Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в противопожарной технике для высокоточного определения массы огнетушащего вещества, в частности диоксида углерода, в резервуаре (баллоне) и ее уменьшения вследствие возможной утечки из баллона. Устройство содержит емкостный датчик массы, образованный совокупностью сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, и электронный блок. При этом длина расположенной снаружи металлической трубы уменьшена снизу по сравнению с длиной сифонной трубы, причем уменьшение длины металлической трубы составляет 0,05÷0,25 длины сифонной трубы. При этом датчик массы служит нагрузочным сопротивлением отрезка коаксиальной длинной линии, внутренний и наружный проводники которой на одном ее конце подсоединены к верхним концам, соответственно, сифонной трубы и сосной с ней металлической трубы, а на другом ее конце подключены к электронному блоку. Технический результат заключается в расширении функциональных возможностей устройства. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в противопожарной технике для высокоточного определения массы огнетушащего вещества, в частности диоксида углерода, в резервуаре (баллоне) и ее уменьшения вследствие возможной утечки из баллона.

В различных отраслях промышленности (химической, нефтеперерабатывающей, пищевой и др.) в технологических процессах находят применения однокомпонентные вещества, хранимые в металлических резервуарах (баллонах и т.п.). В зависимости от физических свойств этих веществ, условий, характеризующих хранение данных веществ (значения температуры, давления в резервуаре) возможно нахождение веществ в жидкой, газообразной фазах или в виде двухфазного вещества. В последнем случае между газом и жидкостью имеется граница раздела. Во всех таких случаях имеется необходимость определять с высокой точностью количество (объем, массу) хранимого вещества независимо от его фазового состояния, которое может быть неизвестным (а часто лишь прогнозируемым).

Известны различные устройства для измерения массы двухфазного вещества в металлическом резервуаре (баллоне и т.п.), в котором возможное уменьшение массы газа вследствие его утечки из резервуара определяют путем его взвешивания. Недостатками таких устройств являются их неудобство в эксплуатации, необходимость периодической поверки весов, высокая стоимость и ограниченная область применения, обусловленная невозможностью непрерывного контроля возможной утечки вещества из резервуара. Известные устройства с емкостными уровнемерами (US 5701932 А, 30.12.1997; DE 3731793 А1, 03.03.1989) не являются высокоточными, поскольку применимы лишь при наличии четкой границы раздела жидкой и газовой фаз вещества, что не имеет место в реальных условиях эксплуатации резервуаров, в частности баллонов с огнетушащими веществами.

В цилиндрических резервуарах имеется возможность реализовать такие датчики, используя конструктивные особенности резервуаров. Во многих практических случаях внутри такого резервуара располагается внутри него и вдоль его оси цилиндрическая металлическая труба (сифонная труба), по которой осуществляется выкачивание вещества из резервуара.

Известно также техническое решение (RU 2266464 С2, 10.11.2004; аналог - US 6836217 В2, 28.12.2004). Это устройство имеет замкнутый цилиндрический резервуар (баллон) с двухфазным веществом (диоксидом углерода) и устройство для определения его массы в резервуаре, содержащее емкостный датчик массы, образованный совокупностью металлической сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи другой металлической трубы в качестве второго проводника датчика, а также электронный блока. Недостатком этого устройства является зависимость результатов измерения массы двухфазного вещества от температуры, значительно снижающая точность измерения массы.

Известно также техническое решение (RU 2515074 С1, 10.05.2014), которое по технической сущности наиболее близко к предлагаемому устройству и принято в качестве прототипа. Это устройство-прототип имеет замкнутый цилиндрический резервуар (баллон) с двухфазным веществом (диоксидом углерода) и устройство для определения его массы в резервуаре, содержащее емкостный датчик массы, образованный совокупностью металлической сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи другой металлической трубы в качестве второго проводника датчика, а также электронный блок. Недостатками этого устройства являются его ограниченные функциональные возможности: датчик в данном случае включается в частотозадающую цепь автогенератора, входящего в состав электронного блока. Электронный блок располагается при этом непосредственно рядом с датчиком, т.к. резервуаром с двухфазным веществом, что не предполагает проведения дистанционных измерений.

Техническим результатом предлагаемого изобретения является расширение функциональных возможностей устройства.

Технический результат достигается тем, что предлагаемое устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре, имеющем расположенную вдоль его продольной оси металлическую сифонную трубу, содержащее емкостный датчик массы, образованный совокупностью сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, и электронный блок, при этом длина расположенной снаружи металлической трубы уменьшена снизу по сравнению с длиной сифонной трубы, причем уменьшение длины металлической трубы составляет 0,05÷0,25 длины сифонной трубы, при этом датчик массы служит нагрузочным сопротивлением отрезка коаксиальной длинной линии, внутренний и наружный проводники которой на одном ее конце подсоединены к верхним концам, соответственно, сифонной трубы и сосной с ней металлической трубы, а на другом ее конце подключены к электронному блоку.

Предлагаемое устройство поясняется чертежом. На фиг. 1 изображена функциональная схема устройства.

Здесь введены обозначения: 1 - резервуар, 2 - сифонная труба, 3 - металлическая труба, 4 - диэлектрическая шайба, 5 - горловина, 6 и 7 - соответственно, внутренний и наружный проводники отрезка коаксиальной длинной линии, входная емкость 8, 9 - электронный блок, 10 - кран, 11 - трубопровод.

Устройство работает следующим образом.

В предлагаемом устройстве датчиком массы двухфазного вещества является сосредоточенное нагрузочное сопротивление отрезка длинной линии (коаксиального кабеля), в частности электрическая емкость Cн. Она образована совокупностью двух соосных проводников - сифонной трубки в качестве внутреннего проводника и металлической трубы в качестве наружного проводника электрической емкости Cн. Выходной характеристикой датчика массы является зависимость резонансной частоты электромагнитных колебаний рассматриваемого отрезка длинной линии от массы М двухфазного вещества в резервуаре.

В эквивалентной схеме рассматриваемого отрезка длинной линии на одном из его концов подключено комплексное нагрузочное сопротивление . В данном случае нагрузочным сопротивлением является сосредоточенная электрическая емкость CН. В случае наличия на конце отрезка длинной линии сосредоточенной электрической емкости CН, оконечная нагрузка длинной линии является реактивным сопротивлением:

Этой нагрузке соответствует равное ей входное сопротивление в точке подключения нагрузки.

Уравнение зависимости резонансной частоты отрезка длинной линии с оконечной нагрузкой в виде датчика с электрической емкостью Cн имеет следующий вид (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 42-50):

Здесь введены следующие обозначения: W - волновое (характеристическое) сопротивление отрезка длинной линии: Cвх - входная емкость отрезка длинной линии; - длина отрезка длинной линии; c=3⋅108 м/с - скорость света.

Величина Cвх обычно имеет малую величину, так что в расчетах ею можно пренебречь. Положив Cвх=0, соотношение (2) примет вид

Суммарная масса М двухфазного вещества в резервуаре определяется следующим соотношением:

где Mж и Mг - масса, соответственно, жидкой и газовой фаз вещества; ρж и ρг - плотность, соответственно, жидкости и газа; Vж и Vг - объем, занимаемый в резервуаре, соответственно, жидкостью и газом, причем Vж+Vг=V0, V0 - объем резервуара.

Для цилиндрического резервуара (4) можно записать так:

где - высота резервуара; z - координата (значение) уровня жидкости в баллоне, отсчитываемая от его дна. При этом не принят во внимание некоторый объем торцевых участков резервуара, который, однако, незначителен по сравнению с объемом всего резервуара.

Для неполярных диэлектрических веществ, включая диоксид углерода (CO2) и другие огнетушащие вещества (SF6, C2F4Br2, C2F5H, C3F7H, ТФМ-18), справедливо соотношение Клаузиуса-Мосотти между плотностью вещества (жидкости, газа) и его диэлектрической проницаемостью (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с.):

В этой формуле ε - диэлектрическая проницаемость вещества, μ - его молекулярная масса, ρ - плотность вещества, α - его молекулярная поляризуемость, N - число Авогадро.

При использовании датчиков на основе отрезков длинных линий и с применением данного соотношения, можно достаточно точно определять массу криогенных веществ в емкостях.

Из соотношения (6) следует, что

Здесь A=4πNα/3μ - постоянная для каждого вещества величина.

С учетом формулы (7) соотношение (5) можно записать в следующем виде:

Для рассматриваемого емкостного датчика можно записать следующее соотношение для эквивалентной нагрузочной емкости Cн:

Здесь C0 - погонная электрическая емкость (т.е. электрическая емкость на единицу длины), εж εг - относительные диэлектрические проницаемости жидкой и газовой фаз огнетушащего вещества, соответственно.

Формулу (9) можно представить так:

Отсюда находим

Подставив значение из (11) в соотношение (8), после преобразований получим

где

Формулу (9) можно записать в следующем виде:

Данная формула выражает линейную зависимость электрической емкости Cн от массы М двухфазного вещества. Измеряя Cн, можно определить М. Коэффициенты a и b являются постоянными величинами для каждого вещества при фиксированной температуре.

С учетом (13) формула (3) принимает следующий вид:

Отсюда находим искомое значение суммарной массы М жидкой фазы и газовой фазы двухфазного вещества в резервуаре:

Если температура непостоянна, то выбирая длину датчика, можно регулировать величину емкости Cн и ее зависимость от температуры, стремясь минимизировать такую зависимость (RU 2515074 C1, 10.05.2014).

В резервуаре 1 с двухфазным веществом - диоксидом углерода, содержащим металлическую сифонную трубу 2, вокруг последней и соосно с ней размещается снаружи другая металлическая труба 3. При этом металлическая сифонная труба 2 и металлическая труба 3 являются, соответственно, потенциальным и экранным электродами коаксиального емкостного датчика массы двухфазного вещества в резервуаре. Жесткость конструкции коаксиального датчика, т.е. соосность металлической трубы 3 и сифонной трубы 2, обеспечивается с помощью нескольких (1÷4) диэлектрических шайб 4 (изготовленных из полиамида или фторопласта), устанавливаемых равномерно вдоль длины датчика (на рисунке показана только одна такая шайба). Резервуар 1 имеет в верхней части горловину 5; через герметичные отверстия в них к верхним концам, соответственно, сифонной трубы 2 и металлической трубы 3 подсоединены, соответственно, внутренний проводник 6 и наружный проводник 7 отрезка коаксиальной длинной линии, противоположные концы которых подсоединены через входную емкость 8 малой величины (несколько пикофарад) к электронному блоку 9. Электронный блок 9 содержит микропроцессор для функциональной обработки информативного сигнала от коаксиального емкостного датчика массы двухфазного вещества. Электронный блок 9 имеет с другой стороны высокочастотный разъем для подсоединения к этому блоку источника питания, последовательного интерфейса, сигнализации предельных значений массы двухфазного вещества. На верхнем конце резервуара имеется кран 10 на трубопроводе 11 для выпуска вещества.

Благодаря наличию отрезка длинной линии с датчиком массы в качестве его оконечной емкостной нагрузки, подключенного к электронному блоку 9 через разделительную (входную) емкость 8, имеется возможность располагать электронный блок устройства удаленно от резервуара с контролируемым двухфазным веществом. Расстояние между электронным блоком и резервуаром определяется как длиной отрезка линии, так и длиной линии между входной емкостью и электронным блоком, которые можно выбирать в широких пределах.

Выбирая же длину датчика, т.е. длину металлической трубы 3, можно регулировать величину емкости Cн и ее зависимость от температуры, стремясь минимизировать такую зависимость. Укорочение длины емкостного датчика можно обеспечить путем укорочения снизу металлической трубы 3 - наружного проводника емкостного датчика; при этом длина датчика соответствует этой укороченной длине металлической трубы 3. Данное укорочение емкостного датчика обеспечивается уменьшением снизу на 0,05÷0,25 длины металлической трубы 3 по сравнению с длиной сифонной трубы 2 (RU 2515074 C1, 10.05.2014). Данные численные значения могут быть уточнены (т.е. заданы в более узком диапазоне) при экспериментальных исследованиях датчика для каждого двухфазного вещества и для конкретной степени заполнения им резервуара.

Таким образом, предлагаемое устройство позволяет измерять массу двухфазного вещества в резервуаре при удаленном расположении электронного блока от резервуара с контролируемым веществом. Данное устройство применимо при наличии в резервуаре как диоксида углерода, так и других двухфазных веществ. Применение данного устройства дает возможность с высокой точностью определять суммарную массу двухфазных однокомпонентных веществ в металлических цилиндрических резервуарах независимо от их фазового состояния.

Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре, имеющем расположенную вдоль его продольной оси металлическую сифонную трубу, содержащее емкостный датчик массы, образованный совокупностью сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, и электронный блок, при этом длина расположенной снаружи металлической трубы уменьшена снизу по сравнению с длиной сифонной трубы, причем уменьшение длины металлической трубы составляет 0,05÷0,25 длины сифонной трубы, отличающееся тем, что датчик массы служит нагрузочным сопротивлением отрезка коаксиальной длинной линии, внутренний и наружный проводники которой на одном ее конце подсоединены к верхним концам, соответственно, сифонной трубы и соосной с ней металлической трубы, а на другом ее конце подключены к электронному блоку.



 

Похожие патенты:

Изобретение может быть использовано для высокоточного определения положения границ раздела сред, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью.

Изобретение может быть использовано для высокоточного определения положения границ раздела сред, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого технического решения является повышение точности измерения межэлектродного промежутка.

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых емкостях, например, оно может быть применено для определения уровня жидкого металла.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат заключается в повышении точности измерений.

Изобретение относится к измерительной технике и может быть использовано для измерения покомпонентного количества (объема) многокомпонентной среды в емкости, произвольным образом распределенной внутри нее.

Изобретение может быть использовано для измерения уровня границы жидкостей с разными плотностями и электропроводностями, диэлектрическими проницаемостями от 1,5 единиц, границы жидкость - осадок на предприятиях нефтегазовой отрасли в атомной энергетике.

Заявленная группа изобретений относится к средствам для измерения уровня заполнения на основе времени распространения сигнала. Предложенное устройство измерения уровня заполнения содержит передающий блок для отправки передаваемого сигнала, который отражается на поверхности загруженного продукта заполняющей среды и по меньшей мере одном втором отражателе; приемный блок для регистрации отраженного переданного сигнала, который является эхо-кривой, которая имеет множество эхо-сигналов; блок оценки для выполнения способа отслеживания для группировки соответственно вызванных идентичными отражателями эхо-сигналов эхо-кривых, зарегистрированных в различные моменты времени, причем блок оценки выполнен с возможностью выполнения следующих этапов: (а) определение первого трека первой группы эхо-сигналов, которые вызваны первым отражателем, и второго трека второй группы эхо-сигналов, которые вызваны вторым отражателем, причем каждый трек описывает время распространения соответствующего переданного сигнала от передающего блока до ассоциированного с треком отражателя и обратно в приемный блок в различные моменты времени; (b) определение линейного отношения между первым треком и вторым треком, задаваемое линейным уравнением; (c) определение одной или нескольких неизвестных из линейного отношения между первым треком и вторым треком.

Предложенная группа изобретений относится к средствам для мониторинга и эксплуатации радиолокационной системы измерения уровня для определения уровня наполнения резервуара.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости, в частности оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости и сыпучих сред, находящихся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, цемента и др. Технический результат - увеличение точности в предлагаемом способе измерения уровня жидкости и сыпучих сред в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, записывают эти данные в виде массива выборок за время периода модуляции, вычисляют его спектр S и частоту его максимума ƒm. Затем по этой частоте находят ближайший к спектру S спектр Si из числа записанных заранее N спектров, при N известных уровнях, соответствующих уровню Li, вычисляют функцию взаимной корреляции между спектрами S и Si, по частоте ее максимума и уровню Li определяют текущий уровень. 4 ил.

Изобретение может быть использовано в гидрологии для изучения водного режима в естественных и искусственных водоемах, например озерах. Оно может быть использовано также с успехом в химической, нефтеперерабатывающей и других отраслях промышленности для точного измерения уровня различных жидкостей в стационарных резервуарах-накопителях. Устройство для измерения уровня воды в водоемах включает вертикально расположенную трубу, в нижней части которой размещено отверстие для подвода воды в полость трубы. Внутри трубы размещен свободно плавающий поплавок, который выполнен в виде полого или сплошного диска, перекрывающего сечение трубы по внутреннему его контуру с зазором, а также размещенный в верхней части трубы измеритель расстояния, зондирующий луч которого направлен, преимущественно, на центральную часть плавающего в воде диска. Труба в верхней части содержит защитный кожух от метеоосадков и выпускное отверстие, связывающее полость трубы с внешней воздушной средой водоема, при этом труба в нижней части содержит насадку с отверстием, которое размещено соосно ее главной оси. Предлагаемое техническое решение позволяет существенно упростить конструкцию устройства, а также повышает точность измерения. 1 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ измерения уровня вещества в емкости, при котором зондируют его поверхность частотно-модулированными электромагнитными волнами в фиксированном диапазоне частот, принимают отраженные волны, при этом при частотной модуляции разбивают фиксированный диапазон частот не менее, чем на два поддиапазона, а частотную модуляцию осуществляют во всех поддиапазонах одновременно, и определяют число возбуждаемых типов электромагнитных колебаний, отличающийся тем, что зондирование поверхности вещества электромагнитными волнами осуществляют по нормали к ней, в каждом из поддиапазонов образуют из зондирующих и отраженных электромагнитных волн после их многократного последовательного зондирования и отражения от поверхности вещества стоячие электромагнитные волны и по числу соответствующих им при девиации частоты типов возбуждаемых электромагнитных колебаний в образуемом резонаторе судят об уровне вещества. 3 ил.

Изобретение относится к измерительной технике и предназначено для контроля уровня материалов в резервуарах путем измерения ослабления микроволнового зондирующего сигнала. Сигнализатор уровня состоит из передающего и приемного модулей. Передающий модуль содержит СВЧ-генератор с антенной, генератор модулирующих импульсов и формирователь меандра. Приемный модуль содержит СВЧ-детектор с антенной, узкополосный усилитель, настроенный на частоту меандра, и соединенные последовательно детектор радиочастоты, усилитель импульсного сигнала, пиковый детектор, компаратор, элемент задержки и устройство формирования выходного сигнала. Устройство ввода микроволнового сигнала сигнализатора уровня в резервуар содержит две металлические трубы, установленные вертикально в отверстиях на крыше резервуара. На внешних торцах труб крепятся антенны приемного и передающего модулей сигнализатора. Нижний торец одной из труб расположен на контролируемом уровне, а нижний торец второй трубы расположен на том же уровне или выше его. Технический результат заключается в обеспечении удобства монтажа сигнализатора уровня. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера зависимости резонансной частоты электромагнитных колебаний металлической полости резонатора от объема заполняющего полость вещества с различными электрофизическими параметрами. Техническим результатом настоящего изобретения является расширение функциональных возможностей способа измерения, характеризуемое увеличением чувствительности и, как следствие, точности измерений за счет увеличения диапазона и характера изменения резонансной частоты резонатора в зависимости от измеряемого количества вещества в емкости. В предлагаемом способе измерения количества вещества в металлической емкости, при котором возбуждают электромагнитные колебания в полости емкости и измеряют резонансную частоту электромагнитных колебаний полости емкости, по которой судят об измеряемом количестве вещества, стенки емкости на, по меньшей мере, части ее длины выполняют сжимаемыми или растягиваемыми за счет силы тяжести, при этом изменяют объем емкости как функцию количества вещества в емкости. 5 ил.

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В способе определения количества диэлектрической жидкости в металлической емкости, при котором в первом цикле измерений возбуждают электромагнитные колебания последовательно в фиксированном диапазоне частот [ƒ1, ƒ2] в полости емкости и подсчитывают число N возбуждаемых типов колебаний, дополнительно, во втором цикле измерений производят излучение электромагнитных волн фиксированной частоты ƒ, для которой длина волны λ в свободном пространстве меньше характерного размера полости, в пространство, ограниченное металлической оболочкой емкости, измеряют среднее за цикл значение выводимой из полости мощности Р электромагнитного поля на длине волны λ, осуществляют совместное функциональное преобразование N и Р. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором, в первом такте измерений, возбуждают электромагнитные колебания в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии, измеряют резонансную частоту ƒ его электромагнитных колебаний, дополнительно, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ, электромагнитные колебания возбуждают в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии длиной с оконечным горизонтальным участком фиксированной длины z0, скачкообразно заполняемым жидкостью и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости, и определяют значение z уровня жидкости в результате совместного функционального преобразования ƒ и Δϕ согласно соотношению. 1 ил.

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально два отрезка коаксиальной длинной линии, с оконечными горизонтальными участками фиксированной длины, скачкообразно заполняемыми средами и опорожняемыми при, соответственно, поступлении сред в емкость и их удалении из нее. Возбуждают в отрезках длинной линии электромагнитные колебания на разных резонансных частотах и , которым соответствуют разные распределения энергии электромагнитного поля стоячей волны, и измеряют эти резонансные частоты в зависимости от координаты положения границы раздела двух сред. Между параллельными наружными проводниками отрезков длинной линии возбуждают электромагнитные колебания как в отрезке двухпроводной длинной линии, имеющем на конце его горизонтального участка нагрузочное реактивное сопротивление, отличное от нагрузочных реактивных сопротивлений отрезков коаксиальной длинной линии, измеряют резонансную частоту отрезка двухпроводной длинной линии и производят совместную функциональную обработку. 3 ил.

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают вертикально отрезок длинной линии, возбуждают электромагнитные колебания на его резонансной частоте ƒ, осуществляют ее измерение, возбуждают электромагнитные волны на фиксированной частоте, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых волн и осуществляют совместное функциональное преобразование ƒ и Δϕ. Измерение Δϕ производят в том же или другом, идентичном ему, отрезке длинной линии с равномерным вдоль него распределением энергии электрического поля при измерении ƒ и положение нижерасположенной и вышерасположенной границы раздела определяют по разности величин, одна из которых пропорциональна, соответственно, разности между отношением величины, пропорциональной значению Δϕ при наличии среды в емкости к его значению в отсутствие этой среды, и единицей, а другая величина - разности между величиной, пропорциональной квадрату отношения значения ƒ в отсутствие среды к его значению при наличии этой среды в емкости, и единицей. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в противопожарной технике для высокоточного определения массы огнетушащего вещества, в частности диоксида углерода, в резервуаре и ее уменьшения вследствие возможной утечки из баллона. Устройство содержит емкостный датчик массы, образованный совокупностью сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, и электронный блок. При этом длина расположенной снаружи металлической трубы уменьшена снизу по сравнению с длиной сифонной трубы, причем уменьшение длины металлической трубы составляет 0,05÷0,25 длины сифонной трубы. При этом датчик массы служит нагрузочным сопротивлением отрезка коаксиальной длинной линии, внутренний и наружный проводники которой на одном ее конце подсоединены к верхним концам, соответственно, сифонной трубы и сосной с ней металлической трубы, а на другом ее конце подключены к электронному блоку. Технический результат заключается в расширении функциональных возможностей устройства. 1 ил.

Наверх