Электрогенерирующая теплозащитная оболочка



Электрогенерирующая теплозащитная оболочка
Электрогенерирующая теплозащитная оболочка
Электрогенерирующая теплозащитная оболочка
H01L35/00 - Термоэлектрические приборы, содержащие переход между различными материалами, т.е. приборы, основанные на эффекте Зеебека или эффекте Пельтье, с другими термоэлектрическими и термомагнитными эффектами или без них; способы и устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, H01L 27/00; холодильное оборудование, в котором используются электрические или магнитные эффекты, F25B 21/00; измерение температуры с использованием термоэлектрических и термомагнитных элементов G01K 7/00; получение энергии от радиоактивных источников G21H)

Владельцы патента RU 2629650:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU)

Использование: для получения электрической энергии. Сущность изобретения заключается в том, что электрогенерирующая теплозащитная оболочка содержит гибкий лист, состоящий из гибкого теплоизоляционного материала–диэлектрика, покрытого с обеих сторон пленкой, выполненной из влагозащитного и герметизирующего материала–диэлектрика, причем в массе теплоизоляционного материала–диэлектрика помещены термоэлектрические секции, представляющие собой П–образные ряды, выполненные из стекловолокнистых полос, поверхности парных перпендикулярных отрезков которых поочередно покрыты напылением порошком разных металлов М1 и М2, концы вышеупомянутых отрезков согнуты под углом 90°, соединены между собой и также покрыты напылением эквимолярной смесью порошков металлов М1 и М2, образуя отдельные термоэмиссионные преобразователи, и располагаются на противоположных поверхностях слоя теплоизоляционного материала–диэлектрика параллельно им, крайние перпендикулярные отрезки каждого П–образного ряда соединены между собой перемычками, а крайние перпендикулярные отрезки крайних П–образных рядов каждой термоэлектрической секции соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с токовыводами. Технический результат: обеспечение возможности повышения эффективности и упрощения изготовления устройства. 6 ил.

 

Предлагаемое изобретение относится к теплоизоляционным изделиям и может быть использовано при изготовлении гибких теплоизолирующих покрытий для объектов, излучающих тепловую энергию, с целью ее утилизации для получения электрической энергии.

Известен пакет тепловой изоляции, работающий в условиях криогенных температур, аэродинамического нагрева и высоких рабочих давлений, который содержит изолируемую поверхность со слоем теплоизоляции в виде пенопласта, установленного на амортизационный слой, слоем теплозащиты и закрепленным на последнем антистатическим покрытием, при этом изолируемая поверхность выполнена из полимерного композиционного материала – пенопласта, оснащенного влагозащитным и герметизирующим покрытием из виброударопрочного клея, в свою очередь покрытый лентой из стеклянных комплексных нитей, тоже покрытой слоем теплозащиты в виде резиноподобного эластичного покрытия [Патент РФ №2459743, МКЛ. В64 С1/40, В64 G1/58, В32 B7/02, В64 D37/00, 2012].

Основным недостатком известного пакета тепловой изоляции является невозможность утилизации тепла изолируемого объекта для получения электричества, что снижает его эффективность.

Более близким по технической сущности к предлагаемому изобретению является электрогенерирующее покрывало, содержащее гибкий лист, состоящий из гибкого теплоизоляционного материала–диэлектрика, покрытого с обеих сторон пленкой, выполненной из влагозащитного и герметизирующего материала–диэлектрика, причем в массе теплоизоляционного материала–диэлектрика помещены термоэлектрические (термоэмиссионные) преобразователи, представляющие собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, концы которых расплющены, спаяны (соединены) между собой и согнуты под углом 90°, устроенные таким образом, что парные проволочные отрезки образуют зигзагообразные ряды, согнутые спаянные концы 8 проволочных отрезков располагаются на противоположных поверхностях слоя теплоизоляционного материала–диэлектрика параллельно им и закрыты снаружи вышеупомянутой пленкой, крайние проволочные отрезки крайних зигзагообразных рядов термоэлектрических преобразователей соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с токовыводами [Патент РФ №2537873, МПК А62 В17/00, 2015].

Основными недостатками известного электрогенерирующего покрывала являются высокий расход металлов М1 и М2 для изготовления термоэмиссионных преобразователей, определяющий значительный вес устройства, сложность их изготовления, обусловленная необходимостью заготовкой проволочных отрезков, сплющиванием и спайкой их концов, что повышает стоимость и, таким образом, снижает эффективность покрывала.

Техническим результатом предлагаемого изобретения является повышение эффективности, которое заключатся в том, что предлагаемая электрогенерирующая теплозащитная оболочка, наряду с уменьшением теплопотерь от объекта в окружающую среду и получение электрической энергии, обеспечивает значительное снижение расхода металла на изготовление термоэмиссионных элементов, упрощение их изготовления и значительное снижение веса устройства.

Технический результат достигается электрогенерирующей теплозащитной оболочкой, содержащей гибкий лист, состоящий из гибкого теплоизоляционного материала–диэлектрика, покрытого с обеих сторон пленкой, выполненной из влагозащитного и герметизирующего материала–диэлектрика, причем в массе теплоизоляционного материала–диэлектрика помещены термоэлектрические секции, представляющие собой П–образные ряды, выполненные из стекловолокнистых полос, поверхности парных перпендикулярных отрезков которых поочередно покрыты напылением порошком разных металлов М1 и М2, концы вышеупомянутых отрезков согнуты под углом 90°, соединены между собой и также покрыты напылением эквимолярной смесью порошков металлов М1 и М2, образуя отдельные термоэмиссионные преобразователи, и располагаются на противоположных поверхностях слоя теплоизоляционного материала–диэлектрика параллельно им и закрыты снаружи пленкой, крайние перпендикулярные отрезки каждого П–образного ряда соединены между собой перемычками, крайние перпендикулярные отрезки крайних П–образных рядов каждой термоэлектрической секции соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с токовыводами.

На фиг. 1–6 представлена предлагаемая электрогенерирующая теплозащитная оболочка (ЭГТЗО) (на фиг. 1 – общий вид, на фиг. 2–6 - основные узлы).

Предлагаемая электрогенерирующая теплозащитная оболочка (ЭГТЗО) содержит гибкий лист 1, состоящий из гибкого теплоизоляционного материала–диэлектрика 2, покрытого с обеих сторон пленкой 3, выполненной из влагозащитного и герметизирующего материала–диэлектрика, причем в массе теплоизоляционного материала–диэлектрика 2 помещены термоэлектрические секции (ТЭС) 4, представляющие собой П–образные ряды 5, выполненные из стекловолокнистых полос 6, поверхности парных перпендикулярных отрезков 7 и 8 которых поочередно покрыты напылением порошком разных металлов М1 и М2, их концы 9 и 10 согнуты под углом 90°, соединены между собой и также покрыты напылением эквимолярной смесью порошков металлов М1 и М2, образуя отдельные термоэмиссионные преобразователи (ТЭП) 11 (такая конструкция ТЭП 11 принята для того, чтобы снизить расход металлов М1 и М2, увеличить поверхность теплопередачи, уменьшить их толщину и, таким образом, интенсифицировать скорость их нагрева или охлаждения), согнутые концы 9 и 10 парных перпендикулярных отрезков 7 и 8 располагаются на противоположных поверхностях слоя теплоизоляционного материала–диэлектрика 2, параллельно им и закрыты снаружи пленкой 3, крайние перпендикулярные отрезки 7 и 8 каждого ряда 5 соединены между собой перемычками 12, крайние перпендикулярные отрезки 7 и 8 крайних П–образных рядов 5 каждой ТЭП 4 соединены с однополюсными коллекторами электрических зарядов 13 и 14 (размещение коллекторов 13, 14 на фиг. 1–6 показано условно), которые, в свою очередь, соединены с токовыводами (на фиг. 1 не показаны).

В основу работы предлагаемой ЭГТЗО положено следующее. Так как термоэмиссионные преобразователи (ТЭП) 10 выполнены в виде П–образных рядов 5, изготовленных из стекловолокнистых полос 6, поверхности парных перпендикулярных отрезков 7 и 8 которых поочередно покрыты напылением порошком разных металлов М1 и М2, а их концы 9 и 10 согнуты под углом 90°, соединены между собой и также покрыты напылением эквимолярной смесью порошков металлов М1 и М2, то при нагреве (охлаждении) одних концов 9 элементов ТЭП 11 и охлаждении (нагреве) противоположных им концов 10 ТЭП 11 на них устанавливаются разные температуры, в зоне контакта металлов М1 и М2 на концах 9 и 10 происходит термическая эмиссия электронов, в результате чего в П–образных рядах 5 появляется термоэлектричество [С.Г. Калашников. Электричество. – М.: «Наука», 1970, с. 502–506].

ЭГТЗО работает следующим образом. Объект (на фиг. 1–6 не показан), излучающий тепло, покрывают листом 1 ЭГТЗО таким образом, чтобы в сторону горячего объекта (например) были обращены концы 9 парных отрезков 7 и 8 ТЭП 11, а в сторону холодной окружающей среды противоположные концы 10. После этого эквимолярная смесь порошков металлов М1 и М2, размещенная напылением на концах 9, нагревается, а эквимолярная смесь порошков металлов М1 и М2, размещенная напылением на концах 10, охлаждается (холодной окружающей средой может быть наружный воздух, сбросные газы, вода, космос). Соответственно, температура вышеупомянутой смеси на концах 9 парных отрезков 7 и 8 будет больше, чем температура смеси металлов М1 и М2 на концах 10 этих же пар отрезков. В тоже время наличие теплоизолирующего материала – диэлектрика 2 в листе 1 обеспечивает тепловую изоляцию объекта, снижая тем самым его теплопотери. При этом одновременно с процессом теплопередачи, в результате создавшейся разности температур нагретых концов 9, покрытых эквимолярной смесью металлов М1 и М2, соединенных через отрезки 7 и 8, покрытые порошком металлов М1 и М2, соответственно, с охлажденными концами 10, также покрытыми эквимолярной смесью металлов М1 и М2, на вышеупомянутых концах 9 и 10 ТЭП 11 происходит термическая эмиссия электронов и в П–образных рядах 5 появляется термоэлектричество, которое из ТЭС 4 через однополюсные коллекторы электрических зарядов 13 и 14 поступает на токовыводы, соединенные с преобразователем, где создается требуемое напряжение и сила тока (на фиг. 1–6 не показаны), который затем подается потребителю.

Величина разности электрического потенциала на токовыводах и сила электрического тока зависит от характеристик пар металлов М1 и М2, которые напылены на стекловолокнистые полосы 6 П–образных рядов 5, числа ТЭП 11 в каждом ряду 5, их числа в ТЭС 4, разности температур на противоположных спаянных концах 9 и 10 ТЭС 4 и числа ТЭС 4 в гибком листе 1. Полученный электрический ток можно использовать для изолируемого объекта или сторонних потребителей.

Таким образом, предлагаемое изобретение, наряду с уменьшением тепловых потерь от объекта в окружающую среду и получением электрической энергии, обеспечивает значительное снижение расхода металлов М1 и М2, упрощение конструкции и изготовления термоэмиссионных элементов, а также значительное снижение веса электрогенерирующей теплозащитной оболочки, в результате использования для получения термоэлектрических секций П–образных полос из стекловолокна, покрытых напылением порошками металлов М1 и М2.

Электрогенерирующая теплозащитная оболочка, содержащая гибкий лист, состоящий из гибкого материала–диэлектрика, покрытого с обеих сторон пленкой, выполненной из материала–диэлектрика, в массе теплоизоляционного материала–диэлектрика помещены термоэмиссионные преобразователи, выполненные из разных металлов М1 и М2, концы которых соединены между собой и согнуты под углом 90°, устроенные таким образом, что парные отрезки образуют ряды, согнутые соединенные концы вышеупомянутых отрезков располагаются на противоположных поверхностях слоя теплоизоляционного материала–диэлектрика параллельно им и закрыты снаружи вышеупомянутой пленкой, крайние отрезки крайних рядов термоэмиссионных преобразователей соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с токовыводами, отличающаяся тем, что ряды термоэмиссионных преобразователей выполнены П–образными из стекловолокнистых полос, поверхности парных перпендикулярных отрезков которых поочередно покрыты напылением порошком разных металлов М1 и М2, соединенные концы вышеупомянутых отрезков также покрыты напылением эквимолярной смесью порошков металлов М1 и М2, образуя отдельные термоэмиссионные преобразователи, крайние перпендикулярные отрезки каждого П–образного ряда соединены между собой перемычками, образуя термоэлектрические секции, крайние перпендикулярные отрезки крайних П–образных рядов каждой термоэлектрической секции соединены с однополюсными коллекторами электрических зарядов.



 

Похожие патенты:

Изобретение относится к устройствам вакуумной СВЧ-электроники и может быть использовано в устройствах коммутации тока, в смесителях и в других приборах и устройствах силового сектора СВЧ-электроники.

Изобретение относится к системам теплообмена. Технический результат - повышение эффективности термоэлектрического теплового насоса за счет уменьшения выделения паразитного тепла Джоуля в полупроводниковых ветвях и создание условий для возникновения дополнительного термоэффекта между горячими и холодными спаями, изготовленными из разных металлов.

Изобретение относится к термоэлектрической энергетике и может быть использовано для преобразования тепла отработавших газов из двигателя внутреннего сгорания в электрическую энергию.

Группа изобретений относится к области железнодорожного транспорта и может быть использована в качестве автономного источника питания железнодорожных вагонов. Способ электроснабжения заключается в преобразовании усилий вращения колесной пары вагона в электрическую энергию.

Изобретение относится к твердотельной криогенике, а именно к холодильникам на эффекте Пельтье с применением магнитного поля (продольный гальвано-термомагнитный эффект), и может быть использовано при охлаждении малых объектов.

Заявленное изобретение относится к области приборостроения и может быть использовано при нагреве и охлаждении воды и напитков. Предложен способ изменения температуры жидкости, заключающийся в отборе тепловой энергии с помощью теплового процесса, основанного на термоэлектрическом эффекте элемента Пельтье.

Изобретение относится к производству полупроводниковых материалов, в частности к получению термоэлектрических бинарных сплавов типа висмут-сурьма, применяемых для изготовления варизонных полупроводников для термоэлектрических элементов малогабаритных холодильников Пельтье, работающих в интервале температур 100-200 К.

Группа изобретений относится к медицине. Система формирования протокола на основе обратной связи для теплового лечения части тела человека или животного содержит устройство теплообмена для нагревания и/или охлаждения части тела, соединенное с устройством теплового лечения, с помощью которого осуществляют способ формирования протокола.

Изобретение относится к контролю термоэлектрических устройств. Сущность: способ содержит этапы подачи электрического напряжения на элемент Пельтье, отключения напряжение по истечении определенного периода времени, измерения напряжения на элементе Пельтье и сравнения измеренного напряжения с контрольным значением.

Изобретение относится к электронике, в частности к средствам выпрямления переменного электрического напряжения. Целью изобретения является увеличение значения постоянного напряжения, генерируемого устройством.

Изобретение относится к теплоэлектроэнергетике и может быть использовано для прямой трансформации тепловой энергии в электрическую. Теплотрубная гелиотермоэлектростанция включает поддон с отверстием в днище, закрытый сверху крышкой, покрытой фотоэлементами, внутренняя сторона которой покрыта решеткой, выполненной из полос пористого материала, отверстие поддона соединено с верхним торцом заглушенной снизу вертикальной трубы, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная также пористым материалом, между верхним и нижним торцами подъемной трубы и нижним торцом вертикальной трубы и внутренней поверхностью крышки поддона устроены щели шириной ∆, пространство которых заполнено пористым материалом, внутри каждого гофра вертикальной трубы размещены вертикальные пазы длиной L, в которые вставлены вертикальные термоэлектрические преобразователи, в массиве которых помещена контурная арматура, состоящая из термоэмиссионных элементов. Изобретение должно обеспечить повышение эффективности и надежности станции. 10 ил.

Изобретение относится к электротехнике и нанотехнологиям, в частности к способу изготовления термоэлектрического элемента для термоэлектрических устройств, например термоэлектрической батареи, и может быть использовано в потребительской электронике, медицине, лабораторном оборудовании и других областях. Сначала полученную гибкую ленту наматывают на барабан, который располагают в вакуумной камере. Осуществляют вакуумное напыление термоэлектрического материала на противоположные ее стороны. Ленту последовательно протягивают с помощью отклоняющих и натяжных роликов через первую зону нагрева и импульсного лазерного осаждения термоэлектрического материала p-типа проводимости на нагретый участок одной стороны ленты. Осуществляют переворот ленты в устройстве разворота и протягивают ленту через вторую зону локального нагрева до заданной температуры и импульсного лазерного осаждения термоэлектрического материала n-типа проводимости на нагретый участок противоположной стороны ленты. Затем протягивают ленту через зону одновременного формирования на двух сторонах ленты технологического рисунка путем лазерного испарения термоэлектрического материала на каждой из ее сторон. Осуществляют намотку ленты с полученным двусторонним технологическим рисунком на второй барабан. 2 ил.

Предлагаемое устройство для соединения полупроводниковых термоэлементов в батарею может быть использовано для построения термоэлектрических батарей, которые применяются в энергетике как источники тока. Техническим результатом является повышение коэффициента полезного действия. Термоэлектрическая батарея, характеризующаяся параллельным соединением полупроводниковых элементов и дополнительной батареи из последовательно-соединенных термоэлементов, содержит цельное металлическое основание, на котором размещены полупроводниковые стержни с образованием спаев и дополнительная батарея из последовательно-соединенных термоэлементов. Выводы полупроводниковых стержней и батареи с последовательно-соединенными термоэлементами через ключи соединены с общей электрической шиной. 3 ил.
Наверх