Автоэмиссионный сверхвысокочастотный диод и способ его изготовления



Автоэмиссионный сверхвысокочастотный диод и способ его изготовления
Автоэмиссионный сверхвысокочастотный диод и способ его изготовления
H01L35/00 - Термоэлектрические приборы, содержащие переход между различными материалами, т.е. приборы, основанные на эффекте Зеебека или эффекте Пельтье, с другими термоэлектрическими и термомагнитными эффектами или без них; способы и устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, H01L 27/00; холодильное оборудование, в котором используются электрические или магнитные эффекты, F25B 21/00; измерение температуры с использованием термоэлектрических и термомагнитных элементов G01K 7/00; получение энергии от радиоактивных источников G21H)

Владельцы патента RU 2629013:

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) (RU)

Изобретение относится к устройствам вакуумной СВЧ-электроники и может быть использовано в устройствах коммутации тока, в смесителях и в других приборах и устройствах силового сектора СВЧ-электроники. Автоэмиссионный СВЧ-диод содержит вакуумно-плотный корпус из металлокерамики, источник электронов, анод с винтовым окончанием, штенгель и электрические контакты. Вместо входного окна располагают вакуумно-плотно соединенную с корпусом металлическую заглушку, автокатод выполняют на основе гетероструктуры подложка Si-nanoSi-C-MoC либо подложка Si-nanoSi-C-графен и располагают на внутренней стороне заглушки, вытягивающий электроны электрод выполняют из металл-углеродной либо графеновой пленки и располагают между автокатодом и анодом. Технический результат - повышение однородности автоэмиссии для автокатодов большой площади. 1 ил.

 

Изобретение относится к устройствам вакуумной СВЧ-электроники и может быть использовано в устройствах коммутации тока, в смесителях и в других приборах и устройствах силового сектора СВЧ-электроники. Известны твердотельные p-n и p-n гетеропереходные СВЧ-диоды, работа которых основана на биполярной либо монополярной инжекции носителей тока. При использовании для их изготовления широкозонных материалов, таких как арсенид галлия либо нитрид галлия и твердые растворы на их основе, эти диоды работоспособны в широком диапазоне температур (до 250°С и 350°С соответственно) и радиационных воздействий (вплоть до 107 рад), эффективны при применении в области сверхвысоких частот вплоть до 30-40 ГГц. Однако в области частот, больших 50 ГГц, эффективность твердотельных диодов резко падает, что связано с подбарьерными паразитными утечками по емкостному каналу. В области частот, больших 50 ГГц, тем более при частотах субтерагерцового и терагерцового диапазонов, вне конкуренции находятся вакуумные эмиссионные СВЧ-диоды. Катодами таких диодов, как правило, являются термокатоды, что резко снижает мобильность таких приборов и устройств на их основе [1].

Существуют вакуумные эмиссионные приборы с диодными характеристиками, но с катодом, принцип действия которого основан на автоэлектронной эмиссии [2]. Это подбарьерный механизм транспорта тока, ему свойственны уникальное быстродействие (характерные времена ~1 пс), слабая зависимость от температуры, монохроматичность энергии пучка электронов. При этом по ряду причин возможность реализовать большие величины плотности токов свойственна острийным катодам. Однако попытки заменить в вакуумных сильноточных диодах термокатоды на автоэмиссионные острийные катоды, особенно в силовом секторе СВЧ-электроники, сталкиваются с серьезными техническими проблемами. Одной из таких проблем является отсутствие острийных автокатодов, у которых большим плотностям токов соответствовали бы и большие полные анодные токи, а также незначительный рабочий ресурс. Максимальные величины полного тока составляют сегодня значения ~10-100 мА, при плотностях тока ~20 А/см2. Причина тому - значительная дисперсия аспектных отношений (как правило, высот) микроострий массива острийных автокатодов и недостаточно высокий предел текучести традиционных полупроводниковых и металлических материалов. Поэтому в процессе автоэмиссии при фиксированных напряжениях участвует, как правило, сравнительно небольшое количество микроострий (~1000-3000 штук из сотен и сотен тысяч). Попытки подключить к автоэмиссии другие острия массива автокатода простым увеличением напряжения приводят к разрушению уже автоэмиттирующих острий и включению в процесс автоэмиссии другой, столь же немногочисленной группы микроострий [3]. В [4] был предложены твердотельные автоэмиссионные диоды, острийные автокатоды которых выполнены на основе гетероструктур Si-nanoSi-алмаз-МоС и Si-nanoSi-алмаз-графен. В указанной конструкции, независимо от высоты того либо иного микроострия массива, напряженности электрического поля вблизи каждого из микроострий будут одинаковыми, так как они определяться не высотой микроострия, а постоянной толщиной алмазного слоя, расположенного между проводящим металлом и микроостриями nanoSi. Кроме того, использование алмазного слоя обладающего высокой теплопроводностью, позволяет снять тепловую нагрузку с автоэмиттирующих микроострий. Экспериментальные исследования показали, что в такой структуре полные автоэмиссионные токи с элемента площадью в 2,5×10-3 см2 составляют ~120 мА, а достигнутая плотность тока ~45-50 А/см2.

Такой подход должен быть потенциально эффективен и в вакуумном варианте автоэмиссионного СВЧ-диода. Отличие заключается лишь в том, что проводящий слой, расположенный поверх поликристаллической алмазной пленки, покрывающей массив из полупроводниковых либо алмазных микроострий, должен быть туннельно-прозрачным, для того чтобы автоэмиттированные микроостриями электроны могли пройти сквозь них к положительно смещенному аноду СВЧ-диода. В такой гетероструктуре поверх алмазного слоя может быть расположен, например, проводящий туннельно-прозрачный слой нанометровой толщины, выполненный из металл-углеродной [5, 6] либо из графеновой пленки. Исследования графеновой пленки показали, что при энергиях электронов более 100 эВ, коэффициент прозрачности графеновой пленки достигает ~90%.

Таким образом, для реализации автокатодов для СВЧ-систем большой мощности (~ в несколько киловатт) потребуются автокатоды большой плотности и с высокой степенью однородности параметров автоэмиссии с поверхности катода. При этом востребованными являются автокатоды большой площади и актуальны способы их изготовлений.

Наиболее близким - прототипом - к заявляемому изобретению по конструкции и по способу изготовления является электронно-оптический преобразователь 2+ поколения (типы ЭПМ70-Г и ЭОП 2 [7]). Конструкция ЭОП 2+ поколения включает вакуумно-плотный корпус и последовательно расположенные входное окно для оптического излучения с нанесенным на его внутреннюю плоскость фотокатодом, электроды ускоряющего промежутка, микроканальная пластина, катодолюминесцентный экран, нанесенный на волоконно-оптическую пластину, являющуюся одновременно и выходным окном корпуса ЭОП, а также геттер и электрические контакты. При изготовлении ЭОП осуществляют сборку перечисленных элементов в металлокерамическом корпусе, затем обезгаживают собранные элементы и внутреннюю поверхность корпуса, подвергая их в течение ~20 часов процедуре «тренировки», заключающейся в циклах нагрева и охлаждений в условиях высокого вакуума (~10-9 мм рт.ст.) при предельных освещенностях фотокатода, предельных значениях тока фотокатода, МКП и люминесцентного экрана; по окончании - активируют геттер. Тренировка производится при номинальных значениях напряжений на электродах.

Задачей изобретения является автоэмиссионный диод большой площади с высокой однородностью автоэмиссии с поверхности автокатода, позволяющий существенно увеличить полный эмиссионный ток при высокой мобильности устройства.

Для реализации этого предлагается конструкция, содержащая вакуумно-плотный корпус из металлокерамики, источник электронов, анод и электрические контакты, отличающаяся тем, что вместо входного окна располагают входную металлическую заглушку, соединенную с корпусом штенгелем из бескислородной меди, вместо фотокатода располагают автокатод, между автокатодом и анодом расположен вытягивающий электроны электрод, а затем анод, который выполнен из металла и имеет винтовое окончание для крепления конструкции к радиатору.

Способ изготовления автоэмиссионного СВЧ-диода, включающий сборку элементов диода в корпус и дегазацию корпуса, отличается тем, что проводится «тренировка» при предельных амплитудах импульсов питающих напряжений при температуре, превышающей температуру второй критической точки выделения паров воды в условиях термического обезгаживания, затем производится активация геттера и затем холодная герметизация.

При этом перед проведением «тренировки» через штенгель производят откачку атмосферного газа из изделия в процессе его обезгаживания, после чего производится холодная герметизация посредством «откуса» медного штенгеля. Сам же процесс «тренировки» проводится в процессе обезгаживания автоэмиссионного СВЧ-диода, выполняется по аналогии с циклами отжига ЭОП 2+ поколений типа ЭПМ70-Г и ЭОП 2 и поколения типа ЭП-10 и, с целью обеспечения долговечности изделия, проводится при предельных амплитудах импульсов питающих напряжений и при температуре, превышающей температуру второй критической точки выделения паров воды при термическом обезгаживании. По окончании тренировки производится активация геттера и только потом холодная герметизация («откус» штенгеля).

На Фиг. 1 представлена заявляемая конструкция вакуумного СВЧ-диода. Он состоит из вакуумно-плотного корпуса 1, последовательно расположенных острийного автокатода 2, вытягивающего электроны электрода 3, анода 4, имеющего винтовое окончание для крепления, геттера 5, входной металлической заглушки 6 и штенгеля 7.

Корпус 1 может быть выполнен из металлокерамики; острийный автокатод 2 - выполнен на основе нанокристаллических алмазных пленок [2] либо на основе упомянутых выше гетероструктур Si-nanoSi-C-MoC или Si-nanoSi-C-графен. Вытягивающий электроны электрод 3 выполнен из металл-углеродной либо графеновой пленки, анод 4 - из металла (например, ковар), а штенгель 7 - из бескислородной меди.

Работа предлагаемого устройства осуществляется следующим образом (Фиг. 1). Между вытягивающим элктродом 3 и поверхностью автокатода 2 создается разность потенциалов, (например, минус на автокатоде), достаточная для реализации автоэмиссии (среднее поле в промежутке 1-10 В/мкм). Электрический потенциал на аноде 4 должен превышать величину электрического потенциала на электроде 3, вытягивающем электроны из автокатода. Геттер 5 необходим для финальной «очистки» объема корпуса и расположенных в корпусе 1 элементов от остаточной атмосферы, которая выполняется после завершения процессов циклических откачек атмосферы и дегазации активных элементов и внутренней поверхности корпуса. Ожидание положительного результата от использования предложенной конструкции обусловлено следующими факторами. Исследование автокатода на основе гетероструктур Si-nanoSi-C-MoC (толщина слоя металл-углеродной пленки, МоС, не превышала 10 нм) показало высокую степень однородности автоэмисссии уже на ранней стадии ее развития (~350 мА с площади 3,5 см2). А изучение автоэмиссии пары nanoSi-алмаз, с использованием гетероструктуры Si-nanoSi-C-металл [4] показало, что с каждой мезаструктуры площадью - 2,5×10-3 см2 можно снять полный ток ~120 мА, при плотности тока с каждой мезаструктуры - 45-50 А/см2.

Предложенный подход, по сравнению с существующими, позволяет нивелировать отрицательное воздействие дисперсии высот микроострий на снимаемые токи с поверхности автокатодов. Это позволяет одновременно поставить в автоэмиссионные условия доминирующее количество микроострий и существенно повысить эффективность острийного автокатода. Наши экспериментальные исследования в твердотельном варианте автоэмиссионного СВЧ-диода показали, что указанный подход позволяет повысить величину полного тока снимаемого с поверхности автокатода на три порядка (в 1000 раз).

Использованная информация

1. Добрецов Л.Н., Гомоюнова М.В. Эмиссионная электроника, М.: Наука, 1966, с. 117.

2. K. Subramanian, et al. Vanderbilt University. Final Report Backgated Diamond Field Tip Array Cathodes for 220 GHr TWT Under Contract W911NF-08-C-0052, December 29, 2009.

3. Tatsumi, A. Veda, Y. Seki, et al. Fabrication of Highly Uniform Diamond Electron Emitter Devices, SEI Technical Review, N64, April 2007, 15-20.

4. V.A. Bespalov, E.A. Il'ichev*, A.E. Kuleshov, D.M. Migunov, R.M. Nabiev, G.N. Petrukhin, G.S. Rychkov, O.A. Sakharov, and Yu. V. Shcherbinin. // Technical Physics, 2014, Vol. 59, No. 10, pp. 1531-1535.

5. L.P. Sidorov, V.K. Dmitriev, V.N. Inkin. // Patent to be publicher in Russian, 2000103496, 25-02-2000.

6. V.K. Dmitriev, V.N. Inkin, E.A. Ilʺichev, and others // Diamond and related materials, 10, p. 1007-1010, 2001.

7. Куклев С.В., Соколов Д.С., Зайдель И.Н. Электронно-оптические преобразователи. М. НИИ ЭПР, 2004, 188 с. - Прототип.

Автоэмиссионный СВЧ-диод, содержащий вакуумно-плотный корпус из металлокерамики, источник электронов, анод с винтовым окончанием, штенгель и электрические контакты, отличающийся тем, что вместо входного окна располагают вакуумно-плотно соединенную с корпусом металлическую заглушку, автокатод выполняют на основе гетероструктуры подложка Si-nanoSi-C-MoC либо подложка Si-nanoSi-C-графен и располагают на внутренней стороне заглушки, вытягивающий электроны электрод выполняют из металл-углеродной либо графеновой пленки и располагают между автокатодом и анодом.



 

Похожие патенты:

Изобретение относится к системам теплообмена. Технический результат - повышение эффективности термоэлектрического теплового насоса за счет уменьшения выделения паразитного тепла Джоуля в полупроводниковых ветвях и создание условий для возникновения дополнительного термоэффекта между горячими и холодными спаями, изготовленными из разных металлов.

Изобретение относится к термоэлектрической энергетике и может быть использовано для преобразования тепла отработавших газов из двигателя внутреннего сгорания в электрическую энергию.

Группа изобретений относится к области железнодорожного транспорта и может быть использована в качестве автономного источника питания железнодорожных вагонов. Способ электроснабжения заключается в преобразовании усилий вращения колесной пары вагона в электрическую энергию.

Изобретение относится к твердотельной криогенике, а именно к холодильникам на эффекте Пельтье с применением магнитного поля (продольный гальвано-термомагнитный эффект), и может быть использовано при охлаждении малых объектов.

Заявленное изобретение относится к области приборостроения и может быть использовано при нагреве и охлаждении воды и напитков. Предложен способ изменения температуры жидкости, заключающийся в отборе тепловой энергии с помощью теплового процесса, основанного на термоэлектрическом эффекте элемента Пельтье.

Изобретение относится к производству полупроводниковых материалов, в частности к получению термоэлектрических бинарных сплавов типа висмут-сурьма, применяемых для изготовления варизонных полупроводников для термоэлектрических элементов малогабаритных холодильников Пельтье, работающих в интервале температур 100-200 К.

Группа изобретений относится к медицине. Система формирования протокола на основе обратной связи для теплового лечения части тела человека или животного содержит устройство теплообмена для нагревания и/или охлаждения части тела, соединенное с устройством теплового лечения, с помощью которого осуществляют способ формирования протокола.

Изобретение относится к контролю термоэлектрических устройств. Сущность: способ содержит этапы подачи электрического напряжения на элемент Пельтье, отключения напряжение по истечении определенного периода времени, измерения напряжения на элементе Пельтье и сравнения измеренного напряжения с контрольным значением.

Изобретение относится к электронике, в частности к средствам выпрямления переменного электрического напряжения. Целью изобретения является увеличение значения постоянного напряжения, генерируемого устройством.

Изобретение относится к электронике, в частности к средствам выпрямления переменного электрического напряжения. Целью изобретения является увеличение значения постоянного напряжения, генерируемого устройством.

Изобретение относится к области электронной техники и предназначено для использования в разработках и исследованиях конструктивно-технологических методов создания автоэмиссионных сред, в том числе и сред, процесс автоэмиссиии из которых активируется электромагнитным излучением оптического либо радиочастотного диапазонов.

Фотоумножитель может быть использован для регистрации слабых световых сигналов в исследованиях по физике высоких энергий, ядерной физике, в других различных технических приложениях, в том числе и для наблюдения крайне слабых световых сигналов.
Изобретение относится к области электронной техники. Технический результат - расширение в длинноволновую область диапазона спектральной чувствительности к электромагнитному излучению, повышение токовой чувствительности и квантовой эффективности.

Изобретение относится к технике генерации мощных широкополосных электромагнитных импульсов (ЭМИ) субнаносекундного диапазона длительностей и может быть использовано при разработке соответствующих генераторов.

Изобретение относится к области электронной техники, в частности, к фотоэлектронным приборам, использующим вторичную электронную эмиссию, и может быть использовано в физике высоких энергий, ядерной физике, радиационной медицине.

Изобретение относится к электронике, в частности к конструкциям электронных усилителей (ЭУ) с канальным электронным умножением, и может быть использовано в электронной и радиоэлектронной аппаратуре.

Изобретение относится к электронной технике, в частности к сцинтилляционным фотоумножителям с высоким амплитудным разрешением. .

Изобретение относится к электронным методам ядерной физики, в частности к экспериментам, требующим регистрации слабых световых потоков. .

Изобретение относится к области . .

Использование: для получения электрической энергии. Сущность изобретения заключается в том, что электрогенерирующая теплозащитная оболочка содержит гибкий лист, состоящий из гибкого теплоизоляционного материала–диэлектрика, покрытого с обеих сторон пленкой, выполненной из влагозащитного и герметизирующего материала–диэлектрика, причем в массе теплоизоляционного материала–диэлектрика помещены термоэлектрические секции, представляющие собой П–образные ряды, выполненные из стекловолокнистых полос, поверхности парных перпендикулярных отрезков которых поочередно покрыты напылением порошком разных металлов М1 и М2, концы вышеупомянутых отрезков согнуты под углом 90°, соединены между собой и также покрыты напылением эквимолярной смесью порошков металлов М1 и М2, образуя отдельные термоэмиссионные преобразователи, и располагаются на противоположных поверхностях слоя теплоизоляционного материала–диэлектрика параллельно им, крайние перпендикулярные отрезки каждого П–образного ряда соединены между собой перемычками, а крайние перпендикулярные отрезки крайних П–образных рядов каждой термоэлектрической секции соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с токовыводами. Технический результат: обеспечение возможности повышения эффективности и упрощения изготовления устройства. 6 ил.

Изобретение относится к устройствам вакуумной СВЧ-электроники и может быть использовано в устройствах коммутации тока, в смесителях и в других приборах и устройствах силового сектора СВЧ-электроники. Автоэмиссионный СВЧ-диод содержит вакуумно-плотный корпус из металлокерамики, источник электронов, анод с винтовым окончанием, штенгель и электрические контакты. Вместо входного окна располагают вакуумно-плотно соединенную с корпусом металлическую заглушку, автокатод выполняют на основе гетероструктуры подложка Si-nanoSi-C-MoC либо подложка Si-nanoSi-C-графен и располагают на внутренней стороне заглушки, вытягивающий электроны электрод выполняют из металл-углеродной либо графеновой пленки и располагают между автокатодом и анодом. Технический результат - повышение однородности автоэмиссии для автокатодов большой площади. 1 ил.

Наверх