Патенты автора Макаров Владимир Андреевич (RU)

Изобретение относится к области приборостроения и может найти применение в системах автономного определения пройденного пути наземным транспортным средством. Устройство для автономного определения расстояния, пройденного наземным транспортным средством, содержит механический датчик скорости, оптоэлектронный датчик скорости, генератор импульсов, счетчик импульсов, вычислитель, интегратор, первую логическую схему И, первый триггер. При этом в заявленное устройство дополнительно введены второй генератор импульсов, вторая и третья логические схемы И, сдвоенный компаратор и второй триггер, причем выход второго генератора подключен ко второму входу первой логической схемы И, а к ее первому входу соответственно подключен первый выход вычислителя, а ее выход подключен к третьему входу оптоэлектронного датчика скорости, к четвертому входу которого подключен второй выход вычислителя, а к первому и второму входам оптоэлектронного датчика скорости подключены чувствительные элементы. При этом сдвоенный компаратор первым и вторым входами подключен к первому и второму выходам оптоэлектронного датчика скорости, своими первым и вторым выходами подключен соответственно ко входам первого и второго триггеров, в свою очередь, выход первого триггера соединен с первыми входами второй и третьей логических схем, а первый выход второго триггера соединен со вторым входом третьей логической схемы и вторым своим выходом соединен со вторым входом второй логической схемы, причем третий вход второй логической схемы соединен с выходом первого генератора, а выход третьей логической схемы и выход второй логической схемы подключены соответственно к первому и второму входам счетчика импульсов, выход которого соединен с первым входом вычислителя, а второй его вход соединен с выходом механического датчика скорости, при этом выход вычислителя соединен с входом интегратора, выход которого является выходом устройства. Технический результат – повышение точности по сравнению с системами, где для измерения пройденного пути используется механический и оптоэлектронный датчики скорости без дополнительных аппаратных средств контроля параметров измеряемых сигналов. 1 ил.

Изобретение относится к области инерциальных навигационных систем (ИНС) и может быть использовано для коррекции ошибок данных систем. Технический результат - повышение точности инерциальных навигационных систем без использования внешних измерительных устройств. Предложенный способ коррекции ошибок ИНС заключается в том, что выделяют две взаимосвязанные системы стабилизации платформы относительно осей X и Y, определяют значения углов поворота гироскопов, обеспечивающих стабилизацию платформы относительно осей X и Y при помощи датчиков углов данных гироскопов, на основании указанных значений углов определяют моменты, не скомпенсированные системой стабилизации относительно осей X и Y, а управляющие моменты MY, вырабатываемые навигационной системой и являющиеся известными функциями времени, определяют на основе показаний акселерометров, исходя из условия постоянства производных моментов, не скомпенсированных системой стабилизации, и скорости изменения дрейфа платформы определяют скорости нарастания возмущающих моментов по осям прецессии гироскопов, на основании которых определяют составляющие скорости изменения дрейфа платформы относительно их исходных значений, установленных при начальной выставке осей Х и Y. Затем осуществляют автономную коррекцию ошибок ИНС в процессе движения объекта путем подачи компенсирующих моментов на датчики моментов гироскопов. 1 ил.

Изобретение относится к области приборостроения и может найти применение в системах определения пройденного пути наземных транспортных средств. Устройство измерения скорости наземного транспортного средства содержит механический датчик скорости (МДС) и вычислительное устройство, а также оптоэлектронный датчик скорости (ОЭДС), состоящий из четырех рядов оптоэлектронных элементов, блока идентификации и поиска неоднородностей, блока контроля каналов, запоминающего устройства и блока определения скорости. В процессе движения транспортного средства измеряется время задержки при приеме светочувствительными элементами оптоэлектронного датчика скорости сигналов, отраженных от областей неоднородностей дорожного покрытия, при освещении их мини-прожектором движущегося объекта. При этом измерительные каналы оптоэлектронного датчика скорости состоят из наборов оптоэлектронных чувствительных элементов. На выходе каждого канала измерения оптоэлектронного датчика скорости присутствует сигнал, содержащий информацию не об одной неоднородности, а об области неоднородностей. При успешности прохождения контроля для каждого из используемых в текущий момент времени измерительных каналов ОЭДС блок идентификации и поиска неоднородностей передает команду на проведение расчета скорости в блок определения скорости. Технический результат - повышение точности и достоверности измерения скорости наземного транспортного средства. 1 ил.

Изобретение относится к области гироскопических систем и может быть использовано для азимутального ориентирования платформы трехосного гиростабилизатора в высокоточных навигационных системах различного назначения. Технический результат - упрощение конструкции измерительной системы и сокращение времени готовности гиростабилизатора. Для этого один из гироблоков системы стабилизации горизонтируемой платформы включают в режим двухстепенного гирокомпаса. Азимутальную ориентацию платформы определяют по отклонениям измеряемых углов прецессии гироскопа от расчетных значений. Измерения и определение азимута осуществляют до достижения углом прецессии расчетного конечного значения, выбираемого в пределах измеряемых датчиком углов гироблока системы стабилизации. Гироскоп возвращают в исходное положение и процесс ориентации периодически повторяют до достижения требуемой точности азимутальной ориентации платформы, не меняя значения конечного угла прецессии.

Изобретение относится к области наземной навигации и может быть использовано в автономных системах наземной навигации, в которых требуется определение с высокой точностью скорости движения и пройденного расстояния наземным транспортным средством (НТС). Заявленный способ определения скорости движения наземного транспортного средства заключается в непрерывном измерении скорости движения объекта основным и периодическим измерением с высокой точностью дополнительным измерителем. При этом используют измерение времени задержки сигнала второго канала относительно первого высокоточным измерителем в определенных границах временных интервалов. Периодичность измерений высокоточным измерителем определяют на основе сравнения уровней сигналов второго канала высокоточного измерителя относительно первого канала, а при их расхождении, превышающем пороговый уровень, отключают более высокоточный измеритель, состоящий из нескольких измерительных каналов оптоэлектронных чувствительных элементов, которые идентифицируют области неоднородностей дорожного покрытия. Технический результат - повышение точности и достоверности измерения скорости движения наземного транспортного средства. 1 ил.

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например в высокоточных навигационных системах различного назначения. Технический результат - повышение точности и сокращение времени определения азимута. Предложенный способ азимутальной ориентации платформы трехосного гиростабилизатора заключается в том, что используют один из гироблоков системы стабилизации гиростабилизированной платформы, при этом горизонтирование платформы относительно одной из осей осуществляют путем отключения акселерометра от датчика моментов гироблока контура стабилизации по этой оси и подключения его к соответствующему двигателю стабилизации через усилитель стабилизации, а азимут платформы определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими значениями широкодиапазонного кодового датчика угла этого гироблока. При этом одновременно с определением разностного угла измеряют акселерометром угол отклонения платформы от горизонта, осуществляют дифференцирование измеренного угла, рассчитывают текущие значения тока компенсации, который после преобразования из цифровой формы в аналоговую подают на датчик моментов данного гироблока. 1 ил.

Изобретение относится к области приборостроения и может найти применение в системах автономного определения скорости движения наземного транспортного средства. Технический результат - повышение точности. Для этого при расхождении в показаниях механического и оптоэлектронного датчиков скорости, превышающих определенный уровень, калибруют масштабный коэффициент механического датчика скорости по информации от механического и от оптоэлектронного датчика скорости, в котором измеряют время задержки при приеме его светочувствительными элементами сигналов, отраженных от неоднородностей дорожного покрытия при освещении их минипрожекторами данного датчика. При этом оценивают не всю совокупность импульсов, поступающих с чувствительных элементов, а лишь отдельные характерные импульсы, попадающие в прогнозируемые интервалы времени, определяемые с помощью механического датчика скорости. Периодичность же измерений высокоточным измерителем определяют на основе сравнения уровней сигналов второго канала высокоточного измерителя относительно первого канала и при их расхождении, превышающем пороговый уровень, отключают более высокоточный измеритель.

Устройство для автономного определения расстояния, пройденного наземным транспортным средством, относится к области наземной навигации и может быть использовано в системах наземной навигации, для которых требуется определение скорости и пройденного наземным транспортным средством расстояния с высокой точностью. Технический результат - повышение точности автономного определения расстояния, пройденного наземным транспортным средством. Для достижения данного результата производят необходимые измерения с помощью датчиков скорости и ускорений с учетом внешних условий функционирования транспортного средства и технического состояния узлов устройства и обработку полученной информации. При этом осуществляют автоматическую подкалибровку механического датчика скорости. Устройство содержит датчики скорости и ускорений, переключатель, блок анализа функционирования, блок определения скорости и расстояния, индикатор. Причем в блок анализа функционирования входят дешифратор, запоминающее устройство, схема сравнения, матрица логических схем И-ИЛИ; в блок определения скорости и расстояния - арифметико-логическое устройство, генератор, счетчик интервалов, выходное устройство. 3 ил.

Изобретение относится к кормопроизводству, в частности к способу приготовления корма на основе соевого белкового компонента. Способ включает использование предварительно подготовленного соевого белкового и минерального компонентов с последующим их смешиванием в определенном соотношении, получением гранул и их сушкой. В качестве подготовленного соевого белкового компонента используют дезинтегрированный соевый экструдат, а минерального - сапропель естественной влажности. Смешивание компонентов проводят при весовом соотношении 50:50. Затем осуществляют формование гранул с размером до 10 мм и их сушку при активном вентилировании с доведением их влажности до 8-10%. Осуществление изобретения обеспечивает получение белково-минерально-витаминного кормового продукта повышенной биологической ценности и качественной однородной структуры при относительно низких затратах энергии. 2 ил., 1 пр.

Изобретение относится к кормопроизводству, в частности к способу приготовления кормов на основе высокоуглеводных зерновых и высокобелковых бобовых культур. Способ включает получение белково-углеводной композиции на основе бобового и зернового сырья, а также белково-углеводно-минерального компонента. В качестве белково-углеводной композиции используют соево-пшенично-ячменный экструдат при весовом соотношении компонентов 1:1:1, а в качестве минерального компонента - сапропель естественной влажности при весовом соотношении экструдат : сапропель как 1:1. На основе полученной белково-углеводно-минеральной композиции формуют гранулы, которые затем сушат, доводя до содержания сухих веществ 90-92%. Осуществление изобретения позволяет за счет использования соево-углеводного экструдированного компонента повысить кормовую и биологическую ценность корма, а также снизить затраты энергии на его производство за счет сокращения времени на усреднение влажности компонентов и удаление влаги при сушке полученных гранул. 2 ил.

Изобретение относится к кормопроизводству и, в частности, к способу приготовления кормов на основе соевого белкового компонента. Способ приготовления белково-витаминно-минерального кормового продукта включает дозирование предварительно подготовленных белкового и витаминно-минерального компонентов с последующим их смешиванием, формованием гранул и их сушкой. В качестве белкового компонента используют необезжиренную соевую муку, а в качестве витаминно-минерального - сапропель естественной влажности, взятые при весовом соотношении как 1:1. Гранулы формуют диаметром 2-4 мм, а их сушку осуществляют в пределах 200°C при активном вентилировании, доводя влажность до 8-10%. Осуществление изобретения обеспечивает получение белково-витаминно-минерального продукта с повышенной биологической и кормовой ценностью при относительно низкой стоимости. 2 ил., 1 табл., 1 пр.

Изобретение относится к кормопроизводству, в частности к приготовлению гранулированных белково-витаминных кормовых продуктов. Способ включает получение композиции на основе травяного мучного и связующего углеводистого компонентов, их смешивание и гранулирование. В качестве связующего компонента используют или тыквенную, или морковную, или капустную, или картофельную пасты, или их композиции, или их комбинации, взятые в весовом соотношении 1:1. Осуществляют формование гранул с диаметром 2,0-3,0 мм и доведение влажности гранул до 8-10%. Осуществление изобретения позволяет создать гранулированный продукт с высоким содержанием каротина и других витаминов и минеральных веществ, содержащихся в исходном сырье естественной влажности, то есть повысить биологическую ценность гранулированного продукта, при снижении затрат труда и средств, связанных, в частности, с подогревом и увлажнением исходного сырья. 1 табл., 2 ил.

Изобретение относится к кормопроизводству, в частности к способам приготовления белково-витаминно-минеральных кормовых продуктов на основе растительных компонентов. Способ включает получение композиции на основе предварительно подготовленного посредством сушки белково-витаминного компонента, его смешивание со связующим веществом и формование гранул. В качестве белково-витаминного компонента используют муку из бобового сена естественной сушки, а в качестве связующего - сапропель естественной влажности, взятые при весовом соотношении мука:сапропель=1:1. Затем доводят значение усредненной влажности в композиции до 8-10%. Осуществление изобретения обеспечивает получение продукта высокой биологической ценности, а именно с высоким содержанием каротина и эргокальцийферола и обогащенного минеральными веществами, при меньших энергетических затратах. 2 ил., 1 табл.
Изобретение относится к области приборостроения и может найти применение в системах определения скорости движения наземного транспортного средства. Технический результат - повышение точности определения скорости. Для достижения данного результата периодически корректируют механический датчик скорости от оптоэлектронного датчика скорости, в котором измеряют время задержки при приеме светочувствительными элементами сигналов, отраженных от неоднородностей дорожного покрытия при освещении их минипрожекторами данного датчика. При этом оценивают не всю совокупность импульсов, поступающих с чувствительных элементов, а лишь отдельные характерные импульсы, выделяемые в прогнозируемые интервалы времени, с помощью механического датчика скорости. Периодичность же коррекции механического датчика скорости определяют на основе сравнения сигналов на выходах первого и второго каналов оптоэлектронного датчика скорости.

Изобретение относится к области гироскопических систем и может быть использовано в навигационных системах. Технический результат - расширение функциональных возможностей. Для этого определение азимута производится при введении одного из гироблоков системы стабилизации в компасный режим путем его отключения от штатного канала системы стабилизации, при осуществлении стабилизации и горизонтирования платформы в измененном канале стабилизации с помощью соответствующего акселерометра, отключаемого от датчика моментов гироблока и подключаемого через усилитель к двигателю стабилизации платформы измененного канала, а также при осуществлении режима «памяти» в азимутальном канале. В расчетный момент времени на датчик моментов гироблока подаются управляющие сигналы, возвращающие гироскоп в исходное положение. Определение азимута исходного положения платформы производится по сигналам с датчика угла гироблока и акселерометра. Использование управляющих сигналов дает возможность сократить время измерительного процесса за счет совмещения его с процессом приведения компасного гироскопа в исходное положение при одновременном обеспечении заданной точности определения азимута платформы, а также возможность для ТГС дальнейшего непрерывного функционирования по назначению.

Изобретение относится к области приборостроения и может найти применение в системах определения пройденного пути наземных транспортных средств. Технический результат - повышение точности по сравнению с системами, где для измерения пройденного пути используется только механический датчик пути. Для достижения данного результата используется комплексирование механического датчика скорости и оптоэлектронного датчика скорости. В процессе движения транспортного средства измеряется время задержки при приеме светочувствительными элементами оптоэлектронного датчика скорости сигналов, отраженных от неоднородностей дорожного покрытия, при освещении их минипрожектором движущегося объекта. При этом оптоэлектронный датчик скорости оценивает не всю совокупность импульсов, поступающих с его чувствительных элементов, а лишь характерные импульсы, выделяемые в прогнозируемые интервалы времени с помощью механического датчика скорости. С этой целью в устройство введены: триггер, логический элемент, генератор, счетчик импульсов, вычислитель и интегрирующее устройство. 1 ил.

Изобретение относится к области навигационного приборостроения и может быть использовано для определения положения платформы трехосного гиростабилизатора в азимуте, например, в высокоточных навигационных системах различного назначения. Технический результат - возможность определения азимутального положения гиростабилизированной платформы в условиях азимутальных смещений основания, упрощение конструкции, сокращение времени и повышение точности определения азимутального положения платформы. Для этого измерения производятся в инерциальном режиме функционирования системы стабилизации платформы относительно вертикальной оси. Перед началом измерений платформа грубо устанавливается и удерживается в требуемом исходном положении по азимуту. Азимутальное положение определяется по информации о токах обратной связи и углах поворота штатного гироблока, отключаемого от системы стабилизации и включаемого в режим датчика угловой скорости. Стабилизация и горизонтирование платформы при измерениях осуществляется соответствующим акселерометром, подключенным через усилитель к двигателю стабилизации. 1 з.п. ф-лы.

Изобретение относится к области гироскопических систем и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например, в высокоточных навигационных системах различного назначения. Предлагаемый способ заключается в том, что корпус одного из гироблоков, вектор кинетического момента которого направлен примерно на запад или на восток, поворачивают относительно платформы трехосного гиростабилизатора в азимуте вслед за поворотом гироскопа к меридиану. Поворот корпуса осуществляется следящей системой, состоящей из шагового двигателя, на вход которого поступают импульсы, частота следования которых пропорциональна сигналу, снимаемому с датчика угла гироблока. Азимут платформы трехосного гиростабилизатора определяется путем обработки информации об угле поворота корпуса гироблока, который пропорционален числу импульсов на входе шагового двигателя.

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например, в высокоточных навигационных системах различного назначения. Технический результат - расширение функциональных возможностей и повышение точности. Для этого определение азимута осуществляется без связи с заданным базовым направлением на Земле. Перед началом измерений платформа грубо приводится в требуемое положение по азимуту, при этом в датчик моментов азимутального гироблока подается расчетный управляющий сигнал. Азимутальное положение платформы определяется по информации о токах коррекции в датчиках моментов системы точного приведения платформы в горизонт.

Азимутальная ориентация платформы трехосного гиростабилизатора по приращениям угла прецессии гироблока относится к области приборостроения и может быть использована для определения азимута, например, в высокоточных системах различного назначения. Технический результат - повышение точности и сокращение времени определения азимута базового направления, связанного с платформой трехосного гиростабилизатора. Для достижения данных целей используется один из гироблоков системы стабилизации гиростабилизированной платформы, при этом горизонтирование платформы относительно одной из осей осуществляется путем отключения акселерометра от датчика моментов гироблока системы стабилизации по этой оси и подключения его к соответствующему двигателю стабилизации через усилитель стабилизации. Перед началом измерений одну из осей, связанных с платформой трехосного гиростабилизатора, грубо приводят по азимуту к меридиану. Одновременно со считыванием информации с широкодиапазонного кодового датчика угла гироблока рассчитываются номинальные значения данного угла в соответствии с уравнением номинального движения, а азимут оси чувствительности гироблока определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими значениями датчика угла этого гироблока. 1 ил.

Изобретение относится к области приборостроения и может найти применение в системах определения скорости движения наземного транспортного средства

 


Наверх