Способ получения порошка карбида титана

Изобретение относится к получению порошка карбида титана. Металлический титан помещают в печь, разогревают печь до 700÷850°C и подают на поверхность металлического титана углеводородный компонент в газообразном виде совместно с аргоном в течение 90÷180 минут. Обеспечивается получение порошка карбида титана игольчатой формы с диаметром частиц 50÷200 нм. 1 табл., 5 ил.

 

Изобретение относится к порошковой металлургии, а именно к способам получения порошка карбида титана наноразмеров игольчатой формы из металлического титана.

Известен способ получения порошка карбида титана (Патент РФ на изобретение №2038296, Способ получения карбида титана и устройство для его осуществления, МПК C01B 31/30, от 27.06.1990), в котором смесь из порошка титана и сажи помещают в герметичный реактор и нагревают до 1000-1050°C.

Недостатком указанного аналога являются ограниченные технологические возможности, а именно он не позволяет получить порошки карбида титана наноразмеров игольчатой формы.

Известен способ получения порошка карбида титана, в котором на гидрид титана действуют углеводородным компонентом (Авторское свидетельство СССР на изобретение №394166, Способ получения порошка карбида титана, МПК B22F 9/00, от 02.04.1971). В качестве углеводородного компонента на гидрид титана действуют пропан-бутановой газовой смесью. Гидрид титана помещают в печь с разрежением до 10-2-10-3 мм рт.ст., нагревают печь до 900-1100°C и затем подают в печь пропан-бутановую газовую смесь.

Недостатками этого аналога являются сложность процесса получения карбида титана и ограниченные технологические возможности. Сложность способа обусловлена высокими значениями температур нагрева, использованием дорогостоящего титаносодержащего компонента - гидрида титана, необходимость применения пониженных давлений при осуществлении способа, что к тому же усложняет конструкцию установки для получения карбида титана. Ограниченные технологические возможности связаны с ограничением размера частиц получаемого порошка и их формой.

Наиболее близким по технической сущности и достигаемому эффекту предлагаемому является способ получения карбида титана, в котором металлический титан в виде таблетки помещают в трубчатую печь, разогревают ее до 700÷900°C и подают на титан углеводородный компонент - метан в течение 24 часов (Kim Y.J., Chang Н., Kang S.J.L. In situ formation of titanium carbide in titanium powder compacts by gas-solid reaction// Composites. Part A. V 32.2001. P. 731-738). Давление в печи равно атмосферному давлению. Титан нагревают в печи от комнатной температуры до рабочей в атмосфере метана. Размер получаемых этим способом частиц составляет несколько десятков микрометров.

Недостатками наиболее близкого аналога являются ограниченные технологические возможности и низкая производительность. Ограниченные технологические возможности связаны с ограничением размера частиц получаемого порошка и их формой. Способ не позволяет получать частицы наноразмеров игольчатой формы. Длительность процесса (24 часа) снижает его производительность.

Задачей предлагаемого решения является устранение этих недостатков, а именно расширение технологических возможностей путем получения наноразмерных частиц порошка карбида титана игольчатой формы, а также повышение производительности.

Поставленная задача решается тем, что в способе получения порошка карбида титана, в котором металлический титан помещают в печь, разогревают печь до 700÷850°C и подают на поверхность металлического титана углеводородный компонент в газообразном виде, согласно предлагаемому решению углеводородный компонент подают совместно с аргоном на поверхность металлического титана в течение 90÷180 минут при следующем соотношении компонентов в смеси, об. %: углеводородный компонент 10÷50; аргон 50÷90.

Подача углеводорода в смеси с аргоном на металлический титан при заявленных температурах позволит снизить парциальное давление углеводорода, снижая количество зародышей новой фазы на поверхности титана, таким образом, давая возможность расти частицам в форме волокон, а не образовывать сплошной слой на поверхности титана. Это позволит получать карбид титана игольчатой формы. Помимо этого пониженное парциальное давление углеводорода дает возможность контролировать процесс роста частиц карбида титана, не позволяя им достигать избыточных размеров.

Использование металлического титана в качестве титаносодержащего материала при температурах 700÷850°C позволит осуществить реакцию .

Нагрев печи менее 700°C практически не позволит осуществить указанную выше реакцию, а нагрев более 850°C приведет к интенсивному спеканию наночастиц, т.е. не позволит получить нанопорошок.

При содержании углеводорода ниже 10 об. %, как и при содержании аргона более 90 об. % существенно замедляется процесс получения порошка карбида титана, а при содержании углеводорода более 50 об. % и при содержании аргона менее 50 об. % эффект разбавления отсутствует и образуются крупные частицы.

Время подачи смеси углеводорода с аргоном менее 90 минут не обеспечивает достаточного выхода продукта, увеличение этого времени более 180 минут ведет к срастанию частиц продукта в сплошной слой.

Способ получения карбида титана осуществляется следующим образом.

В печь помещают металлический титан, например порошок титана. Печь нагревают до 700°÷850°C в бескислородной атмосфере и затем в печь подают смесь углеводорода с аргоном в течение 90÷180 минут. Смесь подают на металлический титан при следующем соотношении компонентов, об. %: углеводородный компонент 10÷50; аргон 50÷90. Давление в печи равно атмосферному давлению. После этого осуществляют выгрузку полученного наноразмерного порошка титана игольчатой формы. В дальнейшем при необходимости непрореагирующий титан удаляют обработкой раствором соляной кислоты при температуре 70÷80°C в течение 15÷30 минут.

Предлагаемый способ опробован в лабораторных условиях. В качестве металлического титана использовали титановую губку и различные сплавы на основе титана. Результаты лабораторных испытаний приведены в таблице.

Форму и размеры полученных частиц порошка карбида титана определяли при помощи растрового электронного микроскопа. Электронно-микроскопические снимки полученных образцов при увеличении в 50000 и в 10000 раз приведены на фиг. 1-5. Нумерация снимков соответствует номерам испытаний в таблице.

Предлагаемый способ найдет свое применение в металлургии при производстве композиционных материалов инструментального и конструкционного назначения, в области порошковой металлургии и нанесения на узлы трения износостойких покрытий.

Способ получения порошка карбида титана, включающий размещение металлического титана в печи, разогрев печи до 700÷850°C и подачу на металлический титан углеводородного компонента в газообразном виде, отличающийся тем, что углеводородный компонент подают на поверхность металлического титана совместно с аргоном в течение 90÷180 минут при следующем соотношении компонентов в смеси, об. %: углеводородный компонент 10÷50, аргон 50÷90.



 

Похожие патенты:
Изобретение относится к способам получения титаносиликатов, используемых в качестве сорбентов с ионообменными и восстановительными свойствами, и может найти применение для концентрирования и выделения благородных металлов.

Изобретение может быть использовано при получении аккумуляторов водорода, воспламенительных и термитных составов, катализаторов гидрирования органических соединений.

Изобретение относится к получению порошка диборида титана. Способ включает приготовление мокрой реакционной смеси исходных титансодержащих, борсодержащих компонентов и восстановителя в виде углеродсодержащих компонентов, сушку смеси и карботермическое восстановление в реакционной смеси при нагреве.
Изобретение может быть использовано в производстве сорбента катионов из водно-солевых растворов. Для получения фосфата титана берут титанилсульфат аммония в твердом виде и вводят его в 10-50% раствор фосфорной кислоты, взятой из расчета обеспечения массового отношения TiO2:P2O5=1:(1,75-2,5).

Изобретение может быть использовано в химической промышленности. Реактор для карботермического получения диборида титана (10) содержит нижнюю камеру (26), образованную сосудом и перфорированной сепараторной пластиной (12) и имеющую впуск инертного газа (16), причем нижняя камера (26) содержит нереакционноспособную среду, удерживаемую в ней, верхнюю камеру (28), образованную сосудом и перфорированной сепараторной пластиной (12).

Изобретение относится к области очистки промышленных жидких отходов и сточных вод от токсичных и радиоактивных элементов и может использовано для удаления ряда радиоизотопов, таких как технеций-99, палладий-107, и токсичных экологических загрязнителей, включая свинец и шестивалентный хром.
Изобретение может быть использовано при получении сорбентов для очистки воды от токсичных неорганических веществ. Исходный каркасный титаносиликат Na3(Na,H)Ti2O2[Si2O6]2·2H2O обрабатывают 0,01-0,4 М раствором соляной кислоты в течение 0,5-2 часов с получением кристаллического слоистого титаносиликата Ti2(OH)2[Si4O10(OH)2](H2O)2.

Изобретение может быть использовано в химической промышленности. Слоистый титанат содержит химически связанный, не содержащий примесей анионов гидразин, входящий в межслоевое пространство титанатных слоев.

Изобретение относится к области порошковой металлургии. Способ получения ультрадисперсного порошка сложного карбида вольфрама и титана, включающий смешение вольфрам- и титансодержащих компонентов с источником углерода, прессование полученного порошка и последующую карбидизацию.

Изобретение может быть использовано в химической, горнорудной промышленности. Восстановление железа, кремния и восстановление диоксида титана до металлического титана проводят путем генерации электромагнитных взаимодействий частиц SiO2, кремнийсодержащего газа, частиц FeTiO3 и магнитных волн.

Изобретение относится к порошковой металлургии. Описан способ получения нанопорошков систем металл-углерод, состоящих из карбидов металлов и композиций металл-углерод, из хлоридных и оксидных соединений металлов и углеводородов в термической плазме электрических разрядов, в котором процесс проводится в плазме смеси насыщенных углеводородов с кислородом при атомном соотношении элементов в смеси - углерода (С плазм) и кислорода (О плазм), отвечающем условию С плазм / О плазм = 1.

Изобретение относится к способу получения соединений переходных металлов общего состава MeaCbNcHd, где Me - переходный металл или смесь переходных металлов, a=1-4, b=6-9, c=8-14, d=0-8.

Изобретение относится к области химической технологии неорганических веществ, конкретно - к получению высокодисперсных тугоплавких карбидов переходных металлов в гранулированном виде, в том числе смешанных композитов на их основе.

Изобретение относится к химической промышленности и порошковой металлургии и может быть использовано при изготовлении спеченных твердых сплавов и катализаторов.

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошков карбида ванадия, которые используют при изготовлении твердых сплавов, быстрорежущей стали, ее заменителей, малолегированных инструментальных и некоторых конструкционных сталей и износостойких покрытий.
Изобретение относится к порошковой металлургии, в частности к синтезу карбида циркония, и может быть использовано при изготовлении огнеупорных тиглей, элементов высокотемпературных вакуумных и газонаполненных электропечей, полирующего материала и катализатора для каталитических процессов.

Изобретение относится к способам получения порошков химических соединений кремния. Способ получения порошков нитрида кремния или карбида кремния включает предварительный нагрев смеси моносилана с инертным газом-разбавителем и прекурсором.

Изобретение относится к получению нанодисперсного тугоплавкого карбида тантала, используемого в качестве наполнителя композиционных материалов, керамического теплозащитного покрытия, химически стойкого материала, материала для высокотемпературных керамоматричных композитов, и может быть использовано в области химической промышленности, авиационной и космической техники.
Изобретение может быть использовано в металлургии. Для получения карбида хрома Cr3C2 смесь порошка хрома и сажи механически активируют в центробежной планетарной мельнице при ускорении шаров 25-45 g и соотношении шихта : шаровая загрузка по массе 1:20 в течение 30-40 мин.
Изобретение может быть использовано в области порошковой металлургии. Способ получения карбида титана включает нагрев шихты, состоящей из диоксида титана и порошка нановолокнистого углерода с удельной поверхностью 138…160 м2/г, взятых в массовом соотношении диоксида титана к порошку нановолокнистого углерода 68,5:31,5, при температуре 2250°C.

Изобретение относится к области металлургии и может быть использовано для получения модифицированной лигатуры неодим-железо для постоянных магнитов неодим-железо-бор.

Изобретение относится к получению порошка карбида титана. Металлический титан помещают в печь, разогревают печь до 700÷850°C и подают на поверхность металлического титана углеводородный компонент в газообразном виде совместно с аргоном в течение 90÷180 минут. Обеспечивается получение порошка карбида титана игольчатой формы с диаметром частиц 50÷200 нм. 1 табл., 5 ил.

Наверх