Способ получения полимерных продуктов, содержащих циклопропановые группы

Изобретение относится к получению полимерных продуктов, содержащих в составе макромолекул незамещенные циклопропановые группы. Способ получения полимерных продуктов, содержащих в составе макромолекул циклопропановые группы, общей формулы (1):

имеющих соотношение звеньев (а+b):(c+d)=60-90:10-40], заключается во взаимодействии 1,2-полибутадиена с диазометаном в среде органического растворителя в присутствии катализатора при мольном соотношении 1,2-полибутадиен : диазометан : катализатор, равном 1 : 1,0-3,0 : 0,0025-0,01, способ отличается тем, что в качестве катализатора используют соединения палладия (II) – хлорид палладия PdCl2. В качестве 1,2-полибутадиена используют 1,2-полибутадиен атактического строения со среднечисловой молекулярной массой Mn от 800 до 70000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 60-90 и 10-40 мол. % или 1,2-полибутадиен синдиотактического строения со степенью синдиотактичности от 50 до 90%, среднечисловой молекулярной массой Mn от 35000 до 75000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 75-95 и 5-25 мол. %. Технический результат: получение полимерных продуктов, содержащих в макромолекулах незамещенные циклопропановые группы, имеющих высокую степень функционализации и различную молекулярную массу, которая может быть целенаправленно изменена в широком интервале значений. 1 з.п. ф-лы, 1 табл., 9 пр.

 

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов, содержащих в составе макромолекул циклопропановые группы, общей формулы (1):

Данные полимерные продукты представляют сополимеры, содержащие циклопропановые группы в боковых звеньях (b) макромолекул, а также двойные углерод-углеродные связи в боковых звеньях (а) и в основной цепи (c) и (d) [соотношение звеньев (a+b):(c+d)=60-90:10-40].

Полимерные продукты (1) характеризуются высоким комплексом физико-механических свойств, и могут найти применение в качестве герметиков, модификаторов в составе различных композиций термопластов и эластомеров.

Циклопропанированные полимерные продукты (1) могут быть получены химической модификацией 1,2-полибутадиенов определенного состава и строения, содержащих в составе макромолекул звенья 1,2- и 1,4-полимеризации 1,3-бутадиена, которые синтезируют в промышленности полимеризацией 1,3-бутадиена на комплексных катализаторах (патент РФ №2072362, патент РФ №2177008, заявка РФ №2005104832, патент США №4182813).

Способ получения полимеров формулы (1) основан на взаимодействии ненасыщенных связей 1,2-полибутадиена с карбеном, генерируемым in sity при каталитическом разложении диазометана, в среде органического растворителя с образованием полимерного продукта, содержащего циклопропановые группы в боковых звеньях:

Известен способ (патент РФ №2443674, кл. С07С 61/04, C08F 8/02, опубл. 27.02.2012, патент РФ №2447055, кл. С07С 61/04, C08F 8/02, опубл. 10.04.2012) получения полимеров, заключающийся во взаимодействии 1,2-полибутадиена с метилдиазоацетатом в присутствии катализатора -ацетата родия (II) - Rh2(OAc)4 и трифлата меди (II) - Cu(OTf)2, при мольном соотношении 1,2-полибутадиен : алкилдиазоацетат : катализатор 1:0,5-1:0,01. Реакцию проводят в органическом растворителе (метиленхлорид) при температуре 40°C с получением продукта, содержащим алкоксикарбонилзамещенные циклопропановые группы в основной и боковой цепи макромолекул. После окончания взаимодействия полимер высаждают из реакционной массы этанолом, очищают переосаждением в системе хлороформ - этанол и сушат в вакууме. Суммарное содержание функционализированных звеньев в полимере составляет 28-36 мол. % (на медном катализаторе) и 36-50 мол. % (на родиевом катализаторе).

Данный метод позволяет получать полимерные продукты, содержащие в составе макромолекул метоксикарбонилзамещенные циклопропановые звенья. Однако в известном способе не указана возможность селективного получения циклопропанированных полимеров, содержащих незамещенные циклопропановые группы в боковой цепи.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения полимеров, содержащих циклопропановые группы [Глазырин, А.Б. Производные синдиотактического 1,2-полибутадиена, содержащие циклопропановые группы / А.Б. Глазырин, М.И. Абдуллин, В.А. Докичев, P.M. Султанова, P.P. Муслухов, Э.Р. Газизова (Атнабаева) // Высокомолекулярные соединения. Серия Б. - 2014. - Т. 56. - №6. - С. 535-542], основанный на взаимодействии 1,2-полибутадиена синдиотактического строения со степенью кристалличности 25%, среднечисловой молекулярной массой Mn 65000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 84 и 16 мол. % с диазосоединением в среде органического растворителя (метиленхлорид) в присутствии катализатора - ацетата палладия Pd(OAc)2 и ацетилацетоната палладия Pd(acac)2, при определенном мольном соотношении 1,2-полибутадиен : диазосоединение : катализатор, взаимодействие ведут до прекращения газовыделения. При этом в качестве диазосоединения используют диазометан, взаимодействие проводят при мольном соотношении 1,2-полибутадиен : диазосоединение : катализатор, равном 1,0:1,0:0,01 при температуре 0-5°С с получением продукта, содержащим незамещенные циклопропановые группы в боковой цепи макромолекул. После окончания взаимодействия полимер высаждают из реакционной массы этанолом, очищают переосаждением в системе хлороформ - этанол и сушат в вакууме при температуре. Суммарное содержание функционализированных звеньев в полимере составляет 11-47 мол. %.

Однако данный способ позволяет получать полимерные продукты с низкой степенью функционализации полимера (не более 47%). Недостатком данного метода является также использование достаточно сложных каталитических системы, которые могут быть получены по методике [Джемилев У.М., Поподько Н.Р., Козлова Е.В. Металлокомплексный катализ в органическом синтезе. М.: Химия, 1999. С. 96]. Кроме того, для получения полимерных продуктов (1) предлагается использовать только 1,2-полибутадиен синдиотактического строения, имеющий определенную молекулярную массу и состав. Это ограничивает возможности данного метода получением полимеров с молекулярной массой в пределах Mn=65-66⋅103 и узким набором свойств. Таким образом, в наиболее близком аналоге не указана возможность получения полимеров формулы (1), имеющих иной состав, молекулярную массу, характеризующихся не только синдиотактическим, но и атактическим строением макромолекул, т.е. обладающих более широким набором свойств.

Задачей данного изобретения является способ получения полимерных продуктов, содержащих в макромолекулах незамещенные циклопропановые группы, имеющих высокую степень функционализации (превращение ненасыщенных звеньев в циклопропановые группы) и различную молекулярную массу, которая может быть целенаправленно изменена в широком интервале значений (в зависимости от требований к полимерному продукту).

Указанная задача достигается тем, что при взаимодействии 1,2-полибутадиена с диазометаном в среде органического растворителя в присутствии катализатора при мольном соотношении 1,2-полибутадиен : диазометан : катализатор, равном 1:1,0-3,0:0,0025-0,01, отличающийся тем, что в качестве катализатора используют соединения палладия (II) - хлорид палладия PdCl2. В качестве 1,2-полибутадиена используют 1,2-полибутадиен атактического строения со среднечисловой молекулярной массой Mn от 800 до 70000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 60-90 и 10-40 мол. % или 1,2-полибутадиен синдиотактического строения со степенью синдиотактичности от 50 до 90%, среднечисловой молекулярной массой Mn от 35000 до 75000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 75-95 и 5-25 мол. %.

Заявляемый способ позволяет получать полимерные продукты формулы (1) со степенью функционализации (содержанием циклопропановых групп) от 55-86% и молекулярной массой от 900 до 80000.

При реализации предлагаемого способа использовали промышленные образцы 1,2-полибутадиена производства ОАО «Ефремовский завод СК», а также полимер марки JSR RB-830 производства «Japan Synthetic Rubber Со.» (Япония). 1,2-полибутадиен очищали переосаждением в системе хлороформ-этанол, далее полимер дважды промывали спиртом и сушили под вакуумом при 60°С до постоянной массы.

В качестве катализатора применяли соединение палладия (II) - хлорид палладия [химическая формула - PdCl2] фирмы ("Acros").

Диазометан получали по известной методике (Джемилев У.М., Поподько Н.Р., Козлова Е.В. Металлокомплексный катализ в органическом синтезе. М.: Химия, 1999. С. 96.) Данное изобретение иллюстрируется следующими примерами.

Пример 5

К 0,066 г (0,37 ммоль) катализатора (PdCl2) добавляли 10 мл метиленхлорида и перемешивали до полного растворения. К полученному раствору прибавили 2,00 г (37 ммоль) 1,2-полибутадиена в 40 мл метиленхлорида. Использовали 1,2-полибутадиен синдиотактического строения со среднечисловой молекулярной массой Mn=75000, содержанием звеньев 1,2- и 1,4-полимеризации 84 и 16 мол. %, соответственно, степенью синдиотактичности 60%.

К полученной массе при перемешивании при 0-5°С медленно дозировали 4,66 г (111 ммоль) диазометана в 10 мл CH2Cl2. Мольное соотношение 1,2-ПБ : диазосоединение : катализатор составляло 1:3:0,01. Реакцию проводили до прекращения выделения газа при температуре 0-5°С в течение 2 часов. После окончания синтеза полимер высаждали из реакционной массы этанолом, очищали переосаждением в системе хлороформ - этанол и сушили в вакууме при температуре 40-50°С.

Полученный полимер формулы (1) имеет степень функционализации (содержание циклопропановых групп*) 81%:

Примеры 1-4, 6-9. Все операции проводили в соответствии с примером 5. Результаты экспериментов приведены в табл. 1.

Из данных табл. 1 следует, что предложенный в изобретении способ позволяет синтезировать полимерные продукты формулы (1):

- характеризующиеся степенью функционализации до 86%;

- имеющие различную молекулярную массу (Mn) от 900 до 80000 а.е.м.;

Кроме того, данным методом могут быть получены модифицированные полимеры с различным пространственным строением (конфигурацией) макромолекул: с атактическим или синдиотактическим расположением циклопропановых групп.

Таким образом, предлагаемый метод дает возможность целенаправленного получения циклопропанированных полимерных продуктов (1) с заданной степенью функционализации, молекулярной массой, пространственным расположением циклопропановых групп в зависимости от требований, предъявляемых к полимеру.

Выбранные пределы показателей процесса:

- в качестве диазосоединения использован диазометан, являющийся одним из основных источников простейшего карбена - метилена, что объясняется, с одной стороны, его доступностью, а с другой - сравнительной экспериментальной простотой методик работы с ним;

- в качестве катализатора используется хлорид палладия, который является промышленно доступным и обеспечивает селективное протекание реакции циклопропанирования 1,2-полибутадиенов диазометаном;

- использование в качестве катализатора хлорида палладия позволяет получать полимерные продукты с высокой степенью функционализации полимера (до 86%), т.е. достигается практически исчерпывающая функционализация всех С=С-связей в звеньях 1,2-полимеризации полимера, тогда как при использовании ацетилацетоната палладия (прототип) степень функционализации полимера существенно (в ~ 2 раза) ниже;

- использование в качестве катализатора хлорида палладия позволяет получать циклопропанированные полимерные продукты как на основе синдиотактического, так и атактактического 1,2-полибутадиена, причем могут быть использованы 1,2-полибутадиены с различной молекулярной массой (от 800 до 75000), тогда как применение ацетилацетоната палладия (прототип) предполагает получение циклопропанированных полимеров только на основе синдиотактического 1,2-полибутадиена, причем только с высокой молекулярной массой (65000);

- мольное соотношение реагентов, при котором достигается наиболее высокая степень функционализации полимера - 1,2-ПБ : диазосоединение : катализатор, составляет 1:1,0-3,0:0,0025-0,01. При уменьшении количества диазометана (менее 1 мол.) образуются полимерные продукты с низкой степенью функционализации. При увеличении количества диазометана (более 3 мол.) образуются нежелательные побочные продукты. При уменьшении количества катализатора (менее 0,0025 мол.) образуются полимерные продукты с низкой степенью функционализации. При увеличении количества катализатора (более 0,01 мол.) степень функционализации изменяется незначительно и вызывает большой расход катализатора.

- реакция проводилась при температуре 0-5°С, при которой не образуются нежелательные побочные продукты реакции и обеспечивается наиболее высокая степень функционализации полимера.

Использование предлагаемого метода позволяет получать на основе 1,2-полибутадиенов полимерные продукты (1), содержащие незамещенные циклопропановые группы с существенно более высокой по сравнению с прототипом степенью функционализации, а значит и с более широким набором свойств, что расширяет возможности практического использования синтезированных полимерных продуктов.

1. Способ получения полимерных продуктов, содержащих в составе макромолекул циклопропановые группы, общей формулы (1):

имеющих соотношение звеньев (a+b):(c+d) =60-90:10-40, заключающийся во взаимодействии 1,2-полибутадиена с диазометаном в среде органического растворителя в присутствии катализатора при мольном соотношении 1,2-полибутадиен : диазометан : катализатор, равном 1:1,0-3,0: 0,0025-0,01, отличающийся тем, что в качестве катализатора используют соединения палладия (II) - хлорид палладия PdCl2.

2. Способ по п. 1, отличающийся тем, что в качестве 1,2-полибутадиена используют 1,2-полибутадиен атактического строения со среднечисловой молекулярной массой Mn от 800 до 70000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 60-90 и 10-40 мол. % или 1,2-полибутадиен синдиотактического строения со степенью синдиотактичности от 50 до 90%, среднечисловой молекулярной массой Mn от 35000 до 75000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 75-90 и 10-25 мол. %.



 

Похожие патенты:

Изобретение относится к резиновым смесям как вариантам для протекторов шин. Описывается резиновая смесь в качестве одного из вариантов, содержащая каучуковый компонент и наполнитель, для которой температура пика на температурной кривой tanδ составляет -16,0°C или выше и -6,0°C или ниже, значение tanδ в положении пика составляет более 1,13, tanδ при 0°C составляет 0,95 или более и значение, полученное делением абсолютного значения разницы между значениями tanδ при -5°C и tanδ при 5°C на разность температур между -5 и 5°C {|(tanδ при -5°C)-(tanδ при 5°C)|/10} (/°C), составляет менее 0,045/°C.

Изобретение относится к элементу шины, который является удовлетворительным в отношении показателя минимального расхода топлива и имеет более высокую прочность и более превосходное сопротивление истиранию по сравнению с обычными элементами шин.

Изобретение относится к способам связывания полидиеновых (со)полимеров. Способ получения связанного полимера включает стадии: (i) полимеризацию сопряженного диенового мономера и, необязательно, сополимеризуемого с ним мономера с получением полимера, содержащего реакционноспособную концевую группу; (ii) взаимодействие реакционноспособной концевой группы полимера с полиизоцианатом, количество функциональных групп которого составляет X, с получением промежуточного полимерного продукта, и (iii) взаимодействие указанного промежуточного полимерного продукта с полиолом, количество функциональных групп которого составляет Y, с получением связанного полимерного продукта, где X+Y≥5.

Изобретение относится к вулканизующимся композициям на основе нитрильных каучуков, содержащих эпоксидные группы, особые кислотные сшивающие агенты, а также ускорители сшивания, в которых отсутствует необходимость использовать обычные сшивающие агенты.

Изобретение раскрывает привитой полимер, содержащий цепь основного полимера Р, содержащую сопряженные диеновые звенья; по меньшей мере одну боковую привитую цепь G, представленную следующей общей формулой (1)R-(OCH2CH2)m-S-, (1)где R представляет собой насыщенную, линейную или разветвленную углеводородную цепь, содержащую по меньшей мере 18 атомов углерода, а m представляет собой целое число, варьирующееся в диапазоне от 0 до 20, при этом указанная привитая цепь G связана с цепью основного полимера Р через атом серы из формулы (1); и по меньшей мере одну привитую цепь G’, представленную следующей общей формулой (4)-S-R’-S-, (4)где R’ представляет собой углеводородную группу, насыщенную или ненасыщенную, линейную или разветвленную, циклическую и/или ароматическую, содержащую от 2 до 40 атомов углерода, необязательно содержащую один или несколько гетероатомов, при этом указанная привитая цепь G’ связана с цепью основного полимера Р с использованием каждого атома серы из формулы (4).

Изобретение относится к резиновым смесям и пневматическим шинам, полученным из них. Резиновая смесь включает на 100 масс.% каучукового компонента по меньшей мере 35 масс.% бутадиен-стирольного каучука, сопряженный диеновый полимер и диоксид кремния с удельной поверхностью, измеренной из адсорбции азота от 40-400 м2/г.

Изобретение относится к резиновым смесям и пневматическим шинам, полученным из них. Резиновая смесь включает сопряженный диеновый полимер и диоксид кремния с удельной поверхностью, измеренной из адсорбции азота от 40-400 м2/г.

Изобретение относится к вулканизующимся композициям на основе содержащих эпоксидные группы нитрильных каучуков. Вулканизующаяся композиция в твердой форме содержит нитрильный каучук с эпоксидными группами, который содержит повторяющиеся звенья, производные сопряженного диена и α,β-ненасыщенного нитрила.

Изобретение относится к резиновой смеси и пневматической шине. Резиновая смесь содержит диоксид кремния и полимер сопряженного диена, который получают взаимодействием соединения, содержащего атом азота и атом кремния, с активным концом сополимера, полученного полимеризацией мономерного компонента, содержащего соединение сопряженного диена, и кремнийсодержащего винилового соединения.

Изобретение относится к способам получения изделий из полимера для использования в медицине. Предлагаемый способ содержит стадии получения раствора полимера путем смешивания первого соединения, содержащего карбодиимидные группы, со вторым соединением, содержащим карбоксилированные группы, нанесения раствора полимера на формирователь, где стадию нанесения осуществляют в течение не более 2 часов после получения раствора полимера, и отверждения раствора полимера.

Изобретение относится к производству эпоксидированного растворного бутадиен-стирольного каучука и может быть использовано в каучуковой и шинной промышленности. Способ эпоксидирования бутадиен-стирольного каучука включает обработку раствора бутадиен-стирольного сополимера предельной одноосновной карбоновой кислотой, содержащей от 1 до 3 атомов углерода, и перекисью водорода, при мольном соотношении предельная одноосновная карбоновая кислота/перекись водорода более 1, образующими in situ эпоксидирующий агент.

Изобретение относится к способу получения полимерных продуктов с незамещенными циклопропановыми группами общей формулы (1): где (a+b):(c+d)=60-95:5-40 мол.%. Способ заключается во взаимодействии 1,2-полибутадиена атактического строения с диазосоединением в среде метиленхлорида в присутствии металлокомплексного катализатора при температуре 0-5°С.

Изобретение относится к адгезивной композиции для пневматической шины, которая может улучшить и клейкость к слою пленки и клейкость к резиновому слою, а также к способу склеивания с ее использованием, слоистому материалу, сформированному этим способом и пневматической шине.

Изобретение относится к бромированным и эпоксидированным органическим соединениям, которые представляют собой замедлители горения для полимеров, таких как полистирол.

Настоящее изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов на основе 1,2-полибутадиенов, содержащих в составе макромолекул эпоксидные группы.

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов на основе 1,2-полибутадиенов, содержащих в составе макромолекул эпоксидные группы.

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов, содержащих в составе макромолекул эпоксидные группы.

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов, содержащих в составе макромолекул эпоксидные группы.

Изобретение относится к материалам для элементов пневматической шины и к пневматической шине. .

Изобретение относится к способу получения эпоксидированных 1,2-полибутадиенов. .

Изобретение относится к полибутадиену с эпоксигруппами. Полибутадиен с эпоксигруппами содержит полученные из 1,3-бутадиена мономерные звенья (А), (В) и (С) и В полибутадиене с эпоксигруппами относительное количество мономерных звеньев (А) во всей совокупности содержащихся в нем полученных из 1,3-бутадиена мономерных звеньев составляет от 10 до 60 мол. %, а сумма относительных количеств мономерных звеньев (В) и (С) во всей совокупности содержащихся в нем полученных из 1,3-бутадиена мономерных звеньев составляет от 40 до 90 мол. %. Изобретение позволяет снизить вязкость и температуру стеклования полибутадиена с эпоксигруппами. 6 н. и 16 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к получению полимерных продуктов, содержащих в составе макромолекул незамещенные циклопропановые группы. Способ получения полимерных продуктов, содержащих в составе макромолекул циклопропановые группы, общей формулы : имеющих соотношение звеньев :60-90:10-40], заключается во взаимодействии 1,2-полибутадиена с диазометаном в среде органического растворителя в присутствии катализатора при мольном соотношении 1,2-полибутадиен : диазометан : катализатор, равном 1 : 1,0-3,0 : 0,0025-0,01, способ отличается тем, что в качестве катализатора используют соединения палладия – хлорид палладия PdCl2. В качестве 1,2-полибутадиена используют 1,2-полибутадиен атактического строения со среднечисловой молекулярной массой Mn от 800 до 70000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 60-90 и 10-40 мол. или 1,2-полибутадиен синдиотактического строения со степенью синдиотактичности от 50 до 90, среднечисловой молекулярной массой Mn от 35000 до 75000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 75-95 и 5-25 мол. . Технический результат: получение полимерных продуктов, содержащих в макромолекулах незамещенные циклопропановые группы, имеющих высокую степень функционализации и различную молекулярную массу, которая может быть целенаправленно изменена в широком интервале значений. 1 з.п. ф-лы, 1 табл., 9 пр.

Наверх