Теплотрубная гелиотермоэлектростанция



Теплотрубная гелиотермоэлектростанция
Теплотрубная гелиотермоэлектростанция
Теплотрубная гелиотермоэлектростанция
H01L35/00 - Термоэлектрические приборы, содержащие переход между различными материалами, т.е. приборы, основанные на эффекте Зеебека или эффекте Пельтье, с другими термоэлектрическими и термомагнитными эффектами или без них; способы и устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, H01L 27/00; холодильное оборудование, в котором используются электрические или магнитные эффекты, F25B 21/00; измерение температуры с использованием термоэлектрических и термомагнитных элементов G01K 7/00; получение энергии от радиоактивных источников G21H)

Владельцы патента RU 2630363:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU)

Изобретение относится к теплоэлектроэнергетике и может быть использовано для прямой трансформации тепловой энергии в электрическую. Теплотрубная гелиотермоэлектростанция включает поддон с отверстием в днище, закрытый сверху крышкой, покрытой фотоэлементами, внутренняя сторона которой покрыта решеткой, выполненной из полос пористого материала, отверстие поддона соединено с верхним торцом заглушенной снизу вертикальной трубы, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная также пористым материалом, между верхним и нижним торцами подъемной трубы и нижним торцом вертикальной трубы и внутренней поверхностью крышки поддона устроены щели шириной ∆, пространство которых заполнено пористым материалом, внутри каждого гофра вертикальной трубы размещены вертикальные пазы длиной L, в которые вставлены вертикальные термоэлектрические преобразователи, в массиве которых помещена контурная арматура, состоящая из термоэмиссионных элементов. Изобретение должно обеспечить повышение эффективности и надежности станции. 10 ил.

 

Предлагаемое изобретение относится к теплоэлектроэнергетике и может быть использовано для утилизации возобновляемых, вторичных тепловых энергоресурсов и тепловой энергии природных источников, а именно для прямой трансформации тепловой энергии в электрическую.

Известна термоэмиссионная система электроснабжения здания, содержащая: наружные ограждения, кровельное покрытие, покрытые снаружи декоративными ограждениями, состоящими из секций, каждая из которых представляет собой термоэлектрический преобразователь, состоящий из прямоугольного полого корпуса, выполненного из материала–диэлектрика с высокой теплопроводностью, армированного контурной арматурой, между крышкой и днищем которого имеется замкнутая воздушная полость, контурная арматура состоит из элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2 и спаянные на концах между собой, образующие зигзагообразные ряды, устроенные таким образом, что левые и правые части проволочных отрезков со спаянными концами согнуты под углом 90° и располагаются в слоях материала– диэлектрика крышки и днища, параллельно их поверхности не касаясь ее, а средние части парных проволочных отрезков расположены в воздушной полости, крайние проволочные отрезки крайних зигзагообразных рядов соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с электрическим аккумулятором [Патент РФ №2499107, МПК E04C 2/26, E04D 13/00, 2013].

Основными недостатками известного термоэлектрического преобразователя термоэмиссионной системы электроснабжения здания являются невозможность использования солнечной энергии и зигзагообразная компоновка термоэмиссионных элементов с изгибом их спаев под углом 90° и обусловленное этим малое количество термоэмиссионных элементов на единице его площади, что снижает удельную производительность по выработке термоэлектричества и эффективность устройства.

Более близким к предлагаемому изобретению является гелиотермоэмиссионная система электроснабжения здания, включающая кровельное покрытие (крышу) и декоративные ограждения, состоящие из прямоугольных секций, каждая из которых представляет собой фототермоэлектрический преобразователь, состоящий из фотоэлемента, присоединенного своей тыльной стороной к наружной стороне корпуса термоэлектрического преобразователя, тыльная сторона которого снабжена вертикальными ребрами, выполненного из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из элементов термоэлектрического преобразователя, представляющих собой парные проволочные отрезки, выполненные из разных металлов, спаянные на концах между собой, образуя зигзагообразные ряды, устроенные таким образом, что левые части проволочных отрезков с левыми спаянными концами согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а правые части проволочных отрезков с правыми спаянными концами расположены в массиве ребер, крайние проволочные отрезки крайних зигзагообразных рядов термоэлектрических преобразователей и выходные клеммы фотоэлементов соединены через соответствующие однополюсные коллекторы электрических зарядов с накопительным блоком [Патент РФ №2507353, МПК E04C 2/26, 2014].

Основными недостатками известной гелиотермоэмиссионной системы электроснабжения здания являются недостаточное охлаждение фотоэлементов, ведущее к снижению их производительности и высокое электрическое сопротивление термоэлектрических преобразователей, обусловленные зигзагообразным устройством рядов термоэлектрических преобразователей, сгибом левых частей проволочных отрезков термоэлектрических преобразователей под углом 90°, что приводит к увеличению длины вышеупомянутых проволочных отрезков и уменьшению удельного количества термоэлектрических преобразователей в единице площади источника электроснабжения, а также прямое соединение термоэлектрических преобразователей с коллекторами электрических зарядов, что также увеличивает электрическое сопротивление и, в конечном итоге, уменьшает эффективность и надежность устройства.

Техническим результатом предлагаемого изобретения являются повышение эффективности и надежности теплотрубной гелиотермоэлектростанции.

Технический результат достигается теплотрубной гелиотермоэлектростанцией, включающей поддон с отверстием в днище, закрытый сверху крышкой, выполненной из материала с высокой тепловодностью и покрытой фотоэлементами, внутренняя сторона которой покрыта решеткой, выполненной из полос пористого материала, при этом отверстие поддона соединено с верхним торцом вертикальной трубы, нижний торец которой заглушен, выполненной из материала с высокой тепловодностью, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная вышеупомянутым пористым материалом, верхний и нижний торцы подъемной трубы отступают от нижнего торца вертикальной трубы и внутренней поверхности крышки поддона на расстояние ∆, образуя щели, пространство которых также заполнено пористым материалом, соприкасающимся с нижним торцом внизу и решеткой верхней крышки вверху, причем стенка вертикальной трубы выполнена с вертикальными гофрами, внутри каждого гофра размещены вертикальные пазы длиной L, в каждый из которых вставлен вертикальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а сами проволочные отрезки расположены параллельно друг другу, образуя П–образные ряды, нижние крайние проволочные отрезки каждой пары П–образных рядов термоэлектрических преобразователей, соединены между собой перемычками, сверху каждая пара П–образных рядов, соединены между собой через электрические конденсаторы, первый и последний из которых и фотоэлементы соединены с выходными коллекторами, накопительным блоком и потребителем.

На фиг. 1–10 представлена теплотрубная гелиотермоэлектростанция (ТТГТЭС): фиг. 1–5 – общий вид и разрез ТТГТЭС; фиг. 6 – узел стыковки торца трубы 9 с торцом 8 трубы 7; фиг. 7 – термоэлектрический преобразователь (ТЭП); фиг. 8–10 – основные узлы ТТГТЭС и ТЭП.

Предлагаемая теплотрубная гелиотермоэлектростанция (ТТГТЭС) содержит поддон 1 с отверстием 2 в днище, закрытый сверху крышкой 3, выполненной из материала с высокой тепловодностью и покрытой фотоэлементами 4, внутренняя сторона которой покрыта решеткой 5, выполненной из полос пористого материала 6, при этом отверстие 2 соединено с вертикальной трубой 7 с заглушенным нижним торцом 8, выполненной из материала с высокой тепловодностью, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба 9, заполненная пористым материалом 6, верхний и нижний торцы которой отступают от нижнего торца 8 вертикальной трубы 7 и внутренней поверхности крышки 3 на расстояние ∆, образуя щель 10, пространство которой также заполнено пористым материалом 6, соприкасающимся с нижним торцов 8 внизу и решеткой 5 вверху, причем стенка вертикальной трубы 7 на высоту Н1 выполнена с вертикальными гофрами 11, внутри каждого гофра 11 размещены вертикальные пазы 12 длиной L, в каждый из которых вставлен вертикальный термоэлектрический преобразователь (ТЭП) 13, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов ТЭЭ 14, представляющих собой парные проволочные отрезки 15 и 16, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи 17 согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя (ТЭП) 13 параллельно ей, не касаясь ее, а сами проволочные отрезки 15 и 16 расположены параллельно друг другу, образуя П–образные ряды 18, нижние крайние проволочные отрезки 15 и 16 каждой пары П–образных рядов 18 ТЭП 13, соединены между собой перемычками 19, сверху каждая пара П–образных рядов 18, соединены между собой через электрические конденсаторы 20, первый и последний из которых и фотоэлементы 4 соединены с выходными коллекторами 21 и 22, накопительным блоком и потребителем (на фиг. 1–10 не показаны).

В основу работы предлагаемой ТТГТЭС положено свойство фотоэлементов 4 при воздействии на них солнечных лучей преобразовывать воспринятую солнечную энергию в электрическую и тепловую энергии [А. с. СССР №1603152, МПК F24J 2/32, 1990], а также способность транспортировки жидкости фитилем (пористым материалом 6) за счет капиллярных сил из зоны пониженного давления в зону повышенного давления и высокая эффективность передачи теплоты в тепловых трубах, покрытых изнутри фитилем (пористым материалом 6) и частично заполненных рабочей жидкостью-переносчиком теплоты, которые делятся на три участка: зона испарения (подвода теплоты фотоэлементов 4 на внутренней поверхности крышки 3), адиабатная зона (переноса теплоты – полость трубы 7) и зона конденсации (отвода теплоты – боковая поверхность трубы 7) [В.В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. – Минск: Выш. школа, 1988, с. 146; Тепловые трубы и теплообменники: от науки к практике. Сборник научн. тр. – М.: 1990, с. 106]. Кроме того, изготовление контурной арматуры ТЭП 13 в виде П–образных рядов 18, состоящих из парных проволочных отрезков 15 и 16, выполненных из разных металлов М1 и М2, спаянных на концах между собой, то при нагреве внутренних спаев 17 проволочных отрезков 15 и 16 ТЭЭ 14 ТЭП 13 конденсирующимся паром рабочей жидкости и охлаждении противоположных им спаев 17 снаружи, обращенных к холодному грунту, на них устанавливаются разные температуры, в результате чего в П–образных рядах 18 появляется термоэлектричество [С.Г. Калашников. Электричество. – М.: «Наука», 1970, с. 502–506]. Компоновка ТТГТЭС (сверху – фотоэлемент 4, снизу – крышка 3) позволяет одновременно производить съем тепла с фотоэлементов 4, увеличивая эффективность их работы, и испарять рабочую жидкость, пар которой нагревает при своей конденсации спаи 16 ТЭЭ 14, генерируя термоэлектричество. При этом, П–образное расположение ТЭЭ 14 в рядах 18 ТЭП 13 позволяет значительно увеличить их удельное количество, приходящееся на единицу поверхности трубы 7, а параллельное расположение спаев 17, относительно наружной поверхности ТЭП 12 увеличивает площадь контакта спаев 17 с охлаждаемой (нагреваемой) поверхностями, что интенсифицирует процесс теплообмена между противоположными спаями 17. Кроме того, соединение ТЭП 13 вертикальных рядов 18 между собой последовательно через электрические конденсаторы 20 и с выходными коллекторами 21, 22 снижает электрическое сопротивление при генерировании термоэлектричества.

ТТГТЭС предназначена для южных регионов с длительным количеством солнечных дней в году и работает следующим образом. Предварительно осуществляют подготовку скважины соответствующего диаметра и глубины, в месте, хорошо освещаемым солнцем, после чего ТТГТЭС вставляют в скважину и соединяют с накопительным блоком и потребителем (на фиг.1–10 не показаны). Если ТТГТЭС устанавливают в водоеме, то в этом случае его крепят к поплавкам (на фиг. 1–10 не показаны).

В дневной период фотоэлементы 4 сверху нагреваются солнечными лучами, генерируя электричество, а выделяемое тепло удаляется снизу через крышку 3, на внутренней поверхности которой испаряется рабочая жидкость. Последняя транспортируется снизу от нижнего торца 8 трубы 7 подъемной трубой 9, заполненной пористым материалом 6, распределяется по внутренней поверхности крышки 3 решеткой 5, также выполненной из пористого материала 6, нагревается до температуры кипения и испаряется при температуре tП, затрачивая тепло, выделившееся в результате генерации электричества. Полученный насыщенный пар c температурой tП движется вниз по кольцевой полости трубы 7, контактируя при этом с внутренней поверхностью ТЭП 13, нагревая внутренние спаи 17 проволочных отрезков 15 и 16 ТЭЭ 14 ТЭП 13 до температуры t1. Одновременно, поверхность ТЭП 13, обращенная к грунту (воде), охлаждается в результате контакта гофра 11с поверхностью грунта. При этом, тепло, выделяющееся в результате работы фотоэлементов 4 от солнечных лучей, в конечном итоге, тратится на нагрев внутренних спаев 16 ТЭЭ 13, а холод, поступающий от грунта (воды) охлаждает нижние спаи 9 этих же ТЭЭ 14 до температуры t2, в результате чего на противоположных спаях 17 возникает разность температур (t1–t2) и в П–образных рядах 18 появляется термоэлектричество, которое суммируется в конденсаторах 20. Полученная под воздействием солнечных лучей электрическая энергия из фотоэлементов 4 и термоэлектричество из ТЭП 13 через коллекторы 21 и 22, поступает в накопительный блок и далее к потребителю (на фиг. 1–10 не показаны).

Место установки ТТГТЭС должно быть хорошо освещаемым солнцем, а глубину скважины находят, исходя из глубины минимальной температуры грунта. Количество фотоэлементов 4, размеры поддона 1 и крышки 3, диаметр и длина трубы 7, глубина ее погружения в грунт Н и длину вертикальных пазов L1 определяют в зависимости от наружных условий места установки ТТГТЭС (температуры, солнечного освещения, вида наружного грунта) и требуемой мощности. Величина разности электрического потенциала на коллекторах 21 и 22, сила электрического тока зависит от характеристик фотоэлементов 4, продолжительности и интенсивности солнечного облучения, характеристик пар металлов М1 и М2, из которых изготовлены проволочные отрезки 15 и 16, числа ТЭЭ 14 в П–образных рядах 18 и их числа в ТЭП 13, разности температур на противоположных спаях 17 ТЭЭ 14, числа ТЭП 13 в трубе 7. Полученный электрический ток можно использовать для обслуживания различных технических устройств, а также обогрева и освещения жилых и производственных помещений.

Таким образом, предлагаемая ТТГТЭС обеспечивает утилизацию солнечной энергии и холода грунта или воды с получением электрической энергии, которую можно использовать для обслуживания различных технических устройств, обогрева и освещения жилых и производственных помещений без затраты топлива, загрязнения окружающей среды, создания шумового эффекта и выделения теплового излучения, что, в конечном счете, повышает эффективность и надежность работы электростанции.

Теплотрубная гелиотермоэлектростанция, включающая крышку, на которой помещены фотоэлементы, термоэлектрические преобразователи, выполненные из диэлектрического материала с высокой теплопроводностью, в массиве каждого из которых устроена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, выходные коллекторы, соединенные с накопительным блоком и потребителем, отличающаяся тем, что крышка выполнена из материала с высокой тепловодностью и закрывает поддон с отверстием в днище, внутренняя сторона крышки покрыта решеткой, выполненной из полос пористого материала, отверстие поддона соединено с верхним торцом вертикальной трубы, нижний торец которой заглушен, выполненной из материала с высокой тепловодностью, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная вышеупомянутым пористым материалом, между верхним и нижним торцами подъемной трубы и нижним торцом вертикальной трубы и внутренней поверхностью крышки поддона устроены щели шириной ∆, пространство которых также заполнено пористым материалом, соприкасающимся с нижним торцом вертикальной трубы внизу и решеткой верхней крышки вверху, причем стенка вертикальной трубы выполнена с вертикальными гофрами, внутри каждого гофра размещены вертикальные пазы длиной L, в каждый из которых вставлен вертикальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой параллельные парные проволочные отрезки, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, образуя П–образные ряды, нижние крайние проволочные отрезки каждой пары П–образных рядов термоэлектрических преобразователей, соединены между собой перемычками, сверху каждая пара П–образных рядов, соединены между собой через электрические конденсаторы, первый и последний из которых соединены с выходными коллекторами.



 

Похожие патенты:

Изобретение относится к строительным конструкциям со сборно/разборными частями, предназначенными для быстрого монтажа/демонтажа и транспортировки. Способ установки контейнерной электростанции с выносным оборудованием в местах ее использования включает установку контейнера и выносного оборудования, состоящего из солнечных панелей (СП) и ветроэлектрогенераторов (ВЭГ), устанавливаемых на контейнер, и СП и ВЭГ, устанавливаемых на винтовых сваях на некотором расстоянии от контейнера.

Изобретение относится к теплоэлектроэнергетике и может быть использовано для утилизации возобновляемых, вторичных тепловых энергоресурсов и тепловой энергии природных источников.
Изобретение относится к летательным аппаратам легче воздуха. Привязной летательный аппарат с всепогодной комплексной ветровой и солнечной электростанцией выполнен с возможностью использовать горячий пар для создания подъемной силы и получения электроэнергии.

Изобретение относится к области солнечной фотоэнергетики, в частности к устройствам для прямого преобразования солнечной энергии в электрическую с использованием концентраторов солнечного излучения, и может быть использовано в солнечных энергоустановках для работы в условиях как высокой, так и низкой освещенности.

Использование – в области электротехники. Технический результат – повышение компактности и надежности.

Группа изобретений относится к средствам хранения и выдачи носителей информации (футляров) в особо оборудованных помещениях, к объединенным с этими средствами высотным источникам комбинированного лазерного освещения территорий и к носовым опорам светозащитных очков для работы на участках разной освещенности.

Изобретение относится к устройствам преобразования солнечной энергии в электрическую, в частности к конструкциям солнечных фотоэлектрических станций, размещенных на строительных конструкциях зданий (козырьки или навесы над крыльцом, балконом, террасой и т.д.).

Изобретение относится к области преобразования солнечной энергии в электрическую и тепловую, в первую очередь к конструкции солнечных электростанций с концентраторами.

Изобретение относится к гелиотехнике и к конструкции солнечных модулей с фотоэлектрическими и тепловыми приемниками солнечного излучения и концентраторами для получения электрической энергии и теплоты.

Изобретение относится к солнечной энергетике, в частности касается концентраторов для солнечных батарей. Концентратор солнечных лучей для солнечной батареи выполнен в форме полуцилиндра с веерным расположением зеркальных отражающих электродов и прозрачных полупроводниковых солнечных батарей.

Использование: для получения электрической энергии. Сущность изобретения заключается в том, что электрогенерирующая теплозащитная оболочка содержит гибкий лист, состоящий из гибкого теплоизоляционного материала–диэлектрика, покрытого с обеих сторон пленкой, выполненной из влагозащитного и герметизирующего материала–диэлектрика, причем в массе теплоизоляционного материала–диэлектрика помещены термоэлектрические секции, представляющие собой П–образные ряды, выполненные из стекловолокнистых полос, поверхности парных перпендикулярных отрезков которых поочередно покрыты напылением порошком разных металлов М1 и М2, концы вышеупомянутых отрезков согнуты под углом 90°, соединены между собой и также покрыты напылением эквимолярной смесью порошков металлов М1 и М2, образуя отдельные термоэмиссионные преобразователи, и располагаются на противоположных поверхностях слоя теплоизоляционного материала–диэлектрика параллельно им, крайние перпендикулярные отрезки каждого П–образного ряда соединены между собой перемычками, а крайние перпендикулярные отрезки крайних П–образных рядов каждой термоэлектрической секции соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с токовыводами.

Изобретение относится к устройствам вакуумной СВЧ-электроники и может быть использовано в устройствах коммутации тока, в смесителях и в других приборах и устройствах силового сектора СВЧ-электроники.

Изобретение относится к системам теплообмена. Технический результат - повышение эффективности термоэлектрического теплового насоса за счет уменьшения выделения паразитного тепла Джоуля в полупроводниковых ветвях и создание условий для возникновения дополнительного термоэффекта между горячими и холодными спаями, изготовленными из разных металлов.

Изобретение относится к термоэлектрической энергетике и может быть использовано для преобразования тепла отработавших газов из двигателя внутреннего сгорания в электрическую энергию.

Группа изобретений относится к области железнодорожного транспорта и может быть использована в качестве автономного источника питания железнодорожных вагонов. Способ электроснабжения заключается в преобразовании усилий вращения колесной пары вагона в электрическую энергию.

Изобретение относится к твердотельной криогенике, а именно к холодильникам на эффекте Пельтье с применением магнитного поля (продольный гальвано-термомагнитный эффект), и может быть использовано при охлаждении малых объектов.

Заявленное изобретение относится к области приборостроения и может быть использовано при нагреве и охлаждении воды и напитков. Предложен способ изменения температуры жидкости, заключающийся в отборе тепловой энергии с помощью теплового процесса, основанного на термоэлектрическом эффекте элемента Пельтье.

Изобретение относится к производству полупроводниковых материалов, в частности к получению термоэлектрических бинарных сплавов типа висмут-сурьма, применяемых для изготовления варизонных полупроводников для термоэлектрических элементов малогабаритных холодильников Пельтье, работающих в интервале температур 100-200 К.

Группа изобретений относится к медицине. Система формирования протокола на основе обратной связи для теплового лечения части тела человека или животного содержит устройство теплообмена для нагревания и/или охлаждения части тела, соединенное с устройством теплового лечения, с помощью которого осуществляют способ формирования протокола.

Изобретение относится к контролю термоэлектрических устройств. Сущность: способ содержит этапы подачи электрического напряжения на элемент Пельтье, отключения напряжение по истечении определенного периода времени, измерения напряжения на элементе Пельтье и сравнения измеренного напряжения с контрольным значением.

Изобретение относится к электротехнике и нанотехнологиям, в частности к способу изготовления термоэлектрического элемента для термоэлектрических устройств, например термоэлектрической батареи, и может быть использовано в потребительской электронике, медицине, лабораторном оборудовании и других областях. Сначала полученную гибкую ленту наматывают на барабан, который располагают в вакуумной камере. Осуществляют вакуумное напыление термоэлектрического материала на противоположные ее стороны. Ленту последовательно протягивают с помощью отклоняющих и натяжных роликов через первую зону нагрева и импульсного лазерного осаждения термоэлектрического материала p-типа проводимости на нагретый участок одной стороны ленты. Осуществляют переворот ленты в устройстве разворота и протягивают ленту через вторую зону локального нагрева до заданной температуры и импульсного лазерного осаждения термоэлектрического материала n-типа проводимости на нагретый участок противоположной стороны ленты. Затем протягивают ленту через зону одновременного формирования на двух сторонах ленты технологического рисунка путем лазерного испарения термоэлектрического материала на каждой из ее сторон. Осуществляют намотку ленты с полученным двусторонним технологическим рисунком на второй барабан. 2 ил.
Наверх