-кельвин) при комнатной температуре керамзитобетона при плотности 1000 кг/м3 составляет 0,41 Вт/(м⋅К), что в 2 раза меньше теплопроводности кирпичной кладки, а при плотности 1200 кг/м3 - 0,52 Вт/(м⋅К) и т.д. Имеется определенная общая зависимость между насыпной плотностью и теплопроводностью. Чем более плотный материал, тем выше у него теплопроводность, и наоборот [http://www.bibliotekar.ru/spravochnik-98-beton/27.htm].

Известно, что порошки оксидов металлов при спекании до 1200°С характеризуются однородностью размера частиц [Панасюк Г.П., Ворошилов И.Л., Белан В.Н., Козерожец И.В. Метод получения наноразмерного порошка α-оксида алюминия // Химическая технология, 2011, №4, с. 227-231].

В настоящее время известен ряд методов синтеза, например гидротермальное осаждение и золь-гель метод, позволяющих получать порошки оксидов металлов, которые обладают целым рядом уникальных свойств: габитус, контролируемый размер частиц и их однородность [Козерожец И.В. Разработка метода получения и исследование субмикронных и наноразмерных частиц оксидов алюминия с низким содержанием примесей. Диссерт. на соиск. учен. степ. канд хим. наук. 2011, 129 с]. Однако возможности целенаправленного синтеза материала с заданными техническими и потребительскими характеристиками исследованы недостаточно.

Известен способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидами иттрия и/или скандия [RU 2492157], включающий получение исходной смеси нитратов соответствующих металлов и глицина, нагревание смеси до температуры 160÷250°С и выдержку при этой температуре с последующим отжигом, при этом в исходную смесь дополнительно вводят карбоновую кислоту и/или аммонийные соли карбоновой кислоты или аминоуксусной кислоты в количестве 5÷20 мас.% от содержания глицина и отжиг осуществляют при температуре 550÷570°С.

К недостаткам изобретения относится относительно высокая, от 1,1 до 1,9 г/см3, насыпная плотность получаемого продукта.

Известен способ получения нанокристаллов оксида алюминия, заключающийся в том, что соединение алюминия смешивают с целлюлозой в воде до образования однородной дисперсной фазы, дисперсную фазу отфильтровывают и нагревают до 500÷850°С, полученный агрегированный оксид алюминия помещают в автоклав, в котором осуществляют гидротермальную обработку в кислой среде, содержащей водный раствор кислоты с концентрацией 0,08÷2,20 мас.%, при температуре 180÷220°С в течение 4÷26 ч, полученный наноразмерный бемит сушат и прокаливают при 800÷850°С в течение 2÷3 ч [RU 242418].

Недостатком способа является то, что образующиеся кристаллы не обладают низкой насыпной плотностью и тем более высокой пористостью.

Известен способ получения аморфного мезопористого аэрогеля гидроксида алюминия со слоисто-волокнистой ориентированной наноструктурой [RU 2534096], обладающего высокими потребительскими характеристиками, такими как насыпная плотность 0,01÷0,09 г/см3, теплопроводность 0,008÷0,025 Вт/(м⋅К). Способ включает проведение реакции синтеза аэрогеля гидроксида алюминия в герметичной емкости путем обработки бинарного расплава парогазовым потоком на основе смеси инертных и (или) малоактивных газов с водяным паром при температуре расплава 280÷1000°С, отличающийся тем, что в качестве бинарного расплава используется висмут с содержанием алюминия 0,05÷7,00 мас.%.

Сущность изобретения заключалась в том, что в реакционную емкость с бинарным расплавом подавали смесь аргона и водяного пара с содержанием пара 30 об.% и объемным расходом 3 л/ч. Через 10 часов при проведении ревизии реакционной емкости были обнаружены на поверхности висмута массивные грушевидные образования белого цвета.

Недостатком способа является сложная, дорогостоящая и продолжительная по времени технология.

Вторым недостатком является то, что полученный продукт, а именно гидроксид алюминия, является неустойчивым при хранении, а при нагревании разлагается с выделением воды. По этой причине использование гидроксида алюминия в качестве наполнителя для строительных материалов является малоперспективным.

Наиболее близким к заявляемому способу по конечному результату является способ получения железного порошка с низкой насыпной плотностью [RU 2006344] (прототип). В приведенном изобретении описан метод, включающий сушку, измельчение, полное окисление и последующее восстановление железной окалины с размолом и классификацией полученного спека губчатого железа. Перед восстановлением проводят дополнительное измельчение железной окалины до заданной крупности порошка.

По существу, в изобретении используют гематит с химической формулой Fe2O3, который измельчают механически до заданной крупности порошка с последующим его восстановлением в токе водорода до образования порошка металлического железа. Таким образом, в прототипе присутствует механическая обработка исходного порошка Fe2O3 путем перемалывания в шаровой мельнице в течение 15 мин до крупности 0,16 мм с последующим его восстановления в токе водорода.

В качестве промежуточного продукта получают порошок оксида железа, в качестве конечного продукта получают порошок железа с максимальной крупностью частиц 0,16 мм, насыпной плотностью 1,3 г/см3, выход порошка с насыпной плотностью 1,3 г/см3 составил 97,3%, удельная поверхность частиц (по прибору "Аккусорб") 2,3 м2/г. Свойства порошка железа не отличались от свойств порошка оксида железа.

Недостатком способа по прототипу является относительно высокая насыпная плотность получаемых порошков. Использование шаровой мельницы не позволяет достичь необходимой низкой насыпной плотности и однородности как оксида железа, так и металлического железа.

Как следствие грубой механической обработки в шаровой мельнице получают агломерированные порошки, что обуславливает их высокую теплопроводность.

Также к недостаткам можно отнести то, что предложенная в прототипе технология является энергозатратной и требует дорогостоящего оборудования.

Предложенное нами изобретение направлено на изыскание простого и дешевого способа получения порошков оксидов металлов с высокими потребительскими характеристиками наполнителей для строительных материалов, с низкой насыпной плотностью, низкой теплопроводностью и высокой пористостью.

Технический результат достигается тем, что предложен способ получения наполнителей для строительных материалов, обладающих низкой насыпной плотностью, низким значением теплопроводности и высокой пористостью, представляющих собой порошки оксидов металлов, выбранных из ряда: алюминий, магний и цинк, заключающийся в том, что соли указанных металлов в количестве от 40 до 100 г/л растворяют в кипящем водном 10÷50 мас.% растворе углевода, далее добавляют разрыхлитель в виде 5-50 мас.% раствора нитрата этого же металла в количестве, доводящем содержание металла в растворе до 70÷350 г/л, затем раствор упаривают до образования коричневой массы вязкой консистенции, которую помещают в тигель и прогревают в муфельной печи на воздухе при температуре 250÷400°С до прекращения потери массы, после чего поднимают температуру до 800÷1200°С и прокаливают ее о полного выгорания углевода.

Технический результат достигаются также тем, что в качестве солей металлов используют оксихлориды, ацетаты и сульфаты алюминия, магния и цинка.

Целесообразно, что в качестве углевода используют тростниковый сахар.

Выбор диапазона концентрации соли металла в исходном растворе обусловлен тем, что при массовой доле соли металла менее 40 г/л процесс синтеза порошка оксида металла становится более энергоемким на стадии упаривания. При массовой доле соли металла более 100 г/л не происходит равномерного распределения ионов металлов в растворе углевода, и получение порошков оксидов металлов с требуемыми свойствами становится затруднительным.

Выбор диапазона концентрации углевода в горячем водном растворе определен экспериментальным путем и является оптимальным для получения конечного продукта с заявленными техническими характеристиками, то есть с низкой насыпной плотностью, низкой теплопроводностью при комнатной температуре и высокой пористостью. Так, при значениях концентрации углевода ниже 10 мас.% вспенивание раствора недостаточно интенсивное для образования порошков оксидов металлов с заданными свойствами, а при концентрации выше 50 мас.% не удается полностью растворить исходные соли металлов.

Выбор диапазона концентрации нитрата металла 5÷50 мас.% в качестве разрыхлителя для доведения содержания металла в растворе до 70÷350 г/л обусловлен, с одной стороны, минимизацией энергозатрат, а с другой стороны - пределами растворимости солей.

Сущность изобретения состоит в том, что обнаружено свойство нитратов металлов выполнять функцию разрыхлителя в оксихлоридах, ацетатах и сульфатах тех же металлов за счет разложения нитрата в присутствии углевода по следующей схеме:

MNO3→МО+NO2+O2.

В процессе упаривания вышеуказанного раствора происходит активация разрыхлителя, что приводит к образованию коричневой массы вязкой консистенции, которую помещают в тигель и прогревают в муфельной печи на воздухе при температуре 250÷400°С до прекращения потери массы. Выбранный диапазон является оптимальным с точки зрения энергозатрат.

Температуру прокаливания в муфельной печи на воздухе выбирают из тех соображений, что при температуре меньше 800°С не происходит полного выгорания углевода, а при температуре выше 1200°С наблюдается укрупнение частиц и образование агломератов порошков оксидов металлов.

Изобретение позволяет получать порошки оксидов металлов с высокими потребительскими и техническими характеристиками.

Заявляемое изобретение поясняется следующими прилагаемыми иллюстрациями.

Фиг. 1. ПЭМ-изображение порошка оксида алюминия, полученного по заявленному изобретению.

Фиг. 2. ПЭМ-изображение порошка оксида магния, полученного по заявленному изобретению.

Фиг. 3. ПЭМ-изображение порошка оксида цинка, полученного по заявленному изобретению.

Изображения получены с помощью просвечивающего электронного микроскопа на приборе Jem-1001.

Ниже приведены примеры реализации заявляемого способа. Примеры иллюстрируют, но не ограничивают предложенный способ.

Пример 1. Получение порошка оксида алюминия

Оксихлорид алюминия массой 45 г растворяли в 1 литре кипящего водного 40 мас.% раствора тростникового сахара при равномерном перемешивании, затем добавляли разрыхлитель в виде 40 мас.% водного раствора нитрата алюминия, содержащий 45 г нитрата алюминия, с тем чтобы довести содержание металла в растворе до 90 г/л. Затем раствор упаривали до образования коричневой массы вязкой консистенции, которую помещали в тигель и прогревали в муфельной печи на воздухе при температуре 350°С до прекращения потери массы и затем при температуре 800°С до полного выгорания углевода. Получили порошок γ-Al2O3 с насыпной плотностью 0,018 г/см3, с теплопроводностью (ватт на метр-кельвин) при комнатной температуре 0,03 Вт/(м⋅К), пористостью 99,5% и значением удельной поверхности 160 м2/г.

Пример 2. Получение порошка оксида магния

Ацетат магния массой 100 г растворяли в 1 литре кипящего водного 40 мас.% раствора тростникового сахара при равномерном перемешивании, затем добавляли разрыхлитель в виде 10 мас.% водного раствора нитрата магния, содержащего 250 г нитрата магния, с тем чтобы довести содержание металла в растворе до 350 г/л. Затем раствор упаривали до образования коричневой массы вязкой консистенции, которую помещали в тигель и прогревали в муфельной печи на воздухе при температуре 350°С до прекращения потери массы и затем при 800°С до полного выгорания углевода. Получили порошок MgO с насыпной плотностью 0,060 г/см3 с теплопроводностью (ватт на метр-кельвин) при комнатной температуре 0,095 Вт/(м⋅К), пористостью 98,3% и значением удельной поверхности 120 м2/г.

Пример 3. Получение порошка оксида цинка

Сульфат цинка массой 70 г растворяли в 1 литре кипящего водного 40 мас.% раствора тростникового сахара при равномерном перемешивании, затем добавляли разрыхлитель в виде 45 мас.% водного раствора нитрата цинка, содержащего 100 г нитрата цинка, с тем чтобы довести содержание металла в растворе до 170 г/л. Затем раствор упаривали до образования коричневой массы вязкой консистенции, которую помещали в тигель и прогревали в муфельной печи на воздухе при температуре 350°С до прекращения потери массы и затем при 1200°С до полного выгорания углевода. Получили порошок ZnO с насыпной плотностью 0,200 г/см3, пористостью 98,3%, теплопроводностью (ватт на метр-кельвин) при комнатной температуре 0,350 Вт/(м⋅К) и значением удельной поверхности 100 м2/г.

Во всех примерах значение удельной поверхности значительно превышает аналогичный показатель в прототипе, что также может оказаться важным показателем в номенклатуре характеристик строительных материалов.

Предложенное изобретение позволяет получать порошки оксидов металлов с высокими потребительскими характеристиками, а именно низкими насыпной плотностью и теплопроводностью и высокой пористостью, достаточно простым и дешевым способом.

1. Способ получения наполнителя для строительных материалов, обладающего низкой насыпной плотностью, низким значением теплопроводности и высокой пористостью, представляющего собой порошок оксида алюминия, характеризующийся тем, что соль алюминия в количестве от 40 до 100 г/л растворяют в кипящем водном 10-50 мас.% растворе углевода, добавляют разрыхлитель в виде 5-50 мас.% раствора нитрата алюминия с обеспечением содержания алюминия в растворе до 70-350 г/л, затем раствор упаривают до образования коричневой массы вязкой консистенции, полученную массу помещают в тигель и прогревают в муфельной печи на воздухе при температуре 250-400°С до прекращения потери массы, после чего поднимают температуру до 800-1200°С и прокаливают ее до полного выгорания углевода.

2. Способ по п. 1, отличающийся тем, что в качестве соли алюминия используют оксихлорид, ацетат и сульфат алюминия.

3. Способ по п. 1, отличающийся тем, что в качестве углевода используют тростниковый сахар.



 

Похожие патенты:
Изобретение относится к ремонтному материалу холодного отверждения, предназначенному для оперативного ремонта сколов, выбоин, раковин, поверхностных и глубоких разрушений цементобетонных монолитных и сборных покрытий аэродромов, автомобильных дорог, мостов, причалов и других специальных сооружений.

Изобретение относится к смеси строительных материалов, используемой в качестве добавки к бетону, где смесь строительных материалов содержит пуццолановый носитель и фотокатализатор.

Изобретение относится к композитным материалам, применяемым в самолетостроении или архитектуре, и касается несгораемой композитной панели и способа ее изготовления.

Изобретение относится к области фотокаталитических материалов для применения в составе цемента. Новый фотокаталитический продукт содержит соединения титана в кристаллических фазах: CaTi2O5 и/или CaTi5O11, а также TiO2, интегрированные с известняком.

Изобретение может быть использовано в производстве строительных материалов. Фотокаталитический композиционный материал практически без диоксида титана содержит известняк по меньшей мере 0,05% по весу натрия и титанат кальция в кристаллических фазах СТ2 и/или СТ5, характеризуемых следующими дифракционными максимумами: СТ2: (002) d=4,959; (210-202) d=2,890; (013) d=2,762 и (310-122) d-2,138; СТ5: (002) d=8,845; (023) d-4,217; (110) d=3,611 и (006) d=2,948.
Изобретение относится к ремонту дефектных участков покрытия из неорганической силикатной эмали, нанесенной на металлическую поверхность санитарно-технического оборудования.
Изобретение относится к промышленности строительных материалов. .
Изобретение относится к промышленности строительных материалов. .

Изобретение относится к составам полимербетонных смесей (п/б) на основе ненасыщенных полиэфирных смол и может быть использовано при получении строительных, облицовочных и мемориального назначения изделий.
Изобретение относится к изготовлению массивов кобальтовых нанопроволок в порах трековых мембран. Способ включает электроосаждение кобальта в поры трековых мембран из электролита, содержащего CoSO4⋅7H2O - 300-320 г/л, H3BO3 - 30-40 г/л, при рН 3,5-3,8 и температуре 40-45°С.

Изобретение относится к металлургии, а именно к получению чугунной дроби. Стальную стружку смешивают с графитом, смесь размещают в отверстиях фильеры и нагревают в печи до температуры 1150-1200°С, обеспечивают науглероживание стали с превращением ее в чугун, расплавляют чугун, а затем проводят охлаждение его в воде с получением дроби.

Изобретение относится к области металлургии, а именно к нанотехнологии азот-углеродсодержащих соединений титана, которые могут быть использованы в композиционном материаловедении, в том числе в составе модифицирующих комплексов алюминиевых, железо-углеродистых и никелевых сплавов.

Изобретение относится к получению высокочистого порошка ниобия гидридным методом. Способ включает активацию слитка ниобия нагреванием до 700-900°С, гидрирование его с использованием насыщенного гидрида титана в качестве источника водорода, измельчение полученного гидрида ниобия до заданной степени дисперсности и дегидрирование полученного порошка ниобия с использованием ненасыщенного гидрида титана.

Изобретение относится к области порошковой металлургии, в частности к области легированных порошков, и может быть использовано в различных областях техники, в частности для газотермического напыления покрытий.
Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы.

Изобретение относится к получению наноструктурного порошка вольфрамата циркония ZrW2O8. Ведут синтез прекурсора ZrW2O7(OH,Cl)2·2H2O из смеси растворов оксихлорида циркония, натрия вольфрамовокислого и соляной кислоты в дистиллированной воде, взятых при стехиометрическом соотношении элементов Zr : W=1:2, затем проводят термическое разложение полученного прекурсора в воздушной атмосфере при температуре 700-900 К в течение 0,75-1,5 часа при скорости нагрева до указанной температуры не выше 100 К/час.

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств.

Изобретение относится получению нанопорошка меди. Способ получения нанопорошка меди включает растворение медного анода с последующим восстановлением меди из электролита на титановом рифленом виброкатоде, по окончании электролиза полученный медный нанопорошок фильтруют под избыточным давлением инертного газа, промывают дистиллированной водой из расчета 1 л воды на 100 г нанопорошка и сушат при температуре 90-110°С в атмосфере аргона в течение 30-45 минут.

Изобретение относится к получению высокочистого порошка тантала гидридным методом. Способ включает активацию слитка тантала нагреванием до 700-900°С, гидрирование его с использованием насыщенного гидрида титана в качестве источника водорода, измельчение полученного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка тантала с использованием ненасыщенного гидрида титана.
Изобретение относится к получению порошка титана. Способ включает загрузку губчатого титана в реторту, вакуумирование и нагрев его в вакууме, подачу водорода в реторту с обеспечением гидрирования губчатого титана при одновременном охлаждении реторты, извлечение гидрированного губчатого титана из реторты, его измельчение и рассев на фракции, загрузку измельченного гидрированного порошка титана в реторту, его дегидрирование, охлаждение реторты и извлечение порошка титана. Водород подают в реторту со скоростью не более 360 м3/час на 1 м2 сечения реторты с обеспечением избыточного давления водорода в реторте не более 44 кПа. Гидрированный губчатый титан измельчают в атмосфере аргона при избыточном давлении не более 10-20 кПа, а дегидрирование ведут путем герметизации реторты, ее вакуумирования до остаточного давления 0,01 кПа, нагрева и подачи аргона с обеспечением избыточного давления 10-30 кПа, при этом удаляют выделяющийся при дегидрировании водород совместно с аргоном с обеспечением остаточного давления 0,01 кПа и производят термическую выдержку в течение 3-5 часов. Обеспечивается получение порошка титана заданной формы - осколочного, игольчатого типа, с пониженным содержанием газовых примесей, таких как водород, азот, хлор и кислород. 1 з.п. ф-лы.

Изобретение относится к получению наполнителя для строительных материалов. Соль алюминия в количестве от 40 до 100 гл растворяют в кипящем водном 10-50 мас. растворе углевода, добавляют разрыхлитель в виде 5-50 мас. раствора нитрата алюминия с обеспечением содержания алюминия в растворе до 70-350 гл, затем раствор упаривают до образования коричневой массы вязкой консистенции, полученную массу помещают в тигель и прогревают в муфельной печи на воздухе при температуре 250-400°С до прекращения потери массы, после чего поднимают температуру до 800-1200°С и прокаливают ее до полного выгорания углевода. В качестве соли алюминия может быть использован оксихлорид, ацетат и сульфат алюминия, а в качестве углевода - тростниковый сахар. Обеспечивается получение наполнителя для строительных материалов в виде порошка оксида алюминия, обладающего низкой насыпной плотностью, низким значением теплопроводности и высокой пористостью. 2 з.п. ф-лы, 3 пр., 3 ил.

Наверх