Устройство для формирования микроручейкового течения жидкости в микро- и миниканалах

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники. Изобретение заключается в том, что в канале, на одной из сторон, которая является поверхностью подложки тепловыделяющего элемента, выполнены продольные микроканавки или нанесены продольные полосы гидрофобного нанопокрытия, формирующие микроручейковые течения жидкости. Гидрофобное нанопокрытие, ограничивающее микро-ручейковое течение по краям, может быть нанесено на внутреннюю поверхность всех стенок мини- или микроканала или только на поверхность подложки с обеих сторон от электронного тепловыделяющего элемента. Технический результат - существенная интенсификация теплообмена в микросистемах, устойчивая работа как в земных условиях, так и в невесомости, в том числе при любых нестандартных ситуациях. 2 н. и 2 з.п. ф-лы, 6 ил.

 

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокую интенсивность теплообмена при течении жидкостей в относительно небольших объемах.

Такие условия реализуются в микроэлектромеханических системах, интегрированных электрических цепях, лазерно-диодных массивах, высокоэнергетических отражателях и других микроустройствах, подверженных кратковременным высоким тепловым нагрузкам; в устройствах для охлаждения электроники, управления температурными режимами в аэрокосмической индустрии; в микроэлектромеханических устройствах для биологических и химических исследований.

По мере развития микро- и нанотехнологий и внедрения их в различные отрасли человеческой деятельности (электроника, химическая, биологическая, пищевая индустрии) все чаще возникают задачи, где объектом изучения является течение жидкости в мини- и микроканалах. Несмотря на низкие значения чисел Рейнольдса и, как правило, отсутствие турбулентности, в микроканалах обеспечивается высокая интенсивность теплопередачи благодаря малым значениям термических сопротивлений стенок и теплоносителей. Поверхность теплообмена в расчете на единицу объема достигает чрезвычайно высоких значений. Часто применяются плоские мини- и микроканалы с отношением ширины к высоте 10-400. При уменьшении высоты плоских каналов соотношение поверхности канала к его объему увеличивается обратно пропорционально его высоте, что приводит к высокой интенсивности передачи тепла.

Одним из значительных препятствий на пути внедрения и распространения микросистем с протяженными плоскими микро- и мини каналами являются значительные потери энергии при прокачке жидкости и пара или газа. Значительные потери энергии возникают из-за требования прокачивать строго определенное количество жидкости и пара или газа для обеспечения отвода определенного количества тепла от электронного компонента [Kabov О., Cooling of Microelectronics by Thin Liquid Films, Keynote lecture, Proc. Int. Workshop on "Wave Dynamics and Stability of Thin Film Flow Systems", September 1-4, Chennai, India, Narosa Publishing House, pp. 279-311, 2006]. Кроме того, жидкость, a также пар или газ, как правило, должны двигаться со значительными скоростями, чтобы обеспечить требуемую интенсивность теплообмена. Поиск новых методов существенной интенсификации теплообмена является одной из самых актуальных проблем. Глобальной задачей является использование модификаций твердой поверхности на микро- и наноуровне и обеспечение влияния этих модификаций на тепломассообмен в двухфазных микросистемах, с целью достижения коэффициентов теплоотдачи порядка 100-300 кВт/м2К и более, тепловых потоков порядка 500-1500 Вт/см2 и более.

Известно устройство охлаждения интегральных микросхем (US 7957137, 25.02.2010, H01L 23/38; H01L 23/473; Н05К 7/20), в котором используют систему плоских микроканалов и тонкую пленку жидкости для охлаждения интегральных микросхем. Устройство включает в себя подложку, на которой методом перевернутого кристалла ("flip-chip" методом) смонтирована интегральная микросхема, а на микросхеме - система микроканалов, сформированных множеством микроканавок. Высота микроканалов составляет порядка 300 мкм, ширина - порядка 200 мкм. В некоторых каналах установлены термоэлектрические элементы.

Недостатки устройства:

1) значительные потери энергии при прокачке жидкости в каналах;

2) техническая сложность реализации такой системы, которая связана с монтажом, а также с необходимостью принятия мер по изоляции термоэлектрических элементов.

Известно устройство охлаждения микроэлектронного оборудования (ЕР 1662852, 31.05. 2006 г., H01L 23/473; Н05К 7/20), включающее один или несколько микроканалов длиной от 50 до 500 мкм и шириной 500 мкм, на внутреннюю поверхность которых нанесены наноструктурные области с гидрофобным покрытием. Расположение и геометрия наноструктурных областей подбираются таким образом, чтобы минимизировать сопротивление при движении потока жидкости по каналу и регулировать эффективность теплообмена. Основной недостаток устройства - значительные потери энергии при прокачке жидкости в каналах.

Известен способ изготовления системы охлаждения электронного и микроэлектронного оборудования (заявка №2014123346, 2014, МПК: В81В 7/00; В81С 1/00; H01L 23/46; Н05К 7/20), при котором на поверхность микроканала наносят гидрофобные полосы поперек течения охлаждающей жидкости для снижения гидравлического сопротивления. Основным недостатком данного решения является низкий коэффициент теплоотдачи.

В качестве прототипа выбрана двухфазная система охлаждения микроэлектронного оборудования с локальным тепловыделением [Kabov О.А., Kuznetsov V.V., and Legros J-C., Heat transfer and film dynamic in shear-driven liquid film cooling system of microelectronic equipment, Second Int. Conference on Microchannels and Minichannels, Ed. S.G. Kandlikar, June 17-19, 2004, Rochester, NY, ASME, New York, pp. 687-694 (2004)]. Система содержит микроканал высотой 150-500 мкм и длиной 10-50 мм с нагревателями (электронные тепловыделяющие элементы) размерами от 2,5 до 5 мм, расположенными на одной стенке канала, либо на двух противоположных стенках канала. Пленка диэлектрической жидкости FC-72 толщиной от 50 до 200 мкм движется со спутным потоком газа (азота) в микроканале.

В такой системе при относительно малых расходах жидкости и относительно большом угле смачивания (более 30-40 град), в углах канала формируется мениск жидкости. Скорость течения жидкости в углах канала существенно замедляется, что ведет к потере энергии при прокачке жидкости и пара или газа в микроканале. К тому же часть жидкости практически не участвует в процессе охлаждения. Кроме того, непосредственно перед формированием мениска в пленке жидкости образуется локальное утонение в силу специфики действия капиллярных сил. Часто именно это утонение вызывает разрыв пленки жидкости при малых скоростях газа и расходах жидкости. Данный факт подтвержден экспериментально в работах авторов [Zaitsev D.V. and Kabov О.А., Flow patterns and CHF in a locally heated liquid film shear-driven in a minichannel // Proceedings of ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels, and Minichannels, FEDSM2010-ICNMM2010, August 1-5, 2010, Montreal, Canada, ISBN: 978-0-7918-3880-8, Paper FEDSM-ICNMM2010-31209, P. 1-8, 2010] для условий земной гравитации, микрогравитации и гипергравитации до 1.8xg0.

Эксперименты показали, что жидкость утоняется вблизи боковых стенок канала и в некоторых случаях образуются сухие пятна. Данные обстоятельства требуют увеличивать ширину канала, что ведет к дополнительным материальным затратам. Жидкость, движущаяся в углах канала, фактически теряется, что приводит к потере энергии, которая требуется для прокачки жидкости и пара или газа в микроканале.

При относительно больших расходах жидкости или относительно малых углах смачивания (менее 20-30 градусов), в углах канала формируется жидкостное течение, т.е. углы канала затапливаются. Затопление может достигать половины и более по ширине канала, [Chinnov Е.А., Guzanov V.V., Cheverda V., Markovich D.M and Kabov O.A., Regimes of Two-Phase Flow in Short Rectangular Channel, Microgravity sci. technol., Vol. 21, Suppl. 1, p. S199-S205, 2009]. Это связано с достаточно малым радиусом кривизны жидкости в углах канала, что вызывает пониженное давление в мениске жидкости и приток жидкости из основного потока пленки.

Задачей изобретения является создание устройства для формирования микроручейкового течения жидкости в микро- и миниканалах с целью существенной интенсификации теплообмена в микросистемах с протяженными плоскими микро- и мини каналами, эффективно и устойчиво работающего как в земных условиях, так и в невесомости, в том числе при любых нестандартных ситуациях, в частности, в случае пульсаций давления, вибраций системы, отклонения системы от горизонтального положения, неоднородного или нестационарного тепловыделения на электронном компоненте.

Задача решается тем, что в устройстве для формирования микроручейкового течения жидкости в микро- и миниканалах, включающем плоский микро- или миниканал прямоугольного сечения, одна из стенок которого является подложкой, с одним или несколькими электронными тепловыделяющими элементами, расположенными на одной или двух противоположных стенках канала, для охлаждения микроэлектронного оборудования используют систему ручейков жидкости, движущихся вдоль микро- или миниканала под действием спутного потока газа или пара. Таким образом, предложено устройство, в котором сплошное течение пленки, увлекаемой потоком пара или газа, заменяется потоком микроручейков с небольшим расстоянием между ними.

Согласно изобретению, вариант 1, вдоль канала на поверхности подложки с электронным тепловыделяющим элементом расположены формирующие микроручейковые течения жидкости продольные микроканавки, причем микроканавки выполнены таким образом, что A>D, A/D=3÷100, С/А≥10, где А - ширина ручейка, D - ширина микроканавки, В≤С<Cm, где В - ширина электронного тепловыделяющего элемента, С - ширина микроручейкового течения, Cm - расстояние между крайними микроканавками, L/Cm=1÷10, где L - ширина мини- или микроканала, а угол между плоскостью электронного тепловыделяющего элемента и стороной микроканавки α≤135 градусов.

Согласно изобретению, вариант 2, вдоль канала на поверхности подложки с электронным тепловыделяющим элементом расположены формирующие

микроручейковые течения жидкости продольные полосы гидрофобного нанопокрытия, причем продольные полосы гидрофобного нанопокрытия выполнены таким образом, что A>D, A/D=3÷100, С/А≥10, где А - ширина гидрофильной области (поверхность без нанопокрытия с равновесным контактным углом смачивания θhydrophile), D - ширина гидрофобного нанопокрытия (с равновесным контактным углом смачивания θhydrophobe), при этом внутренняя поверхность всех остальных стенок мини- или микроканала покрыта сплошным гидрофобным нанопокрытием, ограничивающим микроручейковое течение по краям, а размер наноструктур составляет 1-500 нм.

Также сплошное гидрофобное нанопокрытие, ограничивающее микроручейковое течение по краям, может быть нанесено только на поверхность подложки с обеих сторон от электронного тепловыделяющего элемента таким образом, что С≥В, где С - ширина микроручейкового течения, В - ширина электронного тепловыделяющего элемента, L/С=1÷10, где L - ширина мини- или микроканала, при этом размер наноструктур составляет 1-500 нм, а разность между равновесным контактным углом смачивания на гидрофобной поверхности и равновесным контактным углом смачивания на гидрофильной поверхности (поверхности течения жидкости) составляет 10-175 градусов.

Замена течения в виде сплошной пленки жидкости толщиной Н микроручейковым течением с тем же расходом жидкости имеет целый ряд существенных преимуществ:

1. За счет искривления поверхности в ручейке средняя интегральная толщина жидкости уменьшается, т.е. имеет место соотношение Hav<Н, где Hav - средняя интегральная толщина жидкости. Для испарения пленок и слоев жидкостей известно соотношение (Nusselt W., 1916, Die Oberflachen-Kondensation des Wasserdampfes // Zeitschrift der VDI, N 27. - P. 541-546, N 28. - P. 569-575):

α=λ/H,

т.е. коэффициент теплоотдачи α обратно пропорционален толщине пленки Н, здесь λ -теплопроводность жидкости. Таким образом, переход к микроручейковому течению приводит к интенсификации теплообмена.

2. Для пленочных течений справедливо соотношение, связывающее расход жидкости G с толщиной пленки (Nusselt W., 1916, Die Oberflachen-Kondensation des Wasserdampfes // Zeitschrift der VDI, N 27. - P. 541-546, N 28. - P. 569-575):

За счет искривления поверхности в ручейке в средней его части имеет место соотношение Hce>Н, где Hce - толщина пленки в средней части ручейка. Вследствие нелинейности зависимости (1) большая часть расхода жидкости протекает в средней части ручейка, что

снижает гидравлическое сопротивление течения жидкости и, как следствие, снижает потери энергии на прокачку жидкости за счет течения газа.

3. Каждый ручеек имеет две линии контакта газ - жидкость - твердое тело. В литературе эти области так же называют «переходный слой» или «микрорегион». Это - область длиной порядка 1-10 мкм в месте контакта жидкого мениска и твердой стенки. Толщина пленки в этой области плавно снижается от величин порядка 10 мкм до значений в диапазоне 10-20 нм (адсорбированная пленка). Именно в области микрорегиона достигаются наиболее высокие значения локального теплового потока вследствие сверхвысокой интенсивности испарения, как показано не только в теоретических работах, но и в экспериментах (Gokhale S.J., Plawsky J.L., Wayner Jr P.С, Experimental Investigation of contact angle, curvature, and contact line motion in dropwise condensation and evaporation, Journal of Colloid and Interface Sci., Vol. 259 (2), 2003, 354-366.) и авторов патента (Marchuk Igor, Karchevsky Andrey, Surtaev Anton, and Kabov Oleg A. Heat flux at the surface of metal foil heater under evaporating sessile droplets // International Journal of Aerospace Engineering Volume 2015 (2015), Article ID 391036, 5 pages). Плотность теплового потока в этой области может достигать до нескольких киловатт на см2. Таким образом, переход к микроручейковому течению благодаря наличию контактных линий может приводить к очень существенной интенсификации теплообмена при испарении. Причем интенсификация тем больше, чем больше протяженность контактных линий.

4. Микроручейковое течение в отличие от пленки жидкости занимает только часть поперечного сечения канала. В углах канала движется газ. Таким образом, достигается снижение расхода жидкости. Известно, что вязкость газа на несколько порядков меньше, чем жидкости, что и обеспечивает значительное снижение сопротивления при движении потока и, как следствие, снижение перепада давления вдоль канала, а значит, снижение энергетических затрат на прокачку жидкости и пара или газа в микроканале. Снижение расхода жидкости пропорционально отношению ширины канала к ширине микроручейкового течения жидкости, L/C. Таким образом, в общей сложности замена течения в виде сплошной пленки жидкости микроручейковым течением может привести к снижению расхода жидкости и гидравлическому сопротивлению канала до двух раз в зависимости от размеров канала и электронных компонент.

Использование вместо пленки жидкости, как в прототипе, занимающей все поперечное сечение канала, микроручейкового течения позволяет снизить гидравлическое сопротивление стенок канала и существенно увеличить интенсивность теплообмена. Использование микроканавок и нанопокрытия позволяет достичь стабильной работы устройства охлаждения микроэлектронного оборудования в любых, в том числе нестандартных, ситуациях. В случае пульсаций давления, вибраций системы, отклонения системы от горизонтального положения, неоднородного или нестационарного тепловыделения на электронном компоненте ручеек жидкости может терять устойчивость и менять направление течения. Когда ручеек начинает поворачивать или растекаться, то наступающий контактный угол увеличивается, что увеличивает кривизну на границе раздела ручейка и, как следствие, возникает капиллярная сила, которая стремится вернуть ручеек на место. Кроме того, поверхностное натяжение стремится придать ручейку форму окружности в сечении, минимизируя поверхностную энергию и, соответственно, площадь поверхности жидкости. В работе авторов патента было показано, что с помощью потока газа в миниканале можно обеспечить контролируемое течение ручейка жидкости в условиях с изменяемым ускорением (V. Cheverda, A. Glushchuk, P. Queeckers, S.В. Chikov, О.А. Kabov, Liquid rivulets moved by shear stress of gas flow at altered levels of gravity // Microgravity sci. technol. - 2013. - Vol.25(1). - P. 73-81).

На фиг. 1 показана схема устройства для формирования микроручейкового течения жидкости в микро- и миниканалах, вид сверху.

На фиг. 2, 3 и 4 схематически показано поперечное сечение микро- или миниканала устройства с использованием разных технических решений для стабилизации микро-ручейкового течения жидкости со спутным потоком газа или пара.

На фиг. 2 показано поперечное сечение микро- или миниканала с использованием микроканавок, выполненных вдоль микроручейкового течения.

На фиг. 3 показано поперечное сечение микро- или миниканала с использованием гидрофобного нанопокрытия с контрастным смачиванием, нанесенного на подложку.

На фиг. 4 показано поперечное сечение микро или миниканала с использованием гидрофобного нанопокрытия с контрастным смачиванием, нанесенного на все стенки канала за исключением области микроручейкового течения, которая обычно бывает гидрофильной.

На фиг. 5 показано поперечное сечение микро- или миниканала с использованием гидрофобного нанопокрытия и изображен один микроручеек на гидрофобной поверхности с равновесным контактным углом смачивания на гидрофобной поверхности.

На фиг. 6 показано поперечное сечение микро- или миниканала с гидрофильной областью (без покрытия) и изображен один микроручеек на гидрофильной поверхности с равновесным контактным углом смачивания на гидрофильной поверхности.

Где: 1 - подложка; 2 - электронный тепловыделяющий элемент; 3 - ручейки жидкости; 4 - газ или пар; 5 - микроканавки; 6 - гидрофобное нанопокрытие; 7 -

жидкостное сопло; А - ширина ручейка (гидрофильной области); D - ширина микроканавки (гидрофобного нанопокрытия); L - ширина мини- или микроканала; С - ширина микроручейкового течения, Cm - расстояние между крайними микроканавками; В - ширина электронного тепловыделяющего элемента, θhydrophile - равновесный контактный угол смачивания на гидрофильной поверхности, θhydrophobe - равновесный контактный угол смачивания на гидрофобной поверхности.

Устройство для формирования микроручейкового течения жидкости в микро- и миниканалах содержит плоский мини- или микроканал прямоугольного сечения. В центре подложки 1 находится электронный тепловыделяющий элемент 2 или несколько элементов, расположенных в ряд (на схеме не показано). Движение ручейков жидкости происходит за счет касательного напряжения, создаваемого потоком газа или пара 4 в канале.

Для обеспечения устойчивости микроручейкового течения жидкости в случае пульсаций давления, вибраций системы, отклонения системы от горизонтального положения, неоднородного или нестационарного тепловыделения на электронном компоненте на поверхности подложки с обеих сторон от каждого ручейка 3 расположены микроканавки 5, ограничивающие область течения ручейка. Микроканавки выполнены так, что ширина ручейка, А, существенно больше ширины микроканавки D. Общая ширина микроручейкового течения, С, больше или равна ширине электронного тепловыделяющего элемента, В, и меньше расстояния между крайними микроканавками, Cm, отношение ширины мини- или микроканала, L, к расстоянию между крайними микроканавками, Cm, находится в диапазоне от 1 до 10, а угол между плоскостью электронного тепловыделяющего элемента и стороной микроканавки находится в диапазоне от 0 до 135 град [V. Cheverda, A. Glushchuk, P. Queeckers, S.В. Chikov, O.A. Kabov, Liquid rivulets moved by shear stress of gas flow at altered levels of gravity // Microgravity sci. technol. - 2013. - Vol. 25(1). - P. 73-81; Viktor Grishaev, A. Amirfazli, Sergey Chikov, Yuriy Lyulin, Oleg Kabov, Study of Edge Effect to Stop Liquid Spillage for Microgravity Application, Microgravity Sci. Technol. (2013) 25:27-33].

Форма поперечного сечения микроканавки может быть треугольной, прямоугольной, и в форме «ласточкин хвост». Эффективность микроканавки зависит от величины угла между плоскостью электронного тепловыделяющего элемента и стороной канавки, чем меньше этот угол, тем эффективнее стабилизирующее действие микроканавки.

В другом варианте исполнения устройства для обеспечения устойчивости микроручейкового течения жидкости используют гидрофобное нанопокрытие, которое наносят либо только на поверхность подложки в виде системы продольных полос вдоль канала, а также с обеих сторон от тепловыделяющего элемента для ограничения микроручейкового течения, либо гидрофобное нанопокрытие наносится также на три другие внутренние поверхности канала. Таким образом, поверхность течения ручейков жидкости по подложке всегда остается гидрофильной. Нанопокрытие выполнено так, что ширина ручейка, А, существенно больше ширины гидрофобного нанопокрытия между ручейками, D. Ширина всего микроручейкового течения, С, больше или равна ширине электронного тепловыделяющего элемента, В, а отношение ширины мини- или микро канала, L, к ширине всего микроручейкового течения, С, находится в диапазоне от 1 до 10.

Устройство для формирования микроручейкового течения жидкости в микро- и миниканалах включается в замкнутый циркуляционный контур, содержащий резервуары для газа и жидкости, регуляторы поддержки расхода газа и давления, насосы для подачи жидкости и газа и эвакуации двухфазной смеси, сепарационную систему для разделения использованной жидкости от газовой фазы.

Жидкость и газ подаются при помощи насосов из резервуаров через сопла в микро- или миниканал устройства. Газ подается под давлением над жидкостным соплом, и течет, увлекая поток жидкости. Заданные расход газа и давление в устройстве поддерживаются автоматически при помощи регуляторов, например регуляторов BRONKHORST. Плоское микро-ручейковое течение жидкости шириной, равной или больше ширины электронного компонента, но меньше ширины канала, формируется благодаря узкой щели сопла и ограничивающим канавкам или нанопокрытию с контрастным смачиванием и движется под действием спутного потока газа. Толщина каждого ручейка меняется в зависимости от расходов жидкости и газа.

Для обеспечения устойчивого течения ручейка в заданной области используют микроканавки, которые располагают вдоль течения ручейка, ограничивая его течение с двух сторон, как показано на фиг. 2. Микроканавка удерживает жидкость от растекания, используя эффект острой кромки. Впервые использование эффекта острой кромки в качестве барьера против растекания жидкости было предложено Гибсом [Gibbs, J.W. Scientific Papers, p. 326, 1906]. В дальнейшем эта идея была развита и проанализирована в работе [Fang,G., Amirfazli, A.:Understanding the edge effect in wetting: a thermodynamic approach. Langmuir (2012). doi:10.1021/la301623h], а также исследована экспериментально в работах [Oliver, J.F., Huh, С, Mason, S.G.: Resistance to spreading of liquids by sharp edges.

J. Colloid Interface Sci. 59, 568-581 (1977); Bayramli, E., Mason, S.G.: Liquid spreading: edge effect for zero contact angle. J. Colloid Interface Sci. 66, 200-202 (1978); Yu, L.M.Y., Lu J.J., Chan, Y.W., Ng, A., Zhang, L., Hoorfar, M., Policova, Z., Grundke, K., Neumann, A.W.: Constrained sessile drop as a new configuration to measure low surface tension in lung surfactant systems. J. Appl. Physiol. 97, 704-715 (2004); Sheng, X., Zhang, J., Jiang, L.: Application of the restricting flow of solid edges in fabricating superhydrophobic surfaces. Langmuir 25, 9903-9907 (2009); Toth, В.: Future experiments to measure liquid-gas phase change and heat transfer phenomena on the international space station. Microgravity Sci. Technol. (2011). doi:10.1007/s12217-011-9286-1].

Поверхность жидкости вблизи острой кромки канавки составляет с поверхностью подложки равновесный контактный угол смачивания θ. Этот угол отражает взаимодействие жидкости и поверхности твердого тела. Для того чтобы жидкость могла преодолеть острую кромку твердого тела, контактный угол должен достигнуть соответствующего критического угла θс=α+θ, где α - угол между плоскостью электронного тепловыделяющего элемента и стороной микроканавки. При достижении жидкостью положения, когда контактный угол смачивания достигает критического угла 0 с, жидкость закрепляется на краю твердого тела (кромки микроканавки). Таким образом, контактный угол с поверхностью твердого тела может быть увеличен при помощи острой кромки. Для стабилизации течения ручейка в случае резких вибраций работают канавки очень широкого спектра форм - треугольные, прямоугольные, и в форме «ласточкин хвост» [Viktor Grishaev, A. Amirfazli, Sergey Chikov, Yuriy Lyulin, Oleg Kabov, Study of Edge Effect to Stop Liquid Spillage for Microgravity Application, Microgravity Sci. Technol. (2013) 25:27-33]. Чем меньше угол между плоскостью электронного тепловыделяющего элемента и стороной канавки, тем она эффективнее, но стоимость может возрасти. Канавки выполняют эксимерным лазером или электроэрозионным методом.

Для обеспечения устойчивости ручейкового течения жидкости также используют гидрофобное нанопокрытие. Гидрофобное нанопокрытие 6 наносят вдоль течения на поверхность подложки с обеих сторон от каждого ручейка, а также на всю подложку, как показано на фиг. 3. Течение ручейка удерживается за счет контрастной смачиваемости на подложке канала. Когда ручеек начинает растекаться на поверхность с нанопокрытием, то контактный угол смачивания существенно увеличивается, что увеличивает кривизну на границе раздела ручейка и, как следствие, возникает капиллярная сила, которая стремится вернуть ручеек на место. Однако в случае существенных вибраций системы и отклонения системы от горизонтального положения могут возникнуть силы, способные перебросить часть жидкости на одну из стенок канала или верхнюю стенку канала, без нанопокрытия.

Для предотвращения такой ситуации гидрофобное нанопокрытие 6 наносят вдоль течения на поверхность подложки с обеих сторон от каждого ручейка, на всю подожку за пределами микроручейкового течения, и на внутреннюю поверхность трех других стенок канала. Таким образом, вся поверхность стенок канала имеет сплошное гидрофобное нанопокрытие, за исключением области течения ручейков, которая обычно бывает гидрофильной, как показано на фиг. 4. В этом случае ручейки жидкости вернутся на обычное место их течения при любых отклонениях устройства, как только исчезнет источник дестабилизации, так как течение по гидрофильной поверхности является наиболее энергетически выгодным для ручейков.

Для получения нанопокрытия часть поверхности обрабатывают химическим способом (нанесением монослоя молекул другого вещества) так, чтобы на поверхности появилась область с наноразмерной шероховатостью и более высоким значением контактного угла смачивания. Области поверхности с нанесенными на нее наноструктурами являются гидрофобными относительно остальной поверхности. Размер наноструктур может составлять от 1 до 500 нм и более, в зависимости от типа поверхности, и не является принципиальным параметром, т.е. заметным сужением канала. Разница между контактными углами смачивания на гидрофобных участках и необработанной поверхностью (поверхностью течения жидкости) может составлять от 10 до 175 градусов.

Работоспособность предложенной конструкции устройства для формирования микроручейкового течения жидкости в микро- и миниканалах подтверждается экспериментальными данными и выполненными оценками и расчетами [Viktor Grishaev, A. Amirfazli, Sergey Chikov, Yuriy Lyulin, Oleg Kabov, Study of Edge Effect to Stop Liquid Spillage for Microgravity Application, Microgravity Sci. Technol. (2013) 25:27-33; [Cheverda V. Liquid rivulets moved by shear stress of gas flow at altered levels of gravity / V. Cheverda, A. Glushchuk, P. Queeckers, S.B. Chikov, O.A. Kabov // Microgravity sci. technol. - 2013. - Vol. 25(1). - P. 73-81].

Преимущество заявляемого изобретения состоит в том, что предложенное устройство позволяет существенно снизить энергозатраты на прокачку охлаждающей жидкости, одновременно позволяя существенно интенсифицировать теплообмен при испарении, т.е. обеспечивает высокую эффективность и устойчивость работы, в том числе и в нестандартных ситуациях, таких как невесомость.

1. Устройство для формирования микроручейкового течения жидкости в микро- и миниканалах, включающее плоский мини- или микроканал прямоугольного сечения, одна из стенок которого является подложкой, с одним или несколькими электронными тепловыделяющими элементами, расположенными на одной или двух противоположных стенках канала, отличающееся тем, что вдоль канала на поверхности подложки с электронным тепловыделяющим элементом расположены формирующие микроручейковые течения жидкости продольные микроканавки, выполненные таким образом, что A>D, A/D=3÷100, С/А≥10, где А - ширина ручейка, D - ширина микроканавки, В≤С<Cm, где В - ширина электронного тепловыделяющего элемента, С - ширина микроручейкового течения, Cm - расстояние между крайними микроканавками, L/Cm=1÷10, где L - ширина мини- или микроканала, а угол между плоскостью электронного тепловыделяющего элемента и стороной микроканавки α≤135 градусов.

2. Устройство по п. 1, отличающееся тем, что микроканавки имеют форму треугольника, прямоугольника и форму «ласточкин хвост».

3. Устройство для формирования микроручейкового течения жидкости в микро- и миниканалах, включающее микроканал прямоугольного сечения, на поверхность которого нанесены полосы гидрофобного нанопокрытия, с электронным тепловыделяющим элементом, отличающееся тем, что вдоль канала на поверхности подложки расположены формирующие микроручейковые течения жидкости продольные полосы гидрофобного нанопокрытия, выполненные таким образом, что A>D, A/D=3÷100, С/А≥10, где А - ширина гидрофильной области - поверхности без нанопокрытия, D - ширина гидрофобного нанопокрытия, при этом внутренняя поверхность всех остальных стенок мини- или микроканала покрыта сплошным гидрофобным нанопокрытием, ограничивающим микроручейковое течение по краям, а размер наноструктур составляет 1-500 нм.

4. Устройство по п. 3, отличающееся тем, что сплошное гидрофобное нанопокрытие, ограничивающее микроручейковое течение по краям, нанесено только на поверхность подложки с обеих сторон от электронного тепловыделяющего элемента таким образом, что С≥В, где С - ширина микро-ручейкового течения, В - ширина электронного тепловыделяющего элемента, L/С=1÷10, где L - ширина мини- или микроканала, при этом размер наноструктур составляет 1-500 нм, а разность между равновесным контактным углом смачивания на гидрофобной θhydrophobe поверхности и равновесным контактным углом смачивания на гидрофильной поверхности θhydrophile составляет 10-175 градусов.



 

Похожие патенты:

Изобретение относится к энергетике. Установка для преобразования низкопотенциального геотермального тепла в электричество содержит вытяжную башню с воздуховходными окнами в ее основании, водосборный бассейн, ветровое колесо, соединенное с электрогенератором.

Изобретение относится к способам переработки растительного, животного, морского сырья или их смесей. Способу получения твердого продукта и жидкого продукта из растительного, животного, морского сырья или их смесей содержит следующие стадии: а) нагревание мелкодисперсного исходного материала прямым введением водяного пара, b) разделение нагретого исходного материала на твердый продукт и водную жидкость, с) нагревание и опрессовывание водной жидкости и d) снижение давления водной жидкости с генерированием в результате водяного пара и жидкого продукта, в котором водяной пар, генерированный на стадии d), возвращается на стадию а) для введения в мелкодисперсный исходный материал.

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах.

Изобретение относится к теплотехнике и может быть использовано в газотранспортной отрасли промышленности в системах подогрева топливного газа. Система подогрева топливного газа включает подогреватель топливного газа, в котором трубный пучок топливного газа погружен в раствор промежуточного теплоносителя, содержащегося в емкости, установленной внутри подогревателя топливного газа.

Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего формирование тонких безволновых пленок жидкости высокой равномерности и качества.

Изобретение относится к устройствам и способам поддержания устройств для контакта пара с жидкостью. Устройство для сбора и распределения жидкости, установленное в колонне, содержащей наружный кожух и внутреннюю область, в которой происходят массоперенос и/или теплообмен, содержит сборник жидкости, проходящий поперек внутренней области колонны и содержащий множество каналов сбора, которые проходят в продольном направлении параллельно друг другу для сбора жидкости, нисходящей в пределах внутренней области колонны, причем каналы сбора имеют выпуски для выпуска жидкости, собираемой в каналах сбора; по меньшей мере, один каркас, проходящий поперек внутренней области колонны и имеющий противоположные концы, поддерживаемые кожухом колонны, причем каркас расположен под сборником жидкости и поддерживает его; распределитель жидкости, расположенный под каркасом и несомый им; и внутренний проход для текучей среды, сформированный в каркасе и выполненный с возможностью приема жидкости, выпускаемой из выпусков каналов сбора, и транспортировки ее в распределитель жидкости.

Изобретение относится к области теплотехники и может быть использовано в контактных пленочных теплообменных аппаратах. Изобретение заключается в том, что в пленочном теплообменном аппарате с помощью армирующих стержней, закрепленных посредством горизонтальных упоров в верхней и нижней частях цилиндрического корпуса аппарата, установлены отсечные устройства, расположенные сверху вниз на одинаковом расстоянии, при этом каждое отсечное устройство разделено на две части: внутреннюю и находящуюся поверх внутренней внешнюю часть, с возможностью регулировки внутреннего пространства устройства путем перемещения пластин внутренней части, с помощью резьбовых вентилей.

Изобретение относится к области энергетики. Водораспределительное устройство для контактных аппаратов выполняется в виде тарелок с равномерно расположенными отверстиями прямоугольной формы, причем тарелки расположены в два яруса, они имеют форму поперечного сечения контактного аппарата, днища каждого яруса имеют равное количество отверстий со скругленными углами, причем живое сечение каждого яруса составляет 40-60%, при этом отверстия в соседних по высоте ярусах расположены с поворотом на угол 80-100 градусов, а расстояние между соседними отверстиями составляет 0,2-0,3 их ширины, при этом расстояние между днищами ярусов равно 8-10 ширины отверстий.

Изобретение относится к области теплоэнергетики, а более точно - к устройству утилизации тепла конденсации водяного пара и очистки уходящих газов энергетической установки.

Изобретение относится к тепломассообменному аппарату с комбинированной схемой взаимодействия потоков газа и жидкости, содержащий корпус, водораспределительную систему, в основании которой установлены трубки для подачи жидкости в каналы непосредственного взаимодействия потоков газа и жидкости в прямотоке регулярной насадки.

Изобретение относится к медицинской технике. Генератор биологически активного наноаэрозоля содержит проводящий корпус с диэлектрическими фланцами на торцах корпуса и со сквозными отверстиями для выхода наноаэрозоля, выполненными на боковой поверхности корпуса; диэлектрический вкладыш, запрессованный в корпус и оснащенный средством для доступа к внутренней боковой поверхности корпуса, распылительную камеру в виде полости в диэлектрическом вкладыше в форме эллипсоида, большая ось которого ориентирована вдоль оси корпуса.

Изобретение относится к криогенной технике и может быть использовано для изготовления высокотемпературных сверхпроводящих (ВТСП) проводов нового поколения. Сущность изобретения заключается в том, что способ получения высокотемпературной сверхпроводящей пленки на аморфной кварцевой подложке включает нанесение на предварительно очищенную поверхность подложки трехслойного покрытия, при этом первый слой покрытия формируют из кварца толщиной 100-400 нм методом магнетронного распыления, второй слой формируют из диоксида циркония, стабилизированного иттрием толщиной 100-300 нм, третий - из диоксида церия толщиной 150-350 нм.

Изобретение может быть использовано в производстве элементов микроэлектроники, сенсорной техники. Гольмий-марганцевый сульфид с гигантским магнитосопротивлением включает марганец и серу и дополнительно содержит гольмий при следующем соотношении компонентов, мас.%: гольмий 2,5-15, марганец 47,5-35, сера 50.
Изобретение относится к травматологии и ортопедии и может быть применимо для малоинвазивной хирургической стимуляции репаративного остеогенеза замедленно консолидирующихся дистракционных регенератов в сочетании с ложным суставом длинных костей конечностей при рубцово-измененных мягких тканях.

Изобретение относится к обработке металлов давлением, в частности к производству композиционных материалов, и может быть использовано для изготовления биметаллической проволоки из разнородных металлов.

Настоящее изобретение относится к области технологий материалов и материаловедческих и аналитических исследований. Композиция, обладающая ГКР-активностью, для определения полиароматических гетероциклических серосодержащих соединений (ПАГС) в углеводородных продуктах представляет собой хемотропный гель, содержащий полимерную матрицу с наночастицами серебра анизотропной формы с размерами 10-90 нм и частицами оксида графена с размерами 1-2 мкм.

Изобретение может быть использовано при изготовлении осветительных устройств. Сначала смешивают люминесцентные наночастицы, наружная поверхность которых покрыта двумя типами защитных молекул, с предшественником твердого полимера.

Изобретение относится к составу сырьевой смеси для строительных материалов и может найти применение при изготовлении сборных и монолитных изделий и конструкций зданий и сооружений различного назначения.

Изобретение относится к шовным композициям для стеновых плит. Шовная композиция для швов смежных стеновых плит включает нанокристаллическую целлюлозу, воду, наполнитель, связующее и загуститель, причем содержание нанокристаллической целлюлозы достаточно для улучшения сопротивления растрескиванию шовной композиции при сушке, диаметр нанокристаллической целлюлозы составляет менее чем 60 нм, содержание нанокристаллической целлюлозы составляет от 0,05 до 0,15 мас.% в расчете на общую массу композиции и содержание загустителя составляет от 0,3 до 0,5 мас.% в расчете на общую массу композиции.

Изобретение относится к фармацевтической промышленности, а именно к способу получения нанокапсул L-аргинина, при этом в качестве ядра используется L-аргинин, а в качестве оболочки нанокапсул используется геллановая камедь при массовом соотношении ядро:оболочка 1:1, 1:2, или 1:3 соответственно.
Изобретение относится к металлургии, в частности к термодеформационной обработке ферритно-перлитных сталей для формирования гетерогенной структуры «субмикрокристаллическая ферритная матрица - наноразмерные карбиды». Способ обработки ферритно-перлитных сталей включает равноканальное угловое прессование при 20°C в матрице с углом 90° пересечения ее каналов, с двумя циклами прессования по маршруту «Вс» с поворотом заготовки на 90° после каждого цикла прессования. После прессования осуществляют последующий низкотемпературный рекристаллизационный отжиг в интервале температур от 250 до 450°C в течение 1 часа с охлаждением на воздухе. Технический результат заключается в повышении предела текучести, предела прочности и ударной вязкости ферритно-перлитных сталей за счет получения гетерогенной структуры «субмикрокристаллическая ферритная матрица - наноразмерные карбиды».

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники. Изобретение заключается в том, что в канале, на одной из сторон, которая является поверхностью подложки тепловыделяющего элемента, выполнены продольные микроканавки или нанесены продольные полосы гидрофобного нанопокрытия, формирующие микроручейковые течения жидкости. Гидрофобное нанопокрытие, ограничивающее микро-ручейковое течение по краям, может быть нанесено на внутреннюю поверхность всех стенок мини- или микроканала или только на поверхность подложки с обеих сторон от электронного тепловыделяющего элемента. Технический результат - существенная интенсификация теплообмена в микросистемах, устойчивая работа как в земных условиях, так и в невесомости, в том числе при любых нестандартных ситуациях. 2 н. и 2 з.п. ф-лы, 6 ил.

Наверх